Evaluation of Mechanical Wood Properties of Silver Birch (Betula pendula L. Roth.) of Half-Sib Genetic Families
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Baliuckienė, A.; Baliuckas, V. Genetic variability of silver birch (Betula pendula L.) wood hardness in progeny testing at juvenile age. Balt For. 2007, 12, 134–140. [Google Scholar]
- Ministry of Environment, State Forest Service. Lithuanian Statistical Yearbook of Forestry; Dagilius, R., Eigirdas, M., Kuliešis, A., Vižlenskas, D., Eds.; Lutute: Kaunas, Lithuania, 2021; p. 184. ISSN 1648-8008.
- Cown, D.J. Comparison of the Pilodyn and torsiometer methods for the rapid assessment of wood density in living trees. N. Z. J. For. Sci. 1978, 8, 384–391. [Google Scholar]
- Høibø, O.; Vestøl, G.I.; Fischer, C.; Fjeld, L.; Øvrum, A. Bending properties and strength grading of Norway spruce: Variation within and between stands. Can. J. For. Res. 2014, 44, 128–135. [Google Scholar] [CrossRef]
- Ruso, D.; Marziliano, P.A.; Macri, G.; Proto, A.R.; Zimbalatti, G.; Lombardi, F. Does thinning intensity affect wood quality? an analysis of Calabrian pine in southern Italy using a non-destructive acoustic method. Forests 2019, 10, 303. [Google Scholar] [CrossRef]
- Machado, J.S.; Louzada, J.L.; Santos, A.J.A.; Nunes, L.; Anjos, O.; Rodrigues, J.; Simões, R.M.S.; Pereira, H. Variation of wood density and mechanical properties of blackwood (Acacia melanoxylon R. Br.). Mater. Des. 2014, 56, 975–980. [Google Scholar] [CrossRef]
- Moreno-Fernández, D.; Hevia, A.; Majada, J.; Cañellas, I. Do common silvicultural treatments affect wood density of Mediterranean montane pines? Forests 2018, 9, 80. [Google Scholar] [CrossRef]
- Kollmann, F.F.P.; Côté, W.A. Principles of Wood Science and Technology: I. Solid Wood; Springer: Berlin/Heidelberg, Germany, 1968; p. 592. [Google Scholar] [CrossRef]
- Forest Products Laboratory. Wood Handbook: Wood as an Engineering Material. General Technical Report FPL-GTR-190; U.S. Department of Agriculture, Forest Service: Madison, WI, USA, 2010; p. 508. [Google Scholar]
- Jones, G.; Liziniewicz, M.; Adamopoulos, S.; Lindeberg, J. Genetic parameters of stem and wood traits in full-sib silver birch families. Forests 2021, 12, 159. [Google Scholar] [CrossRef]
- Jones, G.; Liziniewicz, M.; Lindeberg, J.; Adamopoulos, S. Non-destructive evaluation of downy and silver birch wood quality and stem features from a progeny trial in Southern Sweden. Forests 2023, 14, 2031. [Google Scholar] [CrossRef]
- Lachowicz, H.; Bieniasz, A.; Wojtan, R. Variability in the basic density of silver birch wood in Poland. Silva Fenn. 2019, 53, 9968. [Google Scholar] [CrossRef]
- Nazari, N.; Bahmani, M.; Kahyani, S.; Humar, M. Effect of site conditions on the properties of hawthorn (Crataegus azarolus L.) wood. J. For. Sci. 2021, 67, 113–124. [Google Scholar] [CrossRef]
- Savolainen, O.; Pyhäjärvi, T.; Knürr, T. Gene flow and local adaptation in trees. Annu. Rev. Ecol. Evol. Syst. 2007, 38, 595–619. [Google Scholar] [CrossRef]
- Kärkkäinen, K.; Savolainen, O.; Koski, V. Local adaptation in a changing world: The roles of gene-flow, mutation, and sexual reproduction. Evol. Appl. 2015, 8, 635–655. [Google Scholar] [CrossRef]
- Verkasalo, E.; Leban, J.M. MOE and MOR in static bending of small clear specimens of Scots pine, Norway spurce and European fir from Finland and France and their prediction for the comparison of wood quality. Pap. Puu-Pap. Tim. 2002, 84, 332–340. [Google Scholar]
- Hautamäki, S.; Kilpeläinen, H.; Verkasalo, E. Factors and model for bending properties of sawn timber from Finland and North-Western Russia. Part I: Norway spruce. Balt. For. 2013, 19, 106–119. [Google Scholar]
- Hautamäki, S.; Kilpeläinen, H.; Verkasalo, E. Factors and model for bending properties of sawn timber from Finland and North-Western Russia. Part II: Scots pine. Balt. For. 2014, 20, 142–156. [Google Scholar]
- Šilinskas, B.; Varnagirytė-Kabašinskienė, I.; Aleinikovas, M.; Beniušienė, L.; Aleinikovienė, J.; Škėma, M. Scots Pine and Norway spruce wood properties at sites with different stand densities. Forests 2020, 11, 587. [Google Scholar] [CrossRef]
- European Commission. New EU Forest Strategy for 2030. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, COM(2021) 572 Final; European Commission: Brussels, Belgium, 2021. [Google Scholar]
- European Commission. The European Green Deal. COM(2019) 640 Final; European Commission: Brussels, Belgium, 2019; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52019DC0640 (accessed on 25 March 2024).
- Vaičys, M.; Karazija, S.; Kuliešis, A.; Rutkauskas, A. Miškų Augavietės [Forest Sites]; Lutute: Kaunas, Lithuania, 2006; p. 95. (In Lithuanian) [Google Scholar]
- Shukla, G.K. Some statistical aspects of partitioning genotype–environment components of variability. Heredity 1972, 29, 237–245. [Google Scholar] [CrossRef] [PubMed]
- EN 408:2006; Timber Structures. Structural Timber and Glued Laminated Timber—Determination of Some Physical and Mechanical Properties. European Committee for Standardization: Brussels, Belgium, 2006.
- EN 384:2016; Structural Timber. Determination of Characteristic Values of Mechanical Properties and Density. European Committee for Standardization: Brussels, Belgium, 2016.
- EN 13183-1:2002; Moisture Content of a Piece of Sawn Timber. Part 1: Determination by Oven Dry Method. European Committee of Standardization: Brussels, Belgium, 2002.
- Dunham, R.A.; Cameron, A.D.; Petty, J.A. The Effect of Growth Rate on the Strength Properties of Sawn Beams of Silver Birch (Betula pendula Roth). Scand. J. For. Res. 1999, 14, 18–26. [Google Scholar] [CrossRef]
- Collins, S.; Fink, G. Mechanical behaviour of sawn timber of silver birch under compression loading. Wood Mater. Sci. Eng. 2022, 17, 121–128. [Google Scholar] [CrossRef]
- Johansson, M.; Säll, H.; Lundqvist, S.O. Properties of Materials from Birch–Variations and Relationships: Part 2. Mechanical and Physical Properties; Department of Building and Energy Technology, Linnaeus University: Växjö, Sweden, 2013; p. 43. [Google Scholar]
- Wu, Y.; Wang, S.; Zhou, D.; Xing, C.; Zhang, Y. Use of nanoindentation and silviscan to determine the mechanical properties of 10 hardwood species. Wood Fiber Sci. 2009, 41, 64–73. [Google Scholar]
No. | Plantation | Area, ha | North Latitude | East Longitude | Altitude, m | Region of Provenance | Climate/ Continental Index | Forest Site Type * | Number of Population Families |
---|---|---|---|---|---|---|---|---|---|
1 | Šiauliai, Lukšiai | 1.4 | 55°58′ | 23°09′ | 120 | 1 | Intermediate/27 | Nb | 24/111 |
2 | Kaunas, Dubrava | 1.5 | 54°55′ | 23°27′ | 75 | 2 | Intermediate/27 | Ld | 24/109 |
Family No. | Mean of Pilodyn | Std. Dev | Std. Error | Duncan Multiple Range Test | Family No. | Mean of Pilodyn | Std. Dev. | Std. Error | Duncan Multiple Range Test |
---|---|---|---|---|---|---|---|---|---|
52-172 | 22.44 | 1.54 | 0.24 | T | 60-76 | 23.29 | 1.34 | 0.21 | LFKNJQIRHOPGM |
52-169 | 22.49 | 1.44 | 0.18 | ST | 15-132 | 23.31 | 1.12 | 0.15 | LFKNJQIRHOPGM |
20-125 | 22.50 | 1.34 | 0.17 | ST | 49-74 | 23.35 | 1.57 | 0.17 | LFKNJQIEHOPGM |
45-99 | 22.56 | 1.11 | 0.18 | SRT | 18-50 | 23.39 | 1.45 | 0.21 | LFKNJQIEHOPGM |
01-113 | 22.57 | 1.30 | 0.23 | SRT | 52-171 | 23.39 | 1.11 | 0.15 | LFKNJQIRHOPGM |
20-128 | 22.70 | 1.74 | 0.24 | SQRT | 49-72 | 23.40 | 1.31 | 0.22 | LFKNJQIEHOPGM |
52-173 | 22.77 | 1.58 | 0.25 | SQRPT | 45-98 | 23.41 | 1.52 | 0.26 | LFKNJQIEHOPGM |
16-162 | 22.79 | 1.57 | 0.24 | SQRPT | 54-83 | 23.43 | 1.13 | 0.15 | LFKNJQIRHOPGM |
54-84 | 22.80 | 1.26 | 0.20 | SQROPT | 51-86 | 23.45 | 1.18 | 0.13 | LFKNJQIEHOPGM |
47-92 | 22.85 | 1.63 | 0.24 | SNQROPT | 37-56 | 23.47 | 1.51 | 0.20 | LFKNJDIEHOPGM |
40-118 | 22.94 | 1.34 | 0.19 | SNQROPTM | 47-91 | 23.53 | 1.61 | 0.27 | LFKNJDIEHOPGM |
34-63 | 22.96 | 1.60 | 0.22 | SNQROPTM | 43-65 | 23.56 | 1.16 | 0.20 | LFKNJDIEHOGM |
34-59 | 23.00 | 1.08 | 0.17 | LSNQROPTM | 18-21 | 23.57 | 1.81 | 0.25 | LFKNJDIEHGM |
49-71 | 23.00 | 1.43 | 0.21 | LSNQROPTM | 43-PL | 23.60 | 1.71 | 0.29 | LFKNJDIEHCGM |
54-81 | 23.00 | 1.29 | 0.21 | LSNQROPTM | 51-89 | 23.66 | 1.37 | 0.20 | LFKBJDIEHCGM |
S-43 | 23.00 | 1.20 | 0.19 | LSNQROPTM | 20-124 | 23.74 | 1.34 | 0.20 | LFKBJDIEHCG |
45-100 | 23.03 | 1.17 | 0.20 | LSKNQROPTM | 40-119 | 23.75 | 1.58 | 0.23 | LFKBJDIEHCG |
49-73 | 23.04 | 1.64 | 0.22 | LSKNQROPTM | 37-54 | 23.76 | 0.99 | 0.13 | LFKBJDIEHCG |
01-111 | 23.07 | 1.46 | 0.26 | LSKNQROPTM | 18-48 | 23.76 | 1.20 | 0.17 | LFKBJDIEHCG |
40-120 | 23.09 | 1.51 | 0.26 | LSKNQROPTM | 43-64 | 23.79 | 1.62 | 0.22 | FKBJDIEHCG |
43-68 | 23.09 | 1.14 | 0.17 | LSKNQROPTM | 37-55 | 23.88 | 1.14 | 0.17 | FBJDIEHCG |
60-75 | 23.12 | 1.43 | 0.22 | LSKNJQROPTM | 51-87 | 23.89 | 1.37 | 0.17 | FBJDIEHCG |
19-142 | 23.12 | 1.63 | 0.25 | LSKNJQROPTM | S-39 | 23.90 | 0.98 | 0.17 | FBDIEHCG |
47-93 | 23.14 | 1.35 | 0.22 | LSKNJQIROPTM | 43-BSM | 23.91 | 1.53 | 0.27 | FBDIEHCG |
49-69 | 23.14 | 1.45 | 0.24 | LSKNJQIROPTM | 51-90 | 23.95 | 1.23 | 0.16 | FBDEHCG |
43-66 | 23.15 | 1.33 | 0.21 | LSKNJQIROPTM | 39-155 | 24.00 | 0.97 | 0.16 | FBDECG |
60-77 | 23.17 | 1.37 | 0.16 | LSKNJQIROPTM | 37-57 | 24.04 | 1.08 | 0.14 | FBDEC |
33-175 | 23.17 | 1.27 | 0.18 | LSKNJQIROPTM | 18-47 | 24.06 | 1.10 | 0.19 | BDEC |
34-60 | 23.21 | 1.28 | 0.18 | LSKNJQIRHOPM | 37-53 | 24.08 | 1.68 | 0.27 | BDEC |
38-143 | 23.23 | 1.38 | 0.24 | LSKNJQIRHOPM | 66-150 | 24.09 | 1.17 | 0.19 | BDEC |
01-112 | 23.23 | 1.41 | 0.18 | LSKNJQIRHOPM | 60-78 | 24.21 | 1.36 | 0.21 | BDAC |
16-130 | 23.25 | 1.26 | 0.16 | LSKNJQIRHOPGM | 47-94 | 24.21 | 1.56 | 0.23 | BDAC |
16-163 | 23.27 | 1.50 | 0.18 | LKNJQIRHOPGM | 39-154 | 24.32 | 1.06 | 0.18 | BAC |
16-161 | 23.27 | 1.41 | 0.17 | LKNJQIRHOPGM | 34-58 | 24.36 | 1.38 | 0.20 | BA |
51-88 | 23.29 | 1.51 | 0.20 | LFKNJQIRHOPGM | 60-79 | 24.78 | 1.08 | 0.16 | A |
18-52 | 23.29 | 1.82 | 0.32 | LFKNJQIEHOPGM |
Parameter | Units | Mean | Std Dev | Std Error | Minimum | Maximum | Probability |
---|---|---|---|---|---|---|---|
Hard | |||||||
Tree DBH | cm | 18.20 | 2.10 | 0.16 | 12.90 | 20.70 | <0.0001 |
Tree Height | m | 20.04 | 1.94 | 0.15 | 15.10 | 22.30 | |
Log hardness | mm | 18.61 | 1.26 | 0.10 | 15.67 | 21.67 | |
Sample hardness | mm | 10.15 | 1.26 | 0.10 | 7.00 | 14.25 | |
Moisture | % | 9.68 | 1.22 | 0.09 | 7.32 | 1952 | |
Density | kg/m3 | 545 | 37.04 | 2.81 | 487 | 661 | |
MOEdyn | N/mm2 | 12,489 | 1773.58 | 134.45 | 7637 | 17,267 | |
MOR | N/mm2 | 52.71 | 9.83 | 0.75 | 22.14 | 81.96 | |
MOE | N/mm2 | 11,386 | 2239.75 | 169.79 | 4608 | 17,571 | |
Non-Plastic | |||||||
Tree DBH | cm | 18.50 | 1.87 | 0.17 | 14.50 | 20.75 | <0.0001 |
Tree Height | m | 18.13 | 1.69 | 0.15 | 14.50 | 20.20 | |
Log hardness | mm | 17.65 | 1.38 | 0.13 | 15.33 | 21.00 | |
Sample hardness | mm | 10.07 | 1.71 | 0.16 | 7.00 | 15.25 | |
Moisture | % | 9.83 | 1.11 | 0.10 | 8.09 | 13.15 | |
Density | kg/m3 | 568 | 52.45 | 4.81 | 470 | 712 | |
MOEdyn | N/mm2 | 12,028 | 1967.27 | 180.34 | 8213 | 18,316 | |
MOR | N/mm2 | 51.00 | 10.85 | 0.99 | 15.26 | 78.43 | |
MOE | N/mm2 | 10,916 | 2493.07 | 228.54 | 3428 | 16,777 | |
Plastic | |||||||
Tree DBH | cm | 17.48 | 2.85 | 0.26 | 14.85 | 22.35 | <0.0001 |
Tree Height | m | 18.67 | 1.44 | 0.13 | 16.20 | 20.10 | |
Log hardness | mm | 17.52 | 1.16 | 0.11 | 14.67 | 20.33 | |
Sample hardness | mm | 9.61 | 1.26 | 0.11 | 6.75 | 15.50 | |
Moisture | % | 9.36 | 0.74 | 0.07 | 7.60 | 11.02 | |
Density | kg/m3 | 578 | 39.99 | 3.64 | 513 | 705 | |
MOEdyn | N/mm2 | 12,776 | 1923.60 | 174.87 | 8221 | 18,616 | |
MOR | N/mm2 | 54.67 | 9.71 | 0.88 | 30.34 | 76.12 | |
MOE | N/mm2 | 11,255 | 2318.79 | 210.80 | 5742 | 17,166 | |
Soft | |||||||
Tree DBH | cm | 16.16 | 2.02 | 0.20 | 13.30 | 18.55 | <0.0001 |
Tree Height | m | 17.04 | 0.94 | 0.09 | 15.50 | 18.20 | |
Log hardness | mm | 17.00 | 1.01 | 0.10 | 14.00 | 19.00 | |
Sample hardness | mm | 9.94 | 1.38 | 0.14 | 6.75 | 14.00 | |
Moisture | % | 9.49 | 0.95 | 0.09 | 7.45 | 12.75 | |
Density | kg/m3 | 571 | 44.32 | 4.33 | 499 | 704 | |
MOEdyn | N/mm2 | 12,423 | 1776.47 | 173.37 | 7351 | 16,267 | |
MOR | N/mm2 | 54.34 | 9.61 | 0.94 | 30.69 | 73.17 | |
MOE | N/mm2 | 11,222 | 2209.71 | 215.65 | 4406 | 16,961 |
Parameter | Tree DBH * | Tree Height | Log Hardness | Sample Hardness | Wood Density | MOEdyn | MOR | MOE |
---|---|---|---|---|---|---|---|---|
Tree DBH | −0.0727 | 0.3553 | −0.1506 | 0.1279 | 0.0070 | −0.0703 | −0.0138 | |
Tree Height | 0.0979 | −0.0377 | 0.0669 | −0.3337 | 0.0839 | −0.0337 | 0.0907 | |
Log hardness | <0.0001 | 0.391 | 0.2516 | −0.1728 | −0.2003 | −0.0873 | −0.1005 | |
Sample hardness | 0.0006 | 0.1281 | <0.0001 | −0.670 | −0.2505 | −0.2010 | −0.1760 | |
Wood Density | 0.0035 | <0.0001 | <0.0001 | <0.0001 | 0.1901 | 0.1801 | 0.0917 | |
MOEdyn | 0.8731 | 0.056 | <0.0001 | <0.0001 | <0.0001 | 0.4059 | 0.4848 | |
MOR | 0.1098 | 0.444 | 0.0468 | <0.0001 | <0.0001 | <0.0001 | 0.8646 | |
MOE | 0.7531 | 0.0388 | 0.0221 | <0.0001 | 0.0368 | <0.0001 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šilinskas, B.; Varnagirytė-Kabašinskienė, I.; Beniušienė, L.; Aleinikovas, M.; Škėma, M.; Baliuckas, V. Evaluation of Mechanical Wood Properties of Silver Birch (Betula pendula L. Roth.) of Half-Sib Genetic Families. Forests 2024, 15, 845. https://doi.org/10.3390/f15050845
Šilinskas B, Varnagirytė-Kabašinskienė I, Beniušienė L, Aleinikovas M, Škėma M, Baliuckas V. Evaluation of Mechanical Wood Properties of Silver Birch (Betula pendula L. Roth.) of Half-Sib Genetic Families. Forests. 2024; 15(5):845. https://doi.org/10.3390/f15050845
Chicago/Turabian StyleŠilinskas, Benas, Iveta Varnagirytė-Kabašinskienė, Lina Beniušienė, Marius Aleinikovas, Mindaugas Škėma, and Virgilijus Baliuckas. 2024. "Evaluation of Mechanical Wood Properties of Silver Birch (Betula pendula L. Roth.) of Half-Sib Genetic Families" Forests 15, no. 5: 845. https://doi.org/10.3390/f15050845
APA StyleŠilinskas, B., Varnagirytė-Kabašinskienė, I., Beniušienė, L., Aleinikovas, M., Škėma, M., & Baliuckas, V. (2024). Evaluation of Mechanical Wood Properties of Silver Birch (Betula pendula L. Roth.) of Half-Sib Genetic Families. Forests, 15(5), 845. https://doi.org/10.3390/f15050845