Effects of Antheraea pernyi on Parasitization of Kriechbaumerella dendrolimi by Using Immunology and Metabolomics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Rearing of Test Insects and Sample Preparation
2.1.1. Rearing of Test Insects
2.1.2. Collection of Hemolymph Samples from Host Insects
2.2. Determination of Immune Factors in Host Insect Hemolymph
2.2.1. SOD Activity Assay
2.2.2. PPO Activity Assay
2.2.3. Attacin Activity Assay
2.2.4. LYS Activity Assay
2.2.5. PRSS Activity Assay
2.3. Sample Preparation for HPLC-Mass
2.4. Metabolite Profiling
2.5. Qualitative and Quantitative Analyses of Metabolites
2.6. Enzymatic Activity Data Analysis
3. Results
3.1. Impact of K. dendrolimi Parasitization on the Hemolymph Immune Factors of A. pernyi Pupae
3.2. Impact of K. dendrolimi on the Hemolymph Metabolites of A. pernyi Pupae
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hai-yan, S.; Yun, L.; Zheng-hao, C.; Yin, H.; Chang-liang, L.; Zhu-he, Z.; Huai-feng, W.; Biao, H.; Fei-ping, Z.; Guang-hong, L. Effects of different host plants on the growth, reproduction and physiological enzyme activity of Dendrolimus houi Lajonquiere (Lepidoptera: Lasiocampidae). For. Sci. Res. 2022, 35, 63–70. [Google Scholar]
- Han, X.; Lu, C.; Geib, S.M.; Zheng, J.; Wu, S.; Zhang, F.; Liang, G. Characterization of Dendrolimus houi Lajonquiere (Lepidoptera: Lasiocampidae) transcriptome across all life stages. Insects 2019, 10, 442. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.L. Research Advances on Dendrolimus houi in Yunnan Province. J. Southwest For. Coll. 2008, 28, 42–44. [Google Scholar]
- Liu, X. Study on biological characteristics and its integrated control of Dendrolimus latipenis. J. Southwest For. Coll. 2006, 26, 52–54. [Google Scholar]
- Bi, Z. Major Pest Control of Pinus yunnanensis in Yunnan. Shaanxi For. Sci. Technol. 2014, 3, 111–114. [Google Scholar]
- Lin, H.; Fu, L.; Lin, J.; Hua, Y.; Han, X.; Zheng, J.; He, H.; Zhang, F.; Liang, G. Main species of parasitic natural enemy insects within Dendrolimus houi (Lajonquiere) in the forest of Cryptomeria fortunei (Hooibrenk). Chin. J. Biol. Control 2017, 33, 842–848. [Google Scholar]
- Ting, J. Preliminary study on Kriechbaumerella dendrolimi Sheng and Zhong. Jiangxi For. Sci. Technol. 1993, 5, 19–20. [Google Scholar]
- Zheng, L.; Tang, J.; Chen, Z. Selectivity and Fitness of Kriechbaumerella dendrolimi to Different Forest Hosts. Chin. J. Biol. Control 2023. Available online: https://kns.cnki.net/kcms/detail/11.5973.S.20230706.1516.003.html (accessed on 29 March 2024).
- Lin, H.Y.; Lu, C.D.; Chen, Z.H.; Zhou, Y.J.; Liang, Y.; Chen, H.; Liang, G.H. A survey on pupae parasitoid species of Dendrolimus houi (Lajonquiere) (Lepidoptera, Lasiocampidae) in China. Biodivers Data J. 2023, 11, e97878. [Google Scholar] [CrossRef]
- Rizki, T.M.; Rizki, R.M. The cellular defense system of Drosophila melanogaster. Insect Ultrastruct. 1984, 2, 579–604. [Google Scholar]
- Dunn, P.E. Humoral immunity in insects. BioScience 1990, 40, 738–744. [Google Scholar] [CrossRef]
- Lackie, A. Immune mechanisms in insects. Parasitol. Today 1988, 4, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Blandin, S.; Levashina, E.A. Thioester-containing proteins and insect immunity. Mol. Immunol. 2004, 40, 903–908. [Google Scholar] [CrossRef] [PubMed]
- Imler, J.-L.; Bulet, P. Antimicrobial peptides in Drosophila: Structures, activities and gene regulation. Mech. Epithel. Def. 2005, 86, 1–21. [Google Scholar]
- Hillyer, J.F. Insect immunology and hematopoiesis. Dev. Comp. Immunol. 2016, 58, 102–118. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.Y.; Lü, Z.H.; Zhang, Y.J.; Yang, Z.X. Insect humoral immune system, a new direction in the research of Bt resistance mechanisms in insect pests. Acta Entomol. Sin. 2022, 65, 1547–1564. [Google Scholar]
- Feng, S.; Tian, B.; Sun, Y.; Li, X.; Mi, R.; Wen, Z.; Meng, L.; Li, Y.; Li, S.; Du, X. Effect of Tussah Immunoreactive Substances and Tussah Antibacterial Peptide on Growth, and Immunity of Yesso Scallop Patinopecten yessoensis. Fish. Sci. 2023, 42, 878–883. [Google Scholar]
- Mohamed, A.A.; Elmogy, M.; Dorrah, M.A.; Yousef, H.A.; Bassal, T. Antibacterial activity of lysozyme in the desert locust, Schistocerca gregaria (Orthoptera: Acrididae). Eur. J. Entomol. 2013, 110, 559–565. [Google Scholar] [CrossRef]
- Ning, Y.X.; Su, Y.H.; Yang, M. cDNA cloning of lysozyme Pxlys of Plutella xylostella (Lepidoptera: Plutellidae) and the analysis of antibacterial activity of its recombinant protein. Acta Entomol. Sin. 2021, 64, 781–789. [Google Scholar]
- Chapelle, M.; Girard, P.-A.; Cousserans, F.; Volkoff, N.-A.; Duvic, B. Lysozymes and lysozyme-like proteins from the fall armyworm, Spodoptera frugiperda. Mol. Immunol. 2009, 47, 261–269. [Google Scholar] [CrossRef]
- Fu, Y.; Ma, Y.; Ren, S. Changes in physiological indices of Antheraea pernyi (Lepidoptera:Saturniidae) pupae induced by grampositive bacteria Bacillus thuringeinsis and gram-negative bacteria Escherichia Coli. Acta Entomol. Sin. 2016, 59, 192–199. [Google Scholar]
- Chai, J.; Xie, D.; Tian, X.; Ran, R. Study on defense reactions of silkworm, Bombyx mori to Cordyceps militaris. Southwest China J. Agric. Sci. 2010, 23, 1308–1313. [Google Scholar]
- Li, Z.; Cheng, Y.; Chen, J.; Xu, W.; Ma, W.; Li, S.; Du, E. Widely Targeted HPLC-MS/MS Metabolomics Analysis Reveals Natural Metabolic Insights in Insects. Metabolites 2023, 13, 735. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhang, J.; Qin, Q.; Zhang, H.; Li, X.; Wang, H.; Meng, Q. Transcriptome and Metabolome Analyses of Thitarodes xiaojinensis in Response to Ophiocordyceps sinensis Infection. Microorganisms 2023, 11, 2361. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.-J.; Luo, F.; Gao, Q.; Shang, Y.; Wang, C. Metabolomics reveals insect metabolic responses associated with fungal infection. Anal. Bioanal. Chem. 2015, 407, 4815–4821. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, H.; Jin, X. Determination of trimethyl phosphate of dichlorvos metabolite in tussah silkworm larvae by LC-MS/MS and analysis of its metabolic process. Agrochemicals 2023, 7, 504–509. [Google Scholar]
- Zhang, Y.; Wang, F.; Zhao, Z. Metabonomics reveals that entomopathogenic nematodes mediate tryptophan metabolites that kill host insects. Front. Microbiol. 2022, 13, 1042145. [Google Scholar] [CrossRef]
- Chan, Q.W.; Howes, C.G.; Foster, L.J. Quantitative Comparison of Caste Differences in Honeybee Hemolymph* S. Mol. Cell. Proteom. 2006, 5, 2252–2262. [Google Scholar] [CrossRef] [PubMed]
- Łoś, A.; Strachecka, A. Fast and cost-effective biochemical spectrophotometric analysis of solution of insect “blood” and body surface elution. Sensors 2018, 18, 1494. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, X.; Zhang, X.; Liu, Q.; Zhang, X. Effect of azadirachtin on the hemocytes of Oxya chinensis. Chin. J. Appl. Entomol. 2019, 56, 546–556. [Google Scholar]
- Zhu, Y.; Gao, H.; Han, S.; Li, J.; Wen, Q.; Dong, B. Antidiabetic activity and metabolite profiles of ascidian Halocynthia roretzi. J. Funct. Foods 2022, 93, 105095. [Google Scholar] [CrossRef]
- Li, S.-L.; Song, J.-Z.; Choi, F.F.; Qiao, C.-F.; Zhou, Y.; Han, Q.-B.; Xu, H.-X. Chemical profiling of Radix Paeoniae evaluated by ultra-performance liquid chromatography/photo-diode-array/quadrupole time-of-flight mass spectrometry. J. Pharm. Biomed. Anal. 2009, 49, 253–266. [Google Scholar] [CrossRef]
- Fang, X.; Chen, Z.; Chen, Z.; Chen, J.; Zhao, Z.; Wu, P.; Wu, H.; Zhang, F.; Liang, G. Metabolome and Transcriptome Analysis Reveals the Effects of Host Shift on Dendrolimus houi Lajonquière Larvae. Forests 2023, 14, 1307. [Google Scholar] [CrossRef]
- Rong, W.T.; Song, Z.; Xin, L.; Deng, W.A.; Qin, Y.Y.; Li, X.D. Effects of combined pollution of heavy metals on the metabolomics of Eucriotettix oculatus (Orthoptera: Tetrigidae). Acta Entomol. Sin. 2022, 65, 437–450. [Google Scholar]
- Bocca, C.; Kane, M.S.; Veyrat-Durebex, C.; Chupin, S.; Alban, J.; Kouassi Nzoughet, J.; Le Mao, M.; Chao de la Barca, J.M.; Amati-Bonneau, P.; Bonneau, D. The metabolomic bioenergetic signature of Opa1-disrupted mouse embryonic fibroblasts highlights aspartate deficiency. Sci. Rep. 2018, 8, 11528. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Williams, L.J.; Abdi, H. Fisher’s least significant difference (LSD) test. Encycl. Res. Des. 2010, 218, 840–853. [Google Scholar]
- Carton, Y.; Poirié, M.; Nappi, A.J. Insect immune resistance to parasitoids. Insect Sci. 2008, 15, 67–87. [Google Scholar] [CrossRef]
- Sato, R. Mechanisms and roles of the first stage of nodule formation in lepidopteran insects. J. Insect Sci. 2023, 23, 3. [Google Scholar] [CrossRef]
- Castillo, J.C.; Reynolds, S.E.; Eleftherianos, I. Insect immune responses to nematode parasites. Trends Parasitol. 2011, 27, 537–547. [Google Scholar] [CrossRef]
- Richman, A.; Kafatos, F.C. Immunity to eukaryotic parasites in vector insects. Curr. Opin. Immunol. 1996, 8, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Lynch, M.; Kuramitsu, H. Expression and role of superoxide dismutases (SOD) in pathogenic bacteria. Microbes Infect. 2000, 2, 1245–1255. [Google Scholar] [CrossRef]
- Liu, N.Y.; Huang, J.M.; Ren, X.M.; Xu, Z.W.; Yan, N.S.; Zhu, J.Y. Superoxide dismutase from venom of the ectoparasitoid Scleroderma guani inhibits melanization of hemolymph. Arch. Insect Biochem. Physiol. 2018, 99, e21503. [Google Scholar] [CrossRef] [PubMed]
- Colinet, D.; Cazes, D.; Belghazi, M.; Gatti, J.L.; Poirie, M. Extracellular superoxide dismutase in insects: Characterization, function, and interspecific variation in parasitoid wasp venom. J Biol Chem 2011, 286, 40110–40121. [Google Scholar] [CrossRef] [PubMed]
- Bulet, P.; Charlet, M.; Hetru, C. Antimicrobial peptides in insect immunity. In Innate immunity; Springer: Berlin/Heidelberg, Germany, 2003; pp. 89–107. [Google Scholar]
- Whitaker, J.R. Polyphenol oxidase. In Food Enzymes: Structure and Mechanism; Springer: Berlin/Heidelberg, Germany, 1995; pp. 271–307. [Google Scholar]
- Gorman, M.J.; Paskewitz, S.M. Serine proteases as mediators of mosquito immune responses. Insect Biochem. Mol. Biol. 2001, 31, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Hedstrom, L. Serine protease mechanism and specificity. Chem. Rev. 2002, 102, 4501–4524. [Google Scholar] [CrossRef]
- Zhang, M.; Chu, Y.; Zhao, Z.; An, C. Progress in the molecular mechanisms of the innate immune responses in insects. Acta Entomol. Sin. 2012, 55, 1221–1229. [Google Scholar]
- Zhang, Q.; Li, K.; Wang, H. Research Progress of Antimicrobial Peptides from Black Soldier Fly. Acta Agric. Univ. Jiangxiensis 2022, 4, 996–1004. [Google Scholar]
- Reddy, K.; Yedery, R.; Aranha, C. Antimicrobial peptides: Premises and promises. Int. J. Antimicrob. Agents 2004, 24, 536–547. [Google Scholar] [CrossRef]
- Duan, X.; Li, H.; Zhang, R.; Wang, X. Progress of insect antimicrobial peptides. J. Shenyang Pharm. Univ. 2023, 40, 1401–1408. [Google Scholar]
- Brady, D.; Grapputo, A.; Romoli, O.; Sandrelli, F. Insect cecropins, antimicrobial peptides with potential therapeutic applications. Int. J. Mol. Sci. 2019, 20, 5862. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Lv, D.; Guo, X. Advances in Inhibitory Effects of Insect Antimicrobial Peptides on Tumor Cells Genom. Appl. Biol. 2021, 40, 923–928. [Google Scholar]
- Buonocore, F.; Fausto, A.M.; Della Pelle, G.; Roncevic, T.; Gerdol, M.; Picchietti, S. Attacins: A promising class of insect antimicrobial peptides. Antibiotics 2021, 10, 212. [Google Scholar] [CrossRef] [PubMed]
- Hultmark, D.; Engström, A.; Andersson, K.; Steiner, H.; Bennich, H.; Boman, H. Insect immunity. Attacins, a family of antibacterial proteins from Hyalophora cecropia. EMBO J. 1983, 2, 571–576. [Google Scholar] [CrossRef] [PubMed]
- Bang, K.; Park, S.; Yoo, J.Y.; Cho, S. Characterization and expression of attacin, an antibacterial protein-encoding gene, from the beet armyworm, Spodoptera exigua (Hübner) (Insecta: Lepidoptera: Noctuidae). Mol. Biol. Rep. 2012, 39, 5151–5159. [Google Scholar] [CrossRef] [PubMed]
- Yi, H.-Y.; Chowdhury, M.; Huang, Y.-D.; Yu, X.-Q. Insect antimicrobial peptides and their applications. Appl. Microbiol. Biotechnol. 2014, 98, 5807–5822. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, J.A. Innate immunity of insects. Curr. Opin. Immunol. 1995, 7, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Eisenreich, W.; Heesemann, J.; Rudel, T.; Goebel, W. Metabolic host responses to infection by intracellular bacterial pathogens. Front. Cell. Infect. Microbiol. 2013, 3, 24. [Google Scholar] [CrossRef] [PubMed]
- Galenza, A.; Foley, E. Immunometabolism: Insights from the Drosophila model. Dev. Comp. Immunol. 2019, 94, 22–34. [Google Scholar] [CrossRef]
- Nunes, C.; Sucena, É.; Koyama, T. Endocrine regulation of immunity in insects. FEBS J. 2021, 288, 3928–3947. [Google Scholar] [CrossRef]
- Sousa, A.P.; Cunha, D.M.; Franco, C.; Teixeira, C.; Gojon, F.; Baylina, P.; Fernandes, R. Which role plays 2-hydroxybutyric acid on insulin resistance? Metabolites 2021, 11, 835. [Google Scholar] [CrossRef]
- Li, B.; Hong, Y.; Gu, Y.; Ye, S.; Hu, K.; Yao, J.; Ding, K.; Zhao, A.; Jia, W.; Li, H. Functional metabolomics reveals that astragalus polysaccharides improve lipids metabolism through microbial metabolite 2-hydroxybutyric acid in obese mice. Engineering 2022, 9, 111–122. [Google Scholar] [CrossRef]
- Park, S.R.; Park, J.W.; Ban, Y.H.; Sohng, J.K.; Yoon, Y.J. 2-Deoxystreptamine-containing aminoglycoside antibiotics: Recent advances in the characterization and manipulation of their biosynthetic pathways. Nat. Prod. Rep. 2013, 30, 11–20. [Google Scholar] [CrossRef]
- Li, S.; Sun, Y. Research advances in aminoglycoside biosynthesis. Chin. J. Antibiot. 2019, 44, 1261–1274. [Google Scholar]
- Bendia, E.; Benedetti, A.; Baroni, G.S.; Candelaresi, C.; Macarri, G.; Trozzi, L.; Di Sario, A. Effect of cyanidin 3-O-β-glucopyranoside on hepatic stellate cell proliferation and collagen synthesis induced by oxidative stress. Dig. Liver Dis. 2005, 37, 342–348. [Google Scholar] [CrossRef]
- Serafino, A.; Sinibaldi Vallebona, P.; Lazzarino, G.; Tavazzi, B.; Rasi, G.; Pierimarchi, P.; Andreola, F.; Moroni, G.; Galvano, G.; Galvano, F. Differentiation of human melanoma cells induced by cyanidin-3-O-β-glucopyranoside. FASEB J. 2004, 18, 1940–1942. [Google Scholar] [CrossRef]
- Burnham, W.S.; Sidwell, R.W.; Tolman, R.L.; Stout, M.G. Synthesis and antiviral activity of 4′-hydroxy-5,6,7,8-tetramethoxyflavone. J. Med. Chem. 1972, 15, 1075–1076. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Chen, Y.; Wang, M.; Zhong, L.; Li, L.; Yuan, Z.; Zou, S. Amino acid metabolism dysregulation associated with inflammation and insulin resistance in HIV-infected individuals with metabolic disorders. Amino Acids 2023, 55, 1545–1555. [Google Scholar] [CrossRef] [PubMed]
- Sohn, J.H.; Mutlu, B.; Latorre-Muro, P.; Liang, J.; Bennett, C.F.; Sharabi, K.; Kantorovich, N.; Jedrychowski, M.; Gygi, S.P.; Banks, A.S. Liver mitochondrial cristae organizing protein MIC19 promotes energy expenditure and pedestrian locomotion by altering nucleotide metabolism. Cell Metab. 2023, 35, 1356–1372.e5. [Google Scholar] [CrossRef]
- Freitak, D.; Ots, I.; Vanatoa, A.; Hörak, P. Immune response is energetically costly in white cabbage butterfly pupae. Proc. R. Soc. London. Ser. B Biol. Sci. 2003, 270, S220–S222. [Google Scholar] [CrossRef]
- Dolezal, T.; Krejcova, G.; Bajgar, A.; Nedbalova, P.; Strasser, P. Molecular regulations of metabolism during immune response in insects. Insect Biochem. Mol. Biol. 2019, 109, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Arnold, P.A.; Johnson, K.N.; White, C.R. Physiological and metabolic consequences of viral infection in Drosophila melanogaster. J. Exp. Biol. 2013, 216, 3350–3357. [Google Scholar] [CrossRef]
- Chambers, M.C.; Song, K.H.; Schneider, D.S. Listeria monocytogenes infection causes metabolic shifts in Drosophila melanogaster. PLoS ONE 2012, 7, e50679. [Google Scholar] [CrossRef] [PubMed]
- Ardia, D.R.; Gantz, J.E.; Schneider; Strebel, S. Costs of immunity in insects: An induced immune response increases metabolic rate and decreases antimicrobial activity. Funct. Ecol. 2012, 26, 732–739. [Google Scholar] [CrossRef]
- Okamoto, N.; Yamanaka, N. Transporter-mediated ecdysteroid trafficking across cell membranes: A novel target for insect growth regulators. J. Pestic. Sci. 2021, 46, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Linton, K.J. Structure and function of ABC transporters. Physiology 2007, 22, 122–130. [Google Scholar] [CrossRef]
- Pennacchio, F.; Caccia, S.; Digilio, M.C. Host regulation and nutritional exploitation by parasitic wasps. Curr. Opin. Insect Sci. 2014, 6, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Mrinalini; Siebert, A.L.; Wright, J.; Martinson, E.; Wheeler, D.; Werren, J.H. Parasitoid venom induces metabolic cascades in fly hosts. Metabolomics 2015, 11, 350–366. [Google Scholar] [CrossRef] [PubMed]
- Tillinger, N.A.; Hoch, G.; Schopf, A. Effects of parasitoid associated factors of the endoparasitoid Glyptapanteles liparidis (Hymenoptera: Braconidae). Eur. J. Entomol. 2004, 101, 243–250. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, J.; Sheng, Y.; Feng, T.; Shi, W.; Lu, Y.; Guan, X.; Chen, X.; Huang, J.; Chen, J. Metabolomics provides new insights into host manipulation strategies by Asobara japonica (Hymenoptera: Braconidae), a fruit fly parasitoid. Metabolites 2023, 13, 336. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Que, Y.; Fang, X.; Zhao, Z.; Chen, Z.; Lu, C.; Zheng, Q.; Tan, J.; Zhang, F.; Liang, G. Effects of Antheraea pernyi on Parasitization of Kriechbaumerella dendrolimi by Using Immunology and Metabolomics. Forests 2024, 15, 851. https://doi.org/10.3390/f15050851
Que Y, Fang X, Zhao Z, Chen Z, Lu C, Zheng Q, Tan J, Zhang F, Liang G. Effects of Antheraea pernyi on Parasitization of Kriechbaumerella dendrolimi by Using Immunology and Metabolomics. Forests. 2024; 15(5):851. https://doi.org/10.3390/f15050851
Chicago/Turabian StyleQue, Yuwen, Xinyuan Fang, Zhenhui Zhao, Zhenhong Chen, Ciding Lu, Qiufang Zheng, Jiajin Tan, Feiping Zhang, and Guanghong Liang. 2024. "Effects of Antheraea pernyi on Parasitization of Kriechbaumerella dendrolimi by Using Immunology and Metabolomics" Forests 15, no. 5: 851. https://doi.org/10.3390/f15050851
APA StyleQue, Y., Fang, X., Zhao, Z., Chen, Z., Lu, C., Zheng, Q., Tan, J., Zhang, F., & Liang, G. (2024). Effects of Antheraea pernyi on Parasitization of Kriechbaumerella dendrolimi by Using Immunology and Metabolomics. Forests, 15(5), 851. https://doi.org/10.3390/f15050851