Axenic Culture and DNA Barcode Identification of Wood Decay Fungi from the Maltese Islands
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling of Wood Decay Fungi
2.2. Wood Decay Fungi Isolation and Isolate Preservation
2.3. Morphological Observations
2.4. DNA Extraction and Molecular Identification of WDF Isolates
2.5. Cloning
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Available online: https://www.iucnredlist.org (accessed on 30 January 2024).
- Available online: www.sdgs.un.org/goals (accessed on 30 January 2024).
- Hawksworth, D.L.; Lücking, R. Fungal Diversity Revisited: 2.2 to 3.8 Million Species. Microbiol. Spectr. 2017, 5, 5.4.10. [Google Scholar] [CrossRef] [PubMed]
- Dahlberg, A.; Mueller, G.M. Applying IUCN Red-Listing Criteria for Assessing and Reporting on the Conservation Status of Fungal Species. Fungal Ecol. 2011, 4, 147–162. [Google Scholar] [CrossRef]
- Sette, L.D.; Pagnocca, F.C.; Rodrigues, A. Microbial Culture Collections as Pillars for Promoting Fungal Diversity, Conservation and Exploitation. Fungal Genet. Biol. 2013, 60, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.; McCluskey, K.; Stackebrandt, E. Investment into the Future of Microbial Resources: Culture Collection Funding Models and BRC Business Plans for Biological Resource Centres. SpringerPlus 2014, 3, 81. [Google Scholar] [CrossRef] [PubMed]
- Heilmann-Clausen, J.; Barron, E.S.; Boddy, L.; Dahlberg, A.; Griffith, G.W.; Nordén, J.; Ovaskainen, O.; Perini, C.; Senn-Irlet, B.; Halme, P. A Fungal Perspective on Conservation Biology. Conserv. Biol. 2015, 29, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Ellis, C.J.; Asplund, J.; Benesperi, R.; Branquinho, C.; Di Nuzzo, L.; Hurtado, P.; Martínez, I.; Matos, P.; Nascimbene, J.; Pinho, P.; et al. Functional Traits in Lichen Ecology: A Review of Challenge and Opportunity. Microorganisms 2021, 9, 766. [Google Scholar] [CrossRef] [PubMed]
- Nagy, L.G.; Riley, R.; Bergmann, P.J.; Krizsán, K.; Martin, F.M.; Grigoriev, I.V.; Cullen, D.; Hibbett, D.S. Genetic Bases of Fungal White Rot Wood Decay Predicted by Phylogenomic Analysis of Correlated Gene-Phenotype Evolution. Mol. Biol. Evol. 2017, 34, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Krah, F.-S.; Bässler, C.; Heibl, C.; Soghigian, J.; Schaefer, H.; Hibbett, D.S. Evolutionary Dynamics of Host Specialization in Wood-Decay Fungi. BMC Evol. Biol. 2018, 18, 119. [Google Scholar] [CrossRef] [PubMed]
- Schwarze, F.W.M.R. Wood Decay under the Microscope. Fungal Biol. Rev. 2007, 21, 133–170. [Google Scholar] [CrossRef]
- Deflorio, G.; Johnson, C.; Fink, S.; Schwarze, F.W.M.R. Decay Development in Living Sapwood of Coniferous and Deciduous Trees Inoculated with Six Wood Decay Fungi. For. Ecol. Manag. 2008, 255, 2373–2383. [Google Scholar] [CrossRef]
- Fukasawa, Y. Ecological Impacts of Fungal Wood Decay Types: A Review of Current Knowledge and Future Research Directions. Ecol. Res. 2021, 36, 910–931. [Google Scholar] [CrossRef]
- Arciniegas, A.; Prieto, F.; Brancheriau, L.; Lasaygues, P. Literature Review of Acoustic and Ultrasonic Tomography in Standing Trees. Trees 2014, 28, 1559–1567. [Google Scholar] [CrossRef]
- Ma, B.-J.; Shen, J.-W.; Yu, H.-Y.; Ruan, Y.; Wu, T.-T.; Zhao, X. Hericenones and Erinacines: Stimulators of Nerve Growth Factor (NGF) Biosynthesis in Hericium erinaceus. Mycology 2010, 1, 92–98. [Google Scholar] [CrossRef]
- Pozdnyakova, N.N. Involvement of the Ligninolytic System of White-Rot and Litter-Decomposing Fungi in the Degradation of Polycyclic Aromatic Hydrocarbons. Biotechnol. Res. Int. 2012, 2012, 243217. [Google Scholar] [CrossRef] [PubMed]
- Giles, R.L.; Galloway, E.R.; Zackeru, J.C.; Naithani, V.; Parrow, M.W. Two Stage Fungal Biopulping Solubilizes Lignocellulosic Carbohydrates without Supplemental Enzymatic Hydrolysis. Int. Biodeterior. Biodegrad. 2014, 86, 265–271. [Google Scholar] [CrossRef]
- Mendonça Maciel, M.J.; Castro, E.; Silva, A.; Telles Ribeiro, H.C. Industrial and Biotechnological Applications of Ligninolytic Enzymes of the Basidiomycota: A Review. Electron. J. Biotechnol. 2010, 13, 14–15. [Google Scholar] [CrossRef]
- Gadd, G.M. Biosorption: Critical Review of Scientific Rationale, Environmental Importance and Significance for Pollution Treatment. J. Chem. Technol. Biotechnol. 2009, 84, 13–28. [Google Scholar] [CrossRef]
- Sturini, M.; Girometta, C.; Maraschi, F.; Savino, E.; Profumo, A. A Preliminary Investigation on Metal Bioaccumulation by Perenniporia Fraxinea. Bull. Environ. Contam. Toxicol. 2017, 98, 508–512. [Google Scholar] [CrossRef] [PubMed]
- Hyde, K.D. The Amazing Potential of Fungi: 50 Ways We Can Exploit Fungi Industrially. Fungal Divers. 2019, 97, 1–36. [Google Scholar]
- Elsacker, E. A Comprehensive Framework for the Production of Mycelium-Based Lignocellulosic Composites. Sci. Total Environ. 2020, 725, 138431. [Google Scholar] [CrossRef]
- Antinori, M.E. Advanced Mycelium Materials as Potential Self-Growing Biomedical Scaffolds. Sci. Rep. 2021, 11, 12630. [Google Scholar] [CrossRef] [PubMed]
- César, E.; Canche-Escamilla, G.; Montoya, L.; Ramos, A.; Duarte-Aranda, S.; Bandala, V.M. Characterization and Physical Properties of Mycelium Films Obtained from Wild Fungi: Natural Materials for Potential Biotechnological Applications. J. Polym. Environ. 2021, 29, 4098–4105. [Google Scholar] [CrossRef]
- Elsacker, E.; Peeters, E.; De Laet, L. Large-Scale Robotic Extrusion-Based Additive Manufacturing with Living Mycelium Materials. Sustain. Futur. 2022, 4, 100085. [Google Scholar] [CrossRef]
- Buratti, S.; Girometta, C.E.; Savino, E.; Gorjón, S.P. An Example of the Conservation of Wood Decay Fungi: The New Research Culture Collection of Corticioid and Polyporoid Strains of the University of Salamanca (Spain). Forests 2023, 14, 2029. [Google Scholar] [CrossRef]
- Available online: https://wfcc.info/home_view (accessed on 31 January 2024).
- Available online: https://bccm.belspo.be (accessed on 31 January 2024).
- The Microbial Resource Research Infrastructure (MIRRI). Available online: https://www.mirri.org (accessed on 31 January 2024).
- Santos, I.M.; Lima, N. Criteria Followed in the Establishment of a Filamentous Fungal Culture Collection ± Micoteca Da Universidade Do Minho (MUM). World J. Microbiol. Biotechnol. 2001, 17, 215–220. [Google Scholar] [CrossRef]
- Schembri, P.J. The Maltese Islands: Climate, Vegetation and Landscape. GeoJournal 1996, 41, 115–125. [Google Scholar]
- Brullo, S.; Brullo, C.; Cambria, S.; Giusso del Galdo, G. The Vegetation of the Maltese Islands; Geobotany Studies; Springer International Publishing: Cham, Switzerland, 2020; ISBN 978-3-030-34524-2. [Google Scholar]
- Casha, A. Flora of the Maltese Islands, 4th ed.; Lulu Press: Morrisville, NC, USA, 2020. [Google Scholar]
- Cramer, W.; Guiot, J.; Fader, M.; Garrabou, J.; Gattuso, J.-P.; Iglesias, A.; Lange, M.A.; Lionello, P.; Llasat, M.C.; Paz, S.; et al. Climate Change and Interconnected Risks to Sustainable Development in the Mediterranean. Nat. Clim. Change 2018, 8, 972–980. [Google Scholar] [CrossRef]
- Mifsud, S. An Annotated Checklist of Macrofungi Occurring in Gozo. Master’s Thesis, University of Malta, Msida, Malta, 2022. [Google Scholar]
- Sammut, C.; Alvarado, P.; Saar, I. Schizophyllum amplum (Agaricales, Schizophyllaceae): A Rare Basidiomycete from Malta and Estonia. Ital. J. Mycol. 2019, 48, 50–56. [Google Scholar] [CrossRef]
- Fournier, J.; Lechat, C.; Mifsud, S.; Sammut, C. Xylaria melitensis (Xylariaceae), a New Penzigioid Species from the Maltese Islands. Ascomycete. org 2021, 13, 59–67. [Google Scholar] [CrossRef]
- Sammut, C. Further additions to the Mycobiota of Malta. Ecologia Mediterranea 2021, 47-2, 85–135. [Google Scholar] [CrossRef]
- Iannaccone, M.; Somma, S.; Altomare, C.; Buhagiar, J.A. Trichoderma in the Maltese Islands. Phytopathol. Mediterr. 2023, 62, 361–370. [Google Scholar] [CrossRef]
- Elad, Y.; Chet, I.; Henis, Y. A Selective Medium for Improving Quantitative Isolation of Trichoderma Spp. from Soil. Phytoparasitica 1981, 9, 59–67. [Google Scholar] [CrossRef]
- Kornerup, A.; Wanscher, J. Methuen Handbook of Color, 3rd ed.; Eyre Methuen: London, UK, 1981. [Google Scholar]
- Decock, C.; Valenzuela, R.; Castillo, G. Studies in Perenniporia s. l. Perenniporiella tepeitensis Comb, Nov., an Addition to Perenniporiella: Evidence from Morphological and Molecular Data. Cryptogamie Mycologie 2010, 4, 419–429. [Google Scholar]
- Decock, C.; Amalfi, M.; Robledo, G.; Castillo, G. Phylloporia nouraguensis, an Undescribed Species on Myrtaceae from French Guiana. Cryptogam. Mycol. 2013, 34, 15. [Google Scholar] [CrossRef]
- Kirk, P.M.; Cannon, P.; David, J.; Stalpers, J. Ainsworth & Bisby’s Dictionary of the Fungi, 9th ed.; CABI Publishing: Wallingford, UK, 2001. [Google Scholar]
- Bernicchia, A.; Gorjón, S.P. Polypores of the Mediterranean Region Bernicchia; Romar editrice; Romar SRI: Orange Beach, AL, USA, 2020; ISBN 978-88-96182-14-7. [Google Scholar]
- Ryvarden, L.; Melo, I. Poroid Fungi of Europe; Fungiflora: Oslo, Norway, 2017; Volume Synopsis Fungorum 37, ISBN 978-82-90724-54-7. [Google Scholar]
- Doyle, J.J.; Doyle, J.L. Isolation of Plant DNA from Fresh Tissue. Focus 1990, 12, 13–15. [Google Scholar]
- Available online: http://biology.duke.edu/fungi/mycolab/primers.htm (accessed on 31 January 2024).
- Matheny, P.B. Improving Phylogenetic Inference of Mushrooms with RPB1 and RPB2 Nucleotide Sequences (Inocybe, Agaricales). Mol. Phylogenet. Evol. 2005, 35, 1–20. [Google Scholar] [CrossRef]
- Rehner, S.A.; Buckley, E. A Beauveria Phylogeny Inferred from Nuclear ITS and EF1- Sequences: Evidence for Cryptic Diversification and Links to Cordyceps Teleomorphs. Mycologia 2005, 97, 84–98. [Google Scholar] [CrossRef] [PubMed]
- Amalfi, M.; Decock, C. Fomitiporia Castilloi Sp. Nov. and Multiple Clades around F. Apiahyna and F. Texana in Meso- and South America Evidenced by Multiloci Phylogenetic Inferences. Mycologia 2013, 105, 873–887. [Google Scholar] [CrossRef] [PubMed]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. In PCR Protocols, A Guide to Methods and Applications; Academic Press: Cambridge, MA, USA, 1990; pp. 315–322. [Google Scholar]
- Brandon Matheny, P.; Wang, Z.; Binder, M.; Curtis, J.M.; Lim, Y.W.; Henrik Nilsson, R.; Hughes, K.W.; Hofstetter, V.; Ammirati, J.F.; Schoch, C.L. Contributions of Rpb2 and Tef1 to the Phylogeny of Mushrooms and Allies (Basidiomycota, Fungi). Mol. Phylogenet. Evol. 2007, 43, 430–451. [Google Scholar] [CrossRef]
- Available online: https://www.cbd.int/island/ (accessed on 31 January 2024).
- Baum, S.; Sieber, T.N.; Schwarze, F.W.M.R.; Fink, S. Latent Infections of Fomes Fomentarius in the Xylem of European Beech (Fagus sylvatica). Mycol. Prog. 2003, 2, 141–148. [Google Scholar] [CrossRef]
- Saccardo, P.A. Fungi Ex Insula Melita (Malta) Lecti a Doct. A. Caruana-Gatto et Doct. G. Borg. Nuovo G. Bot. Ital. 1914, 21, 110–126. [Google Scholar]
- Briffa, M.; Lanfranco, E. The Macrofungi of the Maltese Islands: Addition and Notes. Cent. Mediterr. Nat. 1986, 1, 69–79. [Google Scholar]
- Briffa, M. Polypores Recorded in Malta: Additions and Updated Checklist. Cent. Mediterr. Nat. 2001, 3, 125–129. [Google Scholar]
- Saccardo, P.A. Fungi Ex Insula Melita (Malta) Lecti a Doct. A. Caruana-Gatto et Doct. G. Borg. Nuovo G. Bot. Ital. 1912, 19, 314–326. [Google Scholar]
- Saccardo, P.A. Fungi Ex Insula Melita (Malta) Lecti a Doct. A. Caruana-Gatto et Doct. G. Borg. Nuovo G. Bot. Ital. 1915, 22, 24–76. [Google Scholar]
- Melo, I.; Ramos, P.; Caetano, M.F.F. First Record of Inonotus Rickii (Basidiomycetes, Hymenochaetaceae) in Portugal. Port. Acta Biol. 2002, 20, 265–269. [Google Scholar]
- Mazza, G.; Moriondo, M.; Motta, E.; Annesi, T. Monitoraggio fitopatologico di Inonotus rickii nella città di Roma e applicazioni GPS-GIS. Forest 2008, 5, 160–170. [Google Scholar] [CrossRef]
- Barnard, E.L. A Wood-Decaying Fungus of Importance to Florida Hardwoods. Plant Pathol. Circ. 1993, 357. Available online: https://ccmedia.fdacs.gov/content/download/11364/file/pp357.pdf (accessed on 31 January 2024).
- Leonardo-Silva, L.; Abdel-Azeem, A.M.; Xavier-Santos, S. Inonotus Rickii (Agaricomycetes, Hymenochaetaceae) in Brazilian Cerrado: Expanding Its Geographic Distribution and Host List. Front. Microbiol. 2021, 12, 647920. [Google Scholar] [CrossRef]
- Ramos, A.P.; Caetano, M.F.; Melo, I. Inonotus Rickii (Pat.) Reid: An Important Legnicolous Basidiomycete in Urban Trees. Rev. Ciênc. Agrár. 2008, 31, 159–167. [Google Scholar]
- Yuan, Y.; Bian, L.-S.; Wu, Y.-D.; Chen, J.-J.; Wu, F.; Liu, H.-G.; Zeng, G.-Y.; Dai, Y.-C. Species Diversity of Pathogenic Wood-Rotting Fungi (Agaricomycetes, Basidiomycota) in China. Mycology 2023, 14, 204–226. [Google Scholar] [CrossRef] [PubMed]
- Badalyan, S.M.; Shnyreva, A.V.; Iotti, M.; Zambonelli, A. Genetic Resources and Mycelial Characteristics of Several Medicinal Polypore Mushrooms (Polyporales, Basidiomycetes). Int. J. Med. Mushrooms 2015, 17, 371–384. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Ke, B.; Ye, L.; Jin, S.; Jie, F.; Zhao, L.; Wu, X. Isolation and Varietal Characterization of Ganoderma Resinaceum from Areas of Ganoderma Lucidum Production in China. Sci. Hortic. 2017, 224, 109–114. [Google Scholar] [CrossRef]
- Ryvarden, L. The Genus Inonotus in Africa. Mycol. Prog. 2019, 18, 653–657. [Google Scholar] [CrossRef]
- Gafforov, Y.; Ordynets, A.; Langer, E.; Yarasheva, M.; de Mello Gugliotta, A.; Schigel, D.; Pecoraro, L.; Zhou, Y.; Cai, L.; Zhou, L.-W. Species Diversity with Comprehensive Annotations of Wood-Inhabiting Poroid and Corticioid Fungi in Uzbekistan. Front. Microbiol. 2020, 11, 598321. [Google Scholar] [CrossRef] [PubMed]
- Gafforov, Y.; Yamaç, M.; İnci, Ş.; Rapior, S.; Yarasheva, M.; Rašeta, M. Pleurotus Eryngii (DC.) Quél.; Pleurotus Ostreatus (Jacq.) P. Kumm—PLEUROTACEAE. In Ethnobiology of Uzbekistan; Khojimatov, O.K., Gafforov, Y., Bussmann, R.W., Eds.; Ethnobiology; Springer International Publishing: Cham, Switzerland, 2023; pp. 1335–1388. ISBN 978-3-031-23030-1. [Google Scholar]
- Buratti, S.; Rinaldi, F.; Calleri, E.; Bernardi, M.; Oliva, D.; Malgaretti, M.; De Girolamo, G.; Barucco, B.; Girometta, C.E.; Savino, E. Ganoderma Resinaceum and Perenniporia Fraxinea: Two Promising Wood Decay Fungi for Pharmaceutical Degradation. J. Fungi 2023, 9, 555. [Google Scholar] [CrossRef]
- Dai, Y.-C.; Zhou, L.-W.; Cui, B.-K.; Chen, Y.-Q.; Decock, C. Current Advances in Phellinus Sensu Lato: Medicinal Species, Functions, Metabolites and Mechanisms. Appl. Microbiol. Biotechnol. 2010, 87, 1587–1593. [Google Scholar] [CrossRef]
Genes | Primers | Primer Sequences (5′–3′) | Notes | Reference |
---|---|---|---|---|
ITS | ITS1 | TCCTCCGCTTATTGATATGC | For the ITS primers, an initial denaturation at 94 °C for 3 min was followed by 30 cycles at the following conditions: 90 s at 94 °C, 90 s at 55 °C and 2 min at 72 °C. A final extension at 72 °C for 10 min completed the PCR. | [52] |
ITS4 | TCCGTAGGTGAACCTGCGG | |||
nrLSU | LR0R | ACCCGCTGAACTTAAGC | For the nrLSU primers, an initial denaturation at 94 °C for 5 min was followed by 35 cycles at the following conditions: 60 s at 94 °C, 90 s at 50 °C and 4 min at 72 °C. A final extension at 72 °C for 10 min completed the PCR. | [48] |
LR6 | CGCCAGTTCTGCTTACC | |||
EF1-α | EF1-983F | GCYCCYGGHCAYCGTGAYTTYAT | For the EF1-α primers, a touchdown PCR was performed where an initial denaturation at 94 °C for 3 min was followed by 10 cycles of 30 s at 94 °C, 60 s starting at 60 °C and dropping by 1 °C per cycle until a temperature of 50 °C was reached and a 90 s extension at 72 °C. The initial 10 cycles were then followed by 35 cycles of 30 s at 94 °C, 60 s at 56 °C and 90 s at 72 °C. A final extension at 72 °C for 10 min completed the PCR. | [50] |
EF1-2212R | CCRACRGCRACRGTYYGTCTCAT |
Samples | Wood Decay Fungi | Isolate Accession Number | Host Plant | Host Status | Sampling Location | Coordinates |
---|---|---|---|---|---|---|
1 | Aurificaria cf. euphoriae | UMBmyc11-2021FL* | Olea europaea L. | Dead | Floriana—PG | 35.89448° N; 14.49919° E |
2 | Casuarina equisetifolia L. | Living | Msida—PG | 35.90283° N; 14.48573° E | ||
3 | Carya illinoinensis (Wangenh.) K. Koch. | Living | Rabat—SNW | 35.85512° N; 14.39665° E | ||
4 | Ganoderma resinaceum sl | UMBmyc12-2021FL* | Ceratonia siliqua L. | Living | Floriana—PG | 35.88915° N; 14.49964° E |
5 | UMBmyc13-2021SL* | Tamarix africana Poir. | Dead | Sliema—PG | 35.91664° N; 14.50259° E | |
6 | UMBmyc14-2021VL* | Olea europaea L. | Living | La Valletta—PG | 35.89504° N; 14.51216° E | |
7 | Casuarina equisetifolia L. | Living | St Julian’s—PG | 35.92257° N; 14.48683° E | ||
8 |
Laetiporus sulphureus | UMBmyc15-2021MS* | Ceratonia siliqua L. |
Living— Monumental | Msida—PG | 35.90187° N; 14.48258° E |
9 |
Laetiporus sulphureus | UMBmyc16-2021RB* | Quercus robur L. | Living—highly damaged— Monumental | Rabat—SNW | 35.85672° N; 14.39864° E |
10 | Inonotus sp. | UMBmyc17-2021FL* | Maclura pomifera (Raf.) Schneid. | Dead | Floriana—PG | 35.89242° N; 14.50293° E |
11 | Inonotus rickii (Ptychogaster cubensis anmr) | UMBmyc18-2021RB* | Quercus ilex L. |
Living— damaged— Monumental | Rabat—SNW | 35.85512° N; 14.39665° E |
12 | Celtis australis L. |
Living— damaged | Hal Lija—PG | 35.90482° N;14.44770° E | ||
13 | Celtis australis L. |
Living— damaged | Attard—PG | 35.89673° N; 14.44781° E | ||
14 |
Casuarina equisetifolia L. | Living | Ta’ Xbiex—PG | 35.89992° N; 14.49462° E | ||
15 | Pistacia lentiscus L. | Living | Rabat—PG | 35.85756° N; 14.39730° E | ||
16 | Carya illinoinensis (Wangenh.) K. Koch. |
Living— damaged | Attard—PG | 35.89673° N; 14.44781° E | ||
17 | Sapindus saponaria L. | Living | Floriana—PG | 35.89242° N; 14.50312° E | ||
18 | Harpullia pendula Planch. ex F.Muell. | Living | Attard—PG | 35.89673° N; 14.44781° E | ||
19 |
Inocutis tamaricis | UMBmyc19-2021BP* | Tamarix africana Poir. | Living—highly damaged | Sliema—PG | 35.91513° N; 14.50521° E |
20 | Tamarix africana Poir. |
Living— damaged | Ta’ Xbiex—PG | 35.90032° N; 14.49998° E | ||
21 | Tamarix africana Poir. |
Living— damaged | Marsaskala—PG | 35.85738° N; 14.56850° E | ||
22 | Tamarix africana Poir. |
Living— damaged | St. Paul’s Bay—PG | 35.94535° N; 14.38621° E | ||
24 | Tamarix africana Poir. |
Living— damaged | Mellieha—SNW | 35.98269° N; 14.33281° E | ||
25 |
Stereum hirsutum | UMBmyc20-2021BP* | Acacia saligna (Labill.) H.L.Wendl. | Dead | St. Paul’s Bay—SNW | 35.93750° N; 14.38508° E |
26 |
Pleurotus eryngii | UMBmyc21-2021BP* | Ferula melitensis (Brul., C.Brul., Cambr., Giusso, Salme and Bacch.) | Living | Siggiewi—G | 35.84734° N; 14.39249° E |
27 | Coriolopsis gallica | UMBmyc22-2021BP | Acacia saligna (Labill.) H.L.Wendl. | Dead | Manoel Island—SNW | 35.90441° N; 14.50421° E |
28 | Log | Dead | St. Paul’s Bay—PG | 35.93856° N; 14.38514° E | ||
29 | Olea europaea L. | Dead | Floriana—PG | 35.89448° N; 14.49919° E |
Isolate No. (1) | Species |
| ||
---|---|---|---|---|
ITS | LSU | Tef 1 | ||
UMBmyc11-2021FL* | Aurificaria cf. euphoriae | PP512944 346 bps (Phellinus sp. 92.36%) | 1109 bps (Fulvifomes subindicus 97.16%) | 1169 bps (Fulvifomes halophilus 94.76%) |
UMBmyc12-2021FL* | Ganoderma resinaceum sl | PP512939 616 bps (Ganoderma resinaceum 99.83%) | PP512951 1083 bps (Ganoderma resinaceum 99.91%) | PP531582 1157 bps (Ganoderma resinaceum 100%) |
UMBmyc13-2021SL* | Ganoderma resinaceum sl | PP512940 620 bps (Ganoderma resinaceum 100%) | PP512952 1119 bps (Ganoderma resinaceum 100%) | PP531583 1157 bps (Ganoderma resinaceum 100%) |
UMBmyc14-2021VL* | Ganoderma resinaceum sl | PP512942 616 bps (Ganoderma resinaceum 100%) | PP512954 1119 bps (Ganoderma resinaceum 100%) | PP531585 1157 bps (Ganoderma resinaceum 100%) |
UMBmyc15-2021MS* | Laetiporus sulphureus | PP512936 576 bps (Laetiporus sulphureus 100%) | PP512948 1099 bps (Laetiporus sulphureus 100%) | PP531579 1154 bps (Laetiporus sulphureus 98.70%) |
UMBmyc16-2021RB* | Laetiporus sulphureus | PP512946 577 bps (Laetiporus sulphureus 100%) | PP512956 1099 bps (Laetiporus sulphureus 100%) | PP531587 1154 bps (Laetiporus sulphureus 98.70%) |
UMBmyc17-2021FL* | Inonotus sp. | PP512943 741 bps (Phellinus sp. 94.40%) | 1114 bps | - |
UMBmyc18-2021RB* | Inonotus rickii anamorph: Ptychogaster cubensis | PP512935 735 bps (Inonotus rickii 100%) | PP512947 1143 bps (Inonotus rickii 99.64%) | PP531578 1166 bps (Inonotus rickii 99.50%) |
UMBmyc19-2021BP* | Inocutis tamaricis | PP512941 481 bps (Inocutis tamaricis 99.17%) | PP512953 1116 bps (Inocutis tamaricis 99.58%) | PP531584 1169 bps (Arambarria destruens 82.30%) |
UMBmyc20-2021BP* | Stereum hirsutum | PP512938 609 bps (Stereum hirsutum 100%) | PP512950 1079 bps (Stereum hirsutum 99.81%) | PP531581 1191 bps (Stereum hirsutum 96.24%) |
UMBmyc21-2021BP* | Pleurotus eryngii | PP512937 650 bps (Pleurotus eryngii 99.54%) | PP512949 1079 bps (Pleurotus eryngii 99.91%) | PP531580 1148 bps (Pleurotus eryngii 99.49%) |
UMBmyc22-2021BP | Coriolopsis gallica | PP512945 612 bps (Coriolpsis gallica 99.84%) | PP512955 943 bps (Coriolpsis gallica 100%) | PP531586 535 bps (Coriolpsis gallica 99.84%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iannaccone, M.; Amalfi, M.; Buhagiar, J.A. Axenic Culture and DNA Barcode Identification of Wood Decay Fungi from the Maltese Islands. Forests 2024, 15, 850. https://doi.org/10.3390/f15050850
Iannaccone M, Amalfi M, Buhagiar JA. Axenic Culture and DNA Barcode Identification of Wood Decay Fungi from the Maltese Islands. Forests. 2024; 15(5):850. https://doi.org/10.3390/f15050850
Chicago/Turabian StyleIannaccone, Marco, Mario Amalfi, and Joseph A. Buhagiar. 2024. "Axenic Culture and DNA Barcode Identification of Wood Decay Fungi from the Maltese Islands" Forests 15, no. 5: 850. https://doi.org/10.3390/f15050850
APA StyleIannaccone, M., Amalfi, M., & Buhagiar, J. A. (2024). Axenic Culture and DNA Barcode Identification of Wood Decay Fungi from the Maltese Islands. Forests, 15(5), 850. https://doi.org/10.3390/f15050850