Next Article in Journal
Site-Level Modelling Comparison of Carbon Capture by Mixed-Species Forest and Woodland Reforestation in Australia
Previous Article in Journal
Prediction of Potential Suitable Distribution of Liriodendron chinense (Hemsl.) Sarg. in China Based on Future Climate Change Using the Optimized MaxEnt Model
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Autochthonous Conifers of Family Pinaceae in Europe: Broad Review of Morpho-Anatomical and Phytochemical Properties of Needles and Genetic Investigations

by
Biljana M. Nikolić
1,*,
Dalibor Ballian
2,3,4 and
Zorica S. Mitić
5
1
Department of Genetics, Plant Breeding, Seed and Nursery Production, Institute of Forestry, Kneza Višeslava 3, 11000 Belgrade, Serbia
2
Faculty of Forestry, University of Sarajevo, Zagrebačka 20, 71000 Sarajevo, Bosnia and Herzegovina
3
Department of Forest Physiology and Genetcs, Slovenian Forestry Institute, Večna Pot 2, 1000 Ljubljana, Slovenia
4
Academy of Sciences and Art of Bosnia and Heryegovina, Bistrik 7, 71000 Sarajevo, Bosnia and Herzegovina
5
Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia
*
Author to whom correspondence should be addressed.
Forests 2024, 15(6), 989; https://doi.org/10.3390/f15060989
Submission received: 25 April 2024 / Revised: 26 May 2024 / Accepted: 3 June 2024 / Published: 5 June 2024
(This article belongs to the Section Forest Ecophysiology and Biology)

Abstract

:
Gymnosperms are a very old and small group of plants compared to angiosperms. Contemporary science recognizes about 650 extant conifers worldwide. This review focuses on species of the Pinaceae family found in Europe. There are 23 species from the genera Abies, Larix, Picea, and Pinus. Some of them are widespread in Europe, but others have fragmented and limited distribution and are classified as relic, endemic, or endangered. The aim of this review is providing cumulative information about the variability of needle morpho-anatomy, terpenes, and n-alkanes, as well as the genetics of the Pinaceae species, native to Europe. The first morpho-anatomical examinations of needles were conducted in the 19th century. A lot of species have been investigated up to now, but the population variability of many conifer species is still not known. The composition and abundance of terpenes differ between genera and families but also within the same genus, pointing to their taxonomic importance. n-Alkanes on the needle wax surfaces of conifers are sometimes very useful markers of species and population variability. The most abundant n-alkanes in Abies species are nonacosane (C29), hentriacontane (C31), or heptacosane (C27), whereas in Larix decidua and the majority of Picea species, C31 is predominant. C31 and C29 are the dominant n-alkanes in the genus Pinus. The most extensive population-genetic studies of European representatives of the Pinaceae family have focused on Abies alba, Picea abies, Pinus nigra, and Pinus sylvestris, but also examined endemic species such as Abies borisii-regis, A. cephalonica, A. nebrodensis, and Picea omorika. These studies hold significant practical value in assessing species’ evolutionary potential, devising strategies for long-term species conservation, identifying centers of diversity, detecting relict and ancestral populations, unveiling cryptic species and hybrids, and elucidating the taxonomic significance of species. These investigations are of great value not only on the biodiversity level, but also on the levels of ecology, physiology, taxonomy, and evolution.

1. Introduction

Conifers, ancient plants with a history spanning at least 300 million years [1], thrived during the Jurassic period with over 100 species. Presently, there are approximately 650 extant conifer species worldwide, significantly fewer compared to angiosperm species. The southernmost regions inhabited by conifers are the islands of New Caledonia (43 species) and Borneo (39 species), collectively hosting twice as many species as Europe. Europe only has 41 types of coniferous trees now, most of which are from the Pinaceae family [2]. In the phylogeny of extant conifer families (Pinophyta), the Pinaceae family is considered basal, although its fossil records appear later in geological time compared to those of other families [1]. According to [1] and references cited therein, the Pinaceae family first appeared approximately 155 million years ago (mya) during the Upper Jurassic (Kimmeridgian) period. Apart from Pinaceae, several other extant conifer families also emerged during the Middle Jurassic period: Taxaceae around 180 mya, Cupressaceae around 173 mya, and both Sciadopytiaceae and Cephalotaxaceae around 170 mya. A brief history of gymnosperms, their classification, biodiversity, phytogeography, and ecology was also published by Anderson et al. [3].
The aims of this study were to investigate how many Pinaceae species are native to Europe, to quote them, and to collect and list articles in terms of their morpho-anatomy, terpenes, and n-alkanes variability and their genetic properties. Based on this information, one could find unexplored species in terms of analyzed properties. According to our knowledge, this type of review has not been published so far.
The list of 23 extant species of Pinaceae in Europe is as follows:
  • six Abies species:
    • Abies alba Mill.—Silver fir,
    • Abies borisii-regis Mattf.—Bulgarian fir,
    • Abies cephalonica Loudon—Greek fir,
    • Abies nebrodensis (Lojac.) Mattei—Sicilian fir,
    • Abies nordmanniana (Steven) Spach—Caucasian fir, and
    • Abies pinsapo Boiss—Spanish fir;
  • two Larix species:
    7.
    Larix decidua Mill.—European larch, and
    8.
    Larix sibirica Ledeb.—Siberian larch;
  • four Picea species:
    9.
    Picea abies (L.) H. Karst.—Norway spruce,
    10.
    Picea obovata Ledeb.—Siberian spruce,
    11.
    Picea omorika (Panč.) Pürkyne—Serbian spruce, and
    12.
    Picea orientalis (L.) Link—Caucasian spruce;
  • eleven Pinus species with two or five needles in distributary:
    13.
    Pinus brutia Ten.—Turkish pine,
    14.
    Pinus cembra L.—Swiss pine,
    15.
    Pinus halepensis Mill.—Aleppo pine,
    16.
    Pinus heldreichii Christ.—Bosnian pine,
    17.
    Pinus mugo Turra—Dwarf mountain pine,
    18.
    Pinus nigra J.F. Arnold—Austrian pine,
    19.
    Pinus peuce Griseb.—Macedonian pine,
    20.
    Pinus pinaster Aiton—Maritime pine,
    21.
    Pinus pinea L.—Stone pine,
    23.
    Pinus sylvestris L.—Scots pine, and
    23.
    Pinus uncinata Ramond ex DC.—Mountain pine.

2. The Main Properties of European Conifers of the Pinaceae Family

European firs: Abies alba, A. borisii-regis, A. cephalonica, A. nebrodensis, A. pinsapo, and A. nordmanniana are conifers that, except for A. nordmanniana, are found in the Mediterranean environment [2,4,5,6,7]. Also, A. alba extends deep into the European continent to the Baltic Sea [8]. Other listed firs have fragmented and limited distributions. From a phylogenetic point of view, all the listed species belong to the section Abies; they have synonyms, as well as lower taxonomic categories. A. alba represents a species that is widespread and stands out among other firs for its economic value, followed by A. nordmanniana [2,4]. In optimal conditions, fir trees can reach up to 50 m in height and 1.5 m in diameter and live to be 200–500 years old. The wood has no resin or colored heartwood. Branches stand in vertebrae, mostly horizontally laid. The bark is greyish and smooth, later cracking in square scales. In some species, the needles are horizontally divided into two sides, green, flat, up to 2.5 mm wide, 17 to 30 mm long, rich in essential oils. Firs are monoecious species that bloom in spring and ripen the same year in October when the scales and seeds fall apart. Young cones are rich in turpentine and essential oils. The seed is yellowish, tightly fused with the wing, and carries a turpentine blister [7].
Larix decidua and L. sibirica are deciduous gymnosperms and fast-growing pioneer species, with a range in the Alps, Sudetes, Carpathians, and central Polish plains, and Siberian larch is also found in the north of Europe [2,4,6,9]. Both species have several synonyms and subspecies. Their trees can grow up to 40 m in height, and their trunks can grow up to 1.5 m and 1 m in diameter (Europaean and Siberian larch, respectively). When young, the bark is smooth, but in old age, it cracks and peels. Over time, the wood acquires a red heartwood, which has an intense resin smell. The branches are in the vertebrae, and the secondary branches are mostly hanging. The needles are in tufts, 30–40 together, about 3 cm long. Female and male flowers are located on the same branches; pollination takes place in the spring, and the seeds in small cones ripen in the same year.
The genus Picea includes about 40 species in the temperate northern hemisphere. In Europe, we find P. abies, which is one of the most important species of forest trees in Central Europe [10], then the endemic-relict species of intermittent range P. omorika [11], then P. orientalis and P. obovata. All species have synonyms, and P. abies stands out in particular because it has a high number of synonyms and lower taxonomic units [2,10]. Spruces grow up to 40 m in height and over 1 m in thickness, except for P. obovata, which is much lower [2,4]. Spruces develop a shallow root system and suffer from wind blasts. Their bark is thin, grayish, cracked, but smooth on young trees. The needles are rhombic in cross-section and pointed at the top, they are up to 15 to 25 mm long and 1 mm wide and remain on the branches for 7 years or more. Species of the genus Picea are monoecious plants. They bloom from April to June, depending on exposure and altitude. The cones ripen in the second half of September; they are brown, and the seeds fall out of them until January–March. The seeds are black to brown, up to 4 mm long, ovoid, and have transparent wings that are easily separated from the seed [2,4,12].
In the genus Pinus from the conifer subclass, we find about 100 species in the northern hemisphere, from the polar region to the tropics around the Equator [2,4]. They are systematically divided into several sections, and in Europe, we find the section Pinus (two-needle pines with two subsections: Pinus and Pinaster) and the section Strobus (five-needle pines) [6].
In the subsection Pinus, we found P. mugo, P. uncinata [11], P. nigra, and P. sylvestris. According to some research, P. mugo and P. uncinata belong to the same species, so they are subspecies, i.e., lower taxonomic categories [13]. All Pinus species have numerous synonyms. P. nigra and P. sylvestris grow up to 50 m in height [3]. The trees have cracked bark, the branches are in vertebrae, and the buds are up to 1–2 cm long; they flower and pollinate during May. The cones, 4 to 8 cm long and 2 to 4 cm wide, ripen in the second year after flowering. Seeds are grayish brown to dark brown, about 3–7 mm long and 2–4 mm wide. Their wood is valued for its durability, but they are used to a limited extent due to the large amount of resin in the wood [2,4]. P. mugo and P. uncinata grow on high mountains, from 1400 m to 2000 m [13]. P. mugo grows in the Alps, Dinarides, and Carpathians, while P. uncinata grows in the Western Alps and Pyrinees [13]. They usually grow as bushes lay down on the ground. Their bark is reddish-ashy, quite thin, and cracks in the form of small scales. Buds are elongated ovoid. They bloom in June and July and ripen in the third year after flowering. The cones are 2–7 cm long and 2.5 cm wide. The wood is not appreciated, but these two species are important in preventing soil erosion, torrents, and avalanches on high mountains.
The subsection Pinaster is represented by the following: Pinus heldreichii (relict and Balkan subendemic), P. halepensis, P. brutia, P. pinaster, and P. pinea [2,4]. All these species grow in a distinctly Mediterranean climate except for P. heldreichii, which grows on the high mountains of the sub-Mediterranean [14]. Morphologically, these species are distinctly differentiated from each other, for example, P. pinea with an umbrella canopy and P. heldreichii with its plate-like canopy and longevity [2,4,9]. P. halepensis and P. brutia are morphologically very similar, while P. pinaster in its characteristics is between them and the previously described species. They can grow up to 20–30 m in height, with a diameter of over 1 m. They bloom in May and June, and the cones ripen in the second year, except for P. halepensis and P. brutia where they can remain closed for several years and only be opened by fire. Their wood is valued for the durability that the resin gives it [2,4].
The five-needle pine section Strobus in Europe is represented by Pinus cembra and the relict-endemic species P. peuce. P. cembra grows in the Alps and the Carpathians at altitudes above 1400 m, while P. peuce is found in the mountains of the southwestern and southeastern Balkans [2,6,9]. They grow up to 20 and 40 m in height, respectively. The trees have dark gray fissured bark, and branches are located in vertebras. Buds are up to 1–2 cm long; they flower and pollinate during May–June [4,5]. The cones of these species are of different lengths and shapes and 3–5 cm wide; they ripen in the second year after flowering. The seeds are dark, about 3–7 mm long and 2–4 mm wide. The wood of P. cembra is hard and valued for its durability, while the wood of P. peuce is less used because of the resin in the wood [9].

3. Morpho-Anatomical Needle Characteristics of Listed European Conifers

The first compressive morpho-anatomical investigations of needles were published in the 19th century [15]. By incorporating anatomical tests, it becomes possible to identify hybrids or lower taxonomic units with a relatively high level of certainty. Needle morphology is instrumental in species identification and their classification within plant systematics [16]. For example, needle length can be critical in identifying hybrids (Florence, 1973; Snyder and Hamaker, 1978 as cited in [17]). Hybrids can also be verified by the number and position of the resin ducts. Lower systematic units, like in Pinus nigra Vidaković 1982, as cited in [2] along with ecotypes, provenances, geographical races, and the impact of external environmental factors, can be verified through morpho-anatomical examinations (as cited in [17] and references therein). The number of hypodermis layers can indicate population diversity [18]. Sometimes, the results of morpho-anatomical analyses of needles are validated through comparison with chemical [19] or genetic analyses [20,21].
The largest number of morpho-anatomical studies of European Pinaceae species have focused on Abies alba, Picea abies, Pinus halepensis, Pinus nigra, and Pinus sylvestris, which is understandable considering their widespread distribution, but attention has also been given to endemic and relict species such as Picea omorika, Pinus heldreichii, and Pinus peuce.
They remain intriguing both in terms of their variability and taxonomic as well as phylogenetic classification (Table 1). The observed variations within the species undoubtedly stem from factors such as the source of the examined trees (whether from natural populations or artificially cultivated plantations), ecological conditions, as well as the age of the needles under examination and the methodology employed for anatomical preparation.
The degree of variation in needle characteristics corresponds to their geographical distribution. For instance, when comparing results for A. alba across North Macedonia, Poland, Serbia, Greece, Germany, and NE Europe, it is evident that needle length in the Serbian population has the greatest variation (9–31 mm). This can be attributed to the collection site where the common fir coexists with its pyramidal variety (Table 1). The greatest variation in Serbia could be the consequence of its very variable environmental conditions, too. Furthermore, certain species, such as Pinus halepensis and Pinus brutia in Greece, are known to form spontaneous interspecies hybrids, the confirmation of which often relies on a combination of morphological and genetic markers [20]. Also noteworthy are the findings regarding the wide range of diameters of resin ducts in A. alba in North Macedonia (Table 1) [22]. Additionally, the information regarding P. heldreichii and P. omorika, known for their high interpopulation variability, exhibits notable diversity (Table 1) [17,57], a trait attributed to their endemic-relict status. Influence of genetic and environmental factors to such variation surely exists, but their part in overall variation were not examined.

4. Terpene Composition of Needles of Listed European Conifers

Terpenes constitute the largest and most abundant group of secondary metabolites [68] present in nearly all plants, including both gymnosperms (where they often dominate) and angiosperms. Conifers, in particular, are known to contain many monoterpenes, diterpenes, and sesquiterpenes [69]. While not essential for growth and development, certain terpenes play a crucial role in plant defense against various stressors ([68,70], and references cited therein). Essential oils exhibit antioxidant properties [71] and possess bioactive characteristics such as antimicrobial, antifungal, and toxic effects [72,73,74], primarily due to their terpene composition. Consequently, they can serve as effective repellents [75], sources of fruity aromas [76], and geroprotectors [77].
Furthermore, terpenes can play a crucial role in detecting interspecific hybrids [78], as well as lower taxonomic categories [79,80] and chemotypes [81], and are frequently employed in chemosystematics to delineate differences between genera [82,83] and subsections [84] and in determining the systematic position of endemic-relict species [85] and other conifers [86].
The composition and abundance of terpenes differ not only between genera and families but also within the same genus [87,88]. They also exhibit seasonal variations [89] and can differ across various tissues within the same species [90] with certain terpenes being regulated by genetics [91].
In some conifers, a correlation has been identified between terpene composition in wood and needles [92]. Our knowledge of terpene biosynthesis and the origin of their skeletal structures [93,94] continues to evolve and expand.
The main terpene compounds of needles of 23 European Pinaceae species are given in Table 2.
All species of the family Pinaceae and the genus Abies (species 1–4) have notable levels of α-pinene and β-pinene (Table 2). The primary terpene compound found in natural populations of Abies species is β-pinene, followed by α-pinene and camphene (refer to Table 2). Interestingly, in the population from Georgia, α-pinene is the most abundant, while in artificial plantations of A. alba, bornyl acetate dominates, and A. nordmanniana exhibits a prevalence of δ-3-carene.
The terpene profiles of Larix decidua and L. sibirica differ significantly, beginning with their main components (α-pinene and δ-3-carene, respectively) (Table 2).
α-Pinene is found in the profiles of the main terpene components in almost all analyzed species of the genus Picea with bornyl acetate emerging as the most prevalent component (species 9–12, Table 2).
Within the natural populations, β-pinene and α-pinene are predominant in Pinus brutia, while α-pinene dominates in P. cembra. In P. halepensis, alongside these, myrcene and caryophyllene occasionally appear (as shown in Table 2). In natural populations of P. heldreichii, limonene or germacrene D are the most abundant, accompanied by notable levels of α- and β-pinene. In all presented results for P. mugo, δ-3-carene or α-pinene dominate, except in samples from Italy, where bornyl acetate is the most abundant and α- and β-pinene are absent. In P. nigra, α-pinene and, occasionally, germacrene D dominate. The population from Turkey exhibits different abundant components compared to other populations (Table 2).
In all the data presented for P. peuce, α-pinene is the dominant component. However, in the population from Montenegro, isobornyl acetate takes precedence, and the other major components also show significant differences. In natural populations, P. pinaster is dominated by α-pinene and β-caryophyllene, while artificial populations exhibit some other components. Limonene is the prevailing compound in the leaves of P. pinea, with α- or β-pinene appearing less frequently. In most of the presented data for P. sylvestris, α-pinene is predominant, while in P. uncinata, bornyl acetate is the primary compound.
The variations in the obtained results may arise from differences in the origin of the needles, as well as potential sampling errors and discrepancies in the conditions of chromatographic analyses.

5. n-Alkane Composition of Needles of Listed European Pinaceae Species

The leaves of conifer species have various aliphatic compounds in their epicuticular waxes, including fatty acids, primary alcohols, alkyl esters, and aldehydes [138]. Very-long chain even- and odd-numbered n-alkanes, in addition to the previously mentioned compounds, particularly nonacosan-10-ol, have a significant role in shaping the crystal structure of epicuticular wax. In the Pinaceae family, this wax forms small branched tubules that can only be observed under a scanning electron microscope [139].
n-Alkanes are particularly important in chemotaxonomic research, e.g., in the genus Picea [140] or in Pinales [141], as well as other areas such as in detecting hybrids and lower taxonomic units, conducting phylogenetic research, chromatographic analyses, air pollution studies, ecological investigations, paleological research, and beyond. In many of the studies mentioned, alongside identifying the range and prevalence of alkanes, parameters like the carbon preference index (CPI) and average chain length (ACL) are also calculated and applied in various contexts, including chemotaxonomic investigations [142] (Herbin and Robins, 1968) and studies concerning environmental conditions ([143,144], among others).
The main n-alkanes in the leaves of 23 European Pinaceae species are presented in Table 3. In Abies species, the most prevalent n-alkanes were typically nonacosane (C29), hentriacontane (C31), or heptacosane (C27), whereas in Larix decidua and the majority of Picea species, C31 was the most abundant. Within the genus Pinus, C31 and C29 were dominant. The initial research results showed a prevalence of odd alkanes in the epicuticular wax of conifers, a trend also found in the European Pinaceae species analyzed (refer to Table 3). In artificial tree populations, the most abundant alkane in the leaves was C31, whereas in trees from natural populations, C29 and C27 predominated (Table 3).
The origin, whether natural or artificial, clearly influences the predominant alkanes more than the effects of age and timing of needle collection. This observation holds true not only for species like P. heldreichii and Picea omorika but also for numerous other references cited in Table 3.

6. Molecular Markers of Listed European Pinaceae Species

The largest number of population-genetic studies of European representatives of the Pinaceae family was conducted with the species Abies alba, Picea abies, Pinus nigra, and Pinus sylvestris, which is expected considering their wide area, although a significant number of studies were also performed with the endemic species Abies borisii-regis, A. cephalonica, A. nebrodensis, and Picea omorika (Table 4). These studies were widely used in determining the evolutionary potential of species and assessing the possibility of survival of a given species in changing environmental conditions [154], in defining strategies for long-term conservation of the species [155], in determining the so-called centers of diversity that may indicate the existence of local refugiums of a given species [156], as well as in the detection of relict and ancestral populations and cryptic species [157]. In addition, population-genetic studies of European Pinaceae species were widely used in solving certain taxonomic issues [158], as well as for the detection of hybrids [155].
Over the past few decades, a large number of molecular markers have been developed that show a relatively high degree of intraspecies polymorphism, which is suitable for population-genetic studies of Gymnospermae. At the nuclear genome (nDNA) level, frequently used markers are RFLP (Restriction Fragment Length Polymorphism), RAPD (Random Amplified Polymorphic DNA), and AFLP (Amplified Fragment Length Polymorphism) ([168,171,174,176,178,182], etc.). However, the most common type of molecular markers widely used in population-genetic research not only in Gymnospermae, but also in Angiospermae, are microsatellites or SSRs (Single Sequence Repeats) ([28,154,165,166,167,168,177], etc.). They are characterized by their hypervariability, co-dominant nature, specificity, simple application, etc., which have led to their very wide application in research in different groups of plants. In addition to microsatellites, sequences of selected regions of chloroplast (cpDNA) and mitochondrial (mtDNA) genomes are widely used in the population genetics of Gymnospermae ([154,155,161,162,163,167,177], etc.). They are characterized by a lower mutation rate compared to microsatellites, but they represent a very powerful tool for the detection of population differentiation, considering that haploid genomes are more sensitive to the effects of genetic drift compared to the nuclear genome.
Conifers, in general, are characterized by an extremely high degree of genetic diversity in populations and species as a whole, as well as a low degree of genetic differentiation of populations due to effective gene flow through seed and pollen dispersal and a high connectivity of populations. However, some widespread Pinaceae species, where high levels of genetic diversity are expected, have been observed to be genetically monomorphic or poorly variable. One of the best-known examples is the stone pine Pinus pinea, which is distributed along almost the entire Mediterranean and is characterized by an almost complete absence of genetic diversity at the level of allozymes [257], nuclear [230], and chloroplast microsatellites [258]. It is believed that during the Pleistocene glaciations, xerothermic European conifers experienced an extremely strong bottleneck effect, given that, during the LGM, they could survive exclusively in the southernmost points of the refugium where there were favorable ecological conditions for their survival. This resulted in a drastic reduction in effective population size (Ne), as well as a loss of genetic diversity. Since genetic variability is considered a prerequisite for the successful adaptation of a species to new environmental conditions, the fact that Pinus pinea maintained such a low level of genetic diversity during the later expansion of its range is particularly interesting. As possible explanations, Vendramin et al. [258] suggested the following: 1. expansion that started relatively recently, that is, at least 3000 years ago when people started intensive cultivation; 2. the species survived the LGM in at least two separate refugia (southern Spain and southeastern France); 3. during the bottleneck phase, there was a mass extinction of specific parasites; and 4. successful adaptation to new environmental conditions primarily depends on the variability of phenotypic traits and not on the diversity of genetic markers. On the other hand, it has been shown that some European Pinaceae species with an extremely small current distribution area, such as Picea omorika, can show not only an extremely high level of genetic diversity but also a high genetic differentiation of populations [156]. This genetic profile of P. omorika is explained by the long-term survival of this species in a localized refugium on the Balkan Peninsula.
The above examples indicate the extremely great importance of historical factors in modeling the level of genetic diversity and genetic differentiation of tthe Pinaceae species, as well as the fact that the current genetic profile of each species is the result of the combination of elemental properties of the species and historical factors.

7. Conclusions

While the analysis of morpho-anatomical traits of conifer needles was a hallmark of 20th century research, these studies are still used at the population level [264], frequently in conjunction with climatic factors [265]. These variable sets of morpho-anatomical data suggest that new varieties or forms could be selected in future. This review paper provides a detailed examination of the terpene composition of European Pinaceae species. However, the list of references would be even longer if we included data on their biological activity [266,267] and other attributes.
In the tabular presentation of the most abundant n-alkanes, it seems that all species are similar and that no chemotaxonomic conclusions can be drawn from them, which is nevertheless possible when they are examined at the population level.
Based on the review of the published results of the genetic diversity of European species of the genus Pinus and the applied genetic markers, we can say that thermophilic Mediterranean pines such as P. brutia, P. halepensis, and P. pinea show low levels or even absence of genetic diversity, and P. pinaster has an intermediate position, while the frigoriphilous species, P. nigra, P. silvestris, and P. uncinata, are characterized by the highest degree of genetic diversity [156,177,233,249,258,263], respectively. Thus, this result supports the hypothesis that during the Pleistocene glaciations, frigophilic species, due to their better adaptation to colder conditions, could often maintain higher effective population sizes and genetic variability.
It is well known that the examined features are very variable between species. This is confirmed in the tabular displays. On the other side, one can see from the tables that some species have not been examined yet in some features, and this fact is very important information for further investigations.

Author Contributions

Conceptualization, B.M.N. and Z.S.M.; methodology, D.B.; software, B.M.N.; validation, B.M.N., D.B. and Z.S.M.; formal analysis, Z.S.M.; investigation, B.M.N., D.B. and Z.S.M.; resources, B.M.N., D.B. and Z.S.M.; data curation, B.M.N., D.B. and Z.S.M.; writing—original draft preparation, B.M.N., D.B. and Z.S.M.; writing—review and editing, B.M.N., Z.S.M.; visualization, B.M.N., D.B. supervision, B.M.N. project administration, D.B. funding acquisition, B.M.N., Z.S.M.; All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by the Ministry of Science, Technological Development, and Innovation of the Republic of Serbia, grant number 451-03-65/2024-03/200124 and grant number 451-03-66/2024-03/200027.

Data Availability Statement

The data presented in this study are available on reasonable request from the corresponding author.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Farjon, A. The Kew Review: Conifers of the World. Kew Bull. 2018, 73, 8. [Google Scholar] [CrossRef]
  2. Vidaković, M.; Franjić, J. Golosjemenjače; Šumarski Fakultet Sveučilišta u Zagrebu: Zagreb, Croatia, 2004. [Google Scholar]
  3. Anderson, J.M.; Anderson, H.M.; Cleal, C.J. Brief history of the gymnosperms: Classiffication, biodiversity, phytogeography snd ecology. In Strelitzia 20; South African National Biodiversity Institute: Pretoria, South Africa, 2007. [Google Scholar]
  4. Jovanović, B. Dendrologija; Univerzitetska Štampa: Beograd, Serbia, 2000. [Google Scholar]
  5. Barbu, I.; Barbu, C. Silver fir (Abies alba Mill.) in Romania; Editura Tehnică Silvică: Voluntari, Romania, 2005. [Google Scholar]
  6. Farjon, A. A Handbook of the World’s Conifers; Koninklijke Brill: Leiden, The Netherlands, 2010. [Google Scholar]
  7. Ballian, D.; Halilović, V. Varijabilnost Obične Jele (Abies alba Mill.) u Bosni i Hercegovini; USIT FBiH: Sarajevo, Bosnia and Herzegovina, 2016. [Google Scholar]
  8. Jalas, J.; Suominen, J. Atlas Florae Europaeae; Distribution of Vascular Plants in Europe. 2. Gymnospermae (Pinaceae to Ephedraceae); The Committee for Mapping the Flora of Europe and Societas Biologica Fennica Vanamo: Helsinki, Finland, 1973. [Google Scholar]
  9. San-Miguel-Ayanz, J.; de Rigo, D.; Caudullo, G.; Houston Durrant, T.; Mauri, A. European Atlas of Forest Tree Species, 2nd ed.; Publication Office of the European Union: Luxemburg, 2021. [Google Scholar]
  10. Ballian, D.; Božič, G. Biokemijska Varijabilnost Smreke (Picea abies Karst.) u Bosni i Hercegovini; USIT FBiH: Sarajevo, Bosnia and Herzegovna, 2018. [Google Scholar]
  11. Ballian, D.; Ravazzi, C.; Caudullo, G. Picea omorika in Europe: Distribution, Habitat, Usage and Threats, 2nd ed.; San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A., Eds.; European Atlas of Forest Tree Species; Publication Office of the European Union: Luxembourg, 2021; p. 117. [Google Scholar]
  12. Brus, R. Drevesne vrste na Slovenskem; Mladinska Knjiga: Ljubljana, Slovenia, 2004. [Google Scholar]
  13. Ballian, D.; Ravazzi, C.; de Rigo, D.; Caudullo, G. Pinus mugo in Europe: Distribution, Habitat, Usage and Threats, 2nd ed.; San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A., Eds.; European Atlas of Forest Tree Species; Publication Office of the European Union: Luxembourg, 2021; pp. 124–125. [Google Scholar]
  14. Ballian, D.; Škvorc, Ž.; Franjić, J.; Kajba, D.; Bogdan, S.; Bogunić, F. Procjena nekih morfoloških značajki munike (Pinus heldreichii Christ.) u dijelu areala. Sumarski List. 2005, 9–10, 475–480. [Google Scholar]
  15. Masters, M.T. Notes on the genera of Taxaceae and Coniferae. Bot. J. Linn. Soc. 1893, 30, 1–42. [Google Scholar] [CrossRef]
  16. Wu, H.; Hu, Z.H. Comparative anatomy of resin ducts of the Pinaceae. Trees 1997, 11, 135–143. [Google Scholar] [CrossRef]
  17. Nikolić, B.; Bojović, S.; Marin, P.D. Variability of morpho-anatomical characteristics of the needles of Picea omorika from natural populations in Serbia. Plant Biosyst. 2015, 149, 61–67. [Google Scholar] [CrossRef]
  18. Calamassi, R.; Puglisi, S.; Vendramin, G.G. Genetic variation in morphological and anatomical needle characteristics in Pinus brutia Ten. Silvae Genet. 1988, 37, 199–206. [Google Scholar]
  19. Petrakis, P.V.; Roussis, V.; Ortiz, A. Monoterpenoid diversity in relation to morphology of Pinus brutia and Pinus halepensis in an East Mediterranean area (Attiki, Greece). Implications for pine evolution. Edinb. J. Bot. 2000, 57, 349–375. [Google Scholar] [CrossRef]
  20. Korol, L.V.; Madmony, A.; Riov, Y.; Schiller, G. Pinus halepensis × Pinus brutia subsp. brutia hybrids? Identification using morphological and biochemical traits. Silvae Genet. 1995, 44, 186–190. [Google Scholar]
  21. Gadek, P.A.; Alpers, D.L.; Heslewood, M.M.; Quinn, C.J. Relationships within Cupressaceae sensu lato: A combined morphological and molecular approach. Am. J. Bot. 2000, 87, 1044–1067. [Google Scholar] [CrossRef]
  22. Popnikola, N. Varijabilnost četina jele (Abies Alba Mill.) u prirodnim populacijama SR Makedonije. Šumarstvo 1974, 5–6, 5–13. [Google Scholar]
  23. Pawlaczyk, E.M.; Grzebyta, J.; Bobowicz, M.A.; Korczyk, A.F. Individual differentiation of Abies alba Mill. population from the “Tisovik” reserve. Variability expressed in morphology and anatomy of needles. Acta Biol. Crac. Ser. Bot. 2005, 47, 137–144. [Google Scholar]
  24. Pawlaczyk, E.M.; Bobowicz, M.A. Osobnicze zróżnicowanie jodły pospolitej (Abies alba Mill.) z rezerwatu Jata wyrażone w cechach morfologii i anatomii igieł. Leśne Pr. Badaw. 2008, 69, 243–253. [Google Scholar]
  25. Bercu, R.; Broasca, L.; Popoviciu, R. Comparative anatomical study of some Gymnospermae species leaves. Bot. Serb. 2010, 34, 21–28. [Google Scholar]
  26. Ratknić, M.; Nikolić, B.; Miletić, Z. Morpho-anatomical characteristics and content of nutritive macro elements in needles of fir and spruce and their varieties in Serbia. Arch. Biol. Sci. 2013, 65, 1479–1490. [Google Scholar] [CrossRef]
  27. Jasińska, A.; Boratyńska, K.; Sękiewicz, K.; Di Gristina, E.; Boratyński, A. Relationships among Abies nebrodensis, A. alba and A. cephalonica in the morphological and anatomical needle characteristics. Plant Biosyst. 2017, 151, 775–782. [Google Scholar] [CrossRef]
  28. Litkowiec, M.; Sękiewicz, K.; Romo, A.; Ok, T.; Dagher-Kharrat, M.B.; Jasińska, A.K.; Sobierajska, K.; Boratyńska, K.; Boratyński, A. Biogeography and relationships of the Abies taxa from the Mediterranean and Central Europe regions as revealed by nuclear DNA markers and needle structural characters. For. Ecol. Manag. 2021, 479, 118606. [Google Scholar] [CrossRef]
  29. Dörken, V.M.; Lepetit, B. Morpho-anatomical and physiological differences between sun and shade leaves in Abies alba Mill. (Pinaceae; Coniferales): A combined approach. Plant Cell Environ. 2018, 41, 1683–1697. [Google Scholar] [CrossRef]
  30. Mitić, Z.S.; Nikolić, J.S.; Jušković, M.Z.; Ranđelović, V.N.; Nikolić, B.M.; Zlatković, B.K. Geographic diferentiation of Abies alba, A. × borisii-regis, and A. cephalonica populations at the Balkan Peninsula based on needle morpho-anatomy. Trees 2023, 37, 1465–1481. [Google Scholar] [CrossRef]
  31. Papageorgiou, A.C.; Kostoudi, C.; Sorotos, I.; Varsamis, G.; Korakis, G.; Drouzas, A.D. Diversity in needle morphology and genetic markers in a marginal Abies cephalonica (Pinaceae) population. Ann. For. Res. 2015, 58, 217–234. [Google Scholar] [CrossRef]
  32. Sękiewicz, K.; Sękiewicz, M.; Jasińska, A.K.; Boratyńska, K.; Iszkuło, G.; Romo, A.; Boratyński, A. Morphological diversity and structure of West Mediterranean Abies species. Plant Biosyst. 2013, 147, 125–134. [Google Scholar] [CrossRef]
  33. Vidaković, M. Četinjače; Morfologija i Varijabilnost; JAZU i Sveučilišna Naklada Liber: Zagreb, Croatia, 1982. [Google Scholar]
  34. Johnson, O. Collins Tree Guide; Harpercollins: London, UK, 2006. [Google Scholar]
  35. Bercu, R.; Popoviciu, D.R. Anatomical comparative study of Larix decidua Mill. and Picea abies Karsten (Pinaceae) leaf. Ann. Rom. Soc. Cell Biol. 2013, 18, 172–177. [Google Scholar]
  36. Gebauer, R.; Volaríkl, D.; Urban, J.; Børja, I.; Nagyl, N.E.; Eldhuset, T.D.; Krokene, P. Effects of mild drought on the morphology of sun and shade needles in 20-year-old Norway spruce trees. iForest 2019, 12, 27–34. [Google Scholar] [CrossRef]
  37. Wang, J.; Ma, J.; OuYang, F.; Wang, J.; Song, L.; Kong, L.; Zhang, H. Instrinsic relationship among needle morphology; anatomy; gas exchanges and tree growth across 17 Picea species. New For. 2021, 52, 509–535. [Google Scholar] [CrossRef]
  38. Vilotić, D. Anatomska građa stabala omorike Picea omorika (Pančić) Purkyne sa područja Nacionalnog parka Tara, 33–49. In Vegetacija Nacionalnog Parka Tara (Monograph); Gajić, M., Kojić, M., Karadžić, D., Vasiljević, M., Stanić, M., Eds.; Šumarski Fakultet Beograd, Nacionalni Park Tara: Bajina Bašta, Serbia, 1994. [Google Scholar]
  39. Pavlović, B.P.; Matović, M. Vukoman’s spruce—New variety of Serbian spruce in the Mileševka kanyon—Picea omorika var. Vukomanii. Arch. Biol. Sci. 1994, 46, 27–28. [Google Scholar]
  40. Milovanović, J.; Ivetić, V.; Vilotić, D.; Šijačić-Nikolić, M. Morfo-anatomske karakteristike četina različitih fenogrupa omorike. Acta Herbol. 2005, 14, 41–49. [Google Scholar]
  41. Radovanović, B.; Šinžar-Sekulić, J.; Rakić, T.; Živković, I.; Lakušić, D. Variation in needle anatomy of Picea omorika (Pinaceae) plants belonging to different gene pools in natural populations on Tara Mt. in Serbia. Bot. Serb. 2014, 38, 237–246. [Google Scholar]
  42. Panetsos, C.P. Natural hybridization between Pinus halepensis and Pinus brutia in Greece. Silvae Genet. 1975, 24, 163–168. [Google Scholar]
  43. Panetsos, K.P.; Scaltsoyiannes, A.; Aravanopoulos, F.A.; Dounavi, K.; Demetrakopoulos, A. Identification of Pinus brutia Ten., P. halepensis Mill. and their putative hybrids. Silvae Genet. 1997, 46, 253–257. [Google Scholar]
  44. Dangasuk, O.; Panetsos, K. Altitudinal and longitudinal variations in Pinus brutia (Ten.) of Crete Island; Greece: Some needle; cone and seed traits under natural habitats. New For. 2004, 27, 269–284. [Google Scholar] [CrossRef]
  45. Kaundun, S.S.; Lebreton, P. Taxonomy and systematics of the genus Pinus based on morphological; biogeographical and biochemical characters. Plant Syst. Evol. 2010, 284, 1–15. [Google Scholar] [CrossRef]
  46. Esteban, L.G.; Martín, J.A.; de Palacios, P.; Fernandez, F.G.; López, R. Adaptive anatomy of Pinus halepensis trees from different Mediterranean environments in Spain. Trees 2010, 24, 19–30. [Google Scholar] [CrossRef]
  47. Fukarek, P. Novi varietet munike sa podučja Srbije i Sandžaka (Crna Gora) (Pinus heldreichii Chr. var Pančići n.var.). Godišnjak Biološkog Instituta 1951, 6, 41–50. [Google Scholar]
  48. Gudeski, A.; Stamenkov, M.; Djordjeva, M. Morfološko-anatomske karakteristike iglica munike (Pinus heldreichii Christ.) sa nekih autohtonih staništa Makedonije i Kosova. In Proceedings of the Simpozijum o Munici Pinus heldreichii Christ, Dečani, Kosovo, 4–7 September 1972; pp. 104–114. [Google Scholar]
  49. Papaioannaou, K.J. Geografsko rasprostranjenje Pinus heldreichii i njegovi narodni nazivi. In Proceedings of the Simpozijum o Munici Pinus heldreichii Christ, Dečani, Kosovo, 4–7 September 1972; pp. 293–302. [Google Scholar]
  50. Papaioannaou, K.J. Varijeteti Pinus heldreichii Christ. In Proceedings of the Simpozijum o Munici Pinus heldreichii Christ, Dečani, Kosovo, 4–7 September 1972; pp. 303–310. [Google Scholar]
  51. Popnikola, N. Varijabilnost broja smolnih kanala u četinama munike Pinus heldreichii Christ. In Proceedings of the Simpozijum o munici Pinus heldreichii Christ, Dečani, Kosovo, 4–7 September 1972; pp. 334–344. [Google Scholar]
  52. Stevanović, B.; Janković, M. Ekoanatomske odlike četina endemo-reliktnih visokoplaninskih borova munike (Pinus heldreichii Christ.) i molike (P. peuce Gris.). Bot. Serb. 1988, 22, 51–62. [Google Scholar]
  53. Stevanović-Janežić, T.M.; Vilotić, D.M. Etarska ulja iz endemskih borova munike (Pinus heldreichii Christ.) i molike (Pinus peuce Griseb.). Lek. Sirovine 1998, 47, 109–114. [Google Scholar]
  54. Tošić, M.; Vilotić, D.; Radošević, G. Morphological-anatomical characteristics of White Bark Pine (Pinus heldreichi Christ.) needles in South-West Serbia. In Proceedings of the Third International Balkan Congress “Plant Resources in the Creation of New Values, Sarajevo, Bosnia and Herzegovina, 18–24 May 2003. [Google Scholar]
  55. Yurukov, S.; Panayotov, M.; Tsavkov, P.; Zhelev, P. Dendrological characteristic of Bosnian pine (Pinus heldreichii Christ.) on karst terrains in Pirin National Park. In Proceedings of the International Scientific Conference “Protected Karst Territories—Conditions; Problems; Perspectives, Shumen, Bulgaria, 18–21 October 2005. [Google Scholar]
  56. Panayotov, M.; Tsavkov, E.; Zhelev, P.; Yurukov, S. Anatomical and morphological changes in Pinus heldreichii Christ along an altitudinal gradient in Pirin mountains. Muzeul Olten. Craiova Olten. Stud. Comunicări Ştiinţele Nat. 2010, 26, 51–57. [Google Scholar]
  57. Nikolić, B.; Bojović, S.; Marin, P.D. Morpho-anatomical properties of Pinus heldreichii needles from natural populations in Montenegro and Serbia. Plant Biosyst. 2014, 150, 254–263. [Google Scholar] [CrossRef]
  58. Bączkiewicz, A.; Buczkowska, K.E.; Wachowiak, W. Anatomical and morphological variability of needles of Pinus mugo Turra on different substrata in the Tatra Mountains. Biol. Lett. 2005, 42, 21–32. [Google Scholar]
  59. Boratyńska, K.; Jasińska, A.K.; Boratyński, A. Taxonomic and geographic differentiation of Pinus mugo complex on the needle characteristics. Syst. Biodivers. 2015, 13, 581–595. [Google Scholar] [CrossRef]
  60. Matziris, D.I. Genetic variation in morphological and anatomical needle characteristics in the Black Pine of Peloponnesos. Silvae Genet. 1984, 33, 164–169. [Google Scholar]
  61. Pavletić, Z.; Liber, Z. Anatomical and morphological analysis of the Dalmatian black pine [Pinus nigra ARNOLD subsp. dalmatica (Vis.) Franco] needles. Wiss Mitt Niederösterr Landesmus. 1999, 12, 89–95. [Google Scholar]
  62. Borzan, Ž.; Idžojtić, M.; Guttenbergeb, H. Identification of F1 hybrids Pinus nigra J. F. Arnold × P. sylvestris L.; P. nigra J. F. Arnold × P. densiflora Siebold et Zucc. and P. nigra J. F. Arnold × P. thunbergiana Franco by internal and external morphometric traits. Silvae Genet. 2002, 51, 270–273. [Google Scholar]
  63. Nikolić, B.; Bojović, S.; Marin, P.D. Morpho-anatomical traits of Pinus peuce needles from natural populations in Montenegro and Serbia. Plant Biosyst. 2016, 150, 1038–1045. [Google Scholar] [CrossRef]
  64. Boratyńska, K.; Boratyński, A. Taxonomic differences among closely related pines Pinus sylvestris, P. mugo, P. uncinata, P. rotundata and P. uliginosa as revealed in needle sclerenchyma cells. Flora 2007, 202, 555–569. [Google Scholar] [CrossRef]
  65. Polok, K.; Przybyła, M.; Pisarek, W.; Chudzińska, E.; Zieliński, R.; Urbaniak, L. Needle anatomy suggests hybridization between the relict turfosa form of Pinus sylvestris L. from the Gązwa peat bóg and typical Scots pine. Acta Soc. Bot. Pol. 2009, 78, 29–36. [Google Scholar] [CrossRef]
  66. Gebauer, R.; Čermák, J.; Plichta, R.; Špinlerova, Z.; Urban, J.; Volařik, D.; Ceulemans, R. Within-canopy variation in needle morphology and anatomy of vascular tissues in a sparse Scots pine forest. Trees 2015, 29, 1447–1457. [Google Scholar] [CrossRef]
  67. Boratyńska, K.; Bobowicz, M.A. Variability of Pinus uncinata Ramond ex DC as expressed in needle traits. Dendrobiology 2000, 45, 7–16. [Google Scholar]
  68. Kopaczyk, J.M.; Warguła, J.; Jelonek, T. The variability of terpenes in conifers under developmental and environmental stimuli. Environ. Exp. Bot. 2020, 180, 104197. [Google Scholar] [CrossRef]
  69. Otto, A.; Wilde, V. Sesqui-, di-, and triterpenoids as chemosystematic markers in extant conifers—A review. Bot. Rev. 2001, 67, 141–238. [Google Scholar] [CrossRef]
  70. Niinemets, Ü.; Kännaste, A.; Copolovici, L. Quantitative patterns between plant volatile emissions induced by biotic stresses and the degree of damage. Front. Plant Sci. 2013, 4, 49750. [Google Scholar] [CrossRef]
  71. Ancuceanu, R.; Anghel, A.I.; Hovanet, M.V.; Ciobanu, A.-M.; Lascu, B.E.; Dinu, M. Antioxidant activity of essential oils from Pinaceae species. Antioxidants 2024, 13, 286. [Google Scholar] [CrossRef]
  72. Mitić, Z.S.; Stojanović-Radić, Z.Z.; Jovanović, S.Č.; Cvetković, V.J.; Nikolić, J.S.; Ickovski, J.D.; Mitrović, T.L.; Nikolić, B.M.; Zlatković, B.K.; Stojanović, G.S. Essential oils of three Balkan Abies Species: Chemical profiles; antimicrobial activity and toxicity toward Artemia salina and Drosophila melanogaster. Chem. Biodivers. 2022, 19, e202200235. [Google Scholar] [CrossRef]
  73. Nikolić, B.M.; Milanović, S.D.; Milenković, I.L.; Todosijević, M.M.; Đorđević, I.Ž.; Brkić, M.Z.; Mitić, Z.S.; Marin, P.D.; Tešević, V.V. Bioactivity of Chamaecyparis lawsoniana (A. Murray) Parl. and Thuja plicata Donn ex D. Don essential oils on Lymantria dispar (Linnaeus, 1758) (Lepidoptera: Erebidae) larvae and Phytophthora de Bary 1876 root pathogens. Ind. Crops Prod. 2022, 178, 114550. [Google Scholar] [CrossRef]
  74. Cvetković, V.J.; Mitić, Z.S.; Stojanović-Radić, Z.; Matić, S.L.; Nikolić, B.M.; Rakonjac, L.; Ickovski, J.; Stojanović, G. Biological activities of Chamaecyparis lawsoniana (A. Murray bis) Parl. and Thuja plicata Donn ex D.Don essential oils: Toxicity, genotoxicity, antigenotoxicity, and antimicrobial activity. Forests 2024, 15, 69. [Google Scholar] [CrossRef]
  75. Ansari, M.A.; Mittal, P.K.; Razdan, R.K.; Sreehari, U. Larvicidal and mosquito repellent activities of pine (Pinus longifolia, family: Pinaceae) oil. J. Vector Borne Dis. 2005, 42, 95–99. [Google Scholar]
  76. El Hadi, M.A.; Zhang, F.J.; Wu, F.F.; Zhou, C.H.; Tao, J. Advances in fruit aroma volatile research. Molecules 2013, 18, 8200–8229. [Google Scholar] [CrossRef]
  77. Proshkina, E.; Plyusnin, S.; Babak, T.; Lashmanova, E.; Maganova, F.; Koval, L.; Platonova, E.; Shaposhnikov, M.; Moskalev, A. Terpenoids as potential geroprotectors. Antioxidants 2020, 9, 529. [Google Scholar] [CrossRef]
  78. Gallis, A.T.; Lang, K.; Panetsos, K.P. Bud monoterpenes composition in Pinus brutia (Ten.), Pinus halepensis (Mill.) and their hybrids. Silvae Genet. 1998, 47, 71–74. [Google Scholar]
  79. Šarac, Z.; Bojović, S.; Nikolić, B.; Tešević, V.; Đorđević, I.; Marin, P.D. Chemotaxonomic significance of the terpene composition in natural populations of Pinus nigra J. F. Arnold from Serbia. Chem. Biodivers. 2013, 10, 1507–1520. [Google Scholar] [CrossRef]
  80. Stefanović, M.; Ristić, M.; Popović, Z.; Matić, R.; Nikolić, B.; Vidaković, V.; Obratov-Petković, D.; Bojović, S. Chemical composition and interpopulation variability of essential oils of Taxus baccata L. from Serbia. Chem. Biodivers. 2016, 13, 943–953. [Google Scholar] [CrossRef]
  81. Chalchat, J.-C.; Garry, R.-P.; Michet, A.; Remery, A. The essential oils of two chemotypes of Pinus sylvestris. Phytochemistry 1985, 24, 2443–2444. [Google Scholar] [CrossRef]
  82. Otto, A.; Simoneit, B.R.T.; Wilde, V. Terpenoids as chemosystematic markers in selected fossil and extant species of pine (Pinus, Pinaceae). Bot. J. Linn. Soc. 2007, 154, 129–140. [Google Scholar] [CrossRef]
  83. Ji, W.; Ji, X. Comparative analysis of volatile terpenes and terpenoids in the leaves of Pinus species—A potentially abundant renewable resource. Molecules 2021, 26, 5244. [Google Scholar] [CrossRef]
  84. Mitić, Z.S.; Jovanović, S.Č.; Zlatković, B.K.; Nikolić, B.M.; Stojanović, G.S.; Marin, P.D. Needle terpenes as chemotaxonomic markers in Pinus: Subsections Pinus and Pinaster. Chem. Biodivers. 2017, 14, e1600453. [Google Scholar] [CrossRef]
  85. Nikolić, B.; Ristić, M.; Tešević, V.; Marin, P.D.; Bojović, S. Terpene chemodiversity of relict conifers Picea omorika, Pinus heldreichii and Pinus peuce, endemic to Balkan. Chem. Biodivers. 2011, 8, 2247–2260. [Google Scholar] [CrossRef]
  86. Li, B.; Shen, Y.H.; He, Y.R.; Zhang, W.D. Chemical constituents and biological activities of Pinus species. Chem. Biodivers. 2013, 10, 2133–2160. [Google Scholar] [CrossRef]
  87. Ioannou, E.; Koutsaviti, A.; Tzakou, O.; Roussis, V. The genus Pinus: A comparative study on the needle essential oil composition of 46 pine species. Phytochem. Rev. 2014, 13, 741–768. [Google Scholar] [CrossRef]
  88. Korica, A.; Polis, O.; Spalvs, K.; Bartkevics, V. Quantitative and qualitative seasonal changes of Scots Pine and Norway Spruce foliage essential oils in Latvia, and the extraction dynamics thereof. Balt. For. 2015, 21, 51–58. [Google Scholar] [CrossRef]
  89. Michelozzi, M.; Tognetti, R.; Maggino, F.; Radicati, M. Seasonal variations in monoterpene profiles and ecophysiological traits in Mediterranean pine species of group “halepensis”. IForest 2008, 1, 65–74. [Google Scholar] [CrossRef]
  90. Gallis, A.T. Study of the genetic control of four volatile monoterpenes in Pinus brutia × Pinus halepensis hybrids. Protection and management of forest ecosystems in Greece. In Proceedings of the 9th International Conference on Environmental Science and Technology, G-NEST and University of Aegean, Rhodes Island, Greece, 1–3 September 2005. [Google Scholar]
  91. Manninen, A.M.; Tarhanen, S.; Vuorinen, M.; Kainulaine, P. Comparing the variation of needle and wood terpenoids in Scots Pine provenances. J. Chem. Ecol. 2002, 28, 211–228. [Google Scholar] [CrossRef]
  92. Degenhardt, J.; Köllner, T.G.; Gershenzon, J. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry 2009, 70, 1621–1637. [Google Scholar] [CrossRef]
  93. Chhetri, B.K.; Ali, N.A.A.; Setzer, W.N. A survey of chemical compositions and biological activities of Yemeni aromatic medicinal plants. Medicines 2015, 28, 67–92. [Google Scholar] [CrossRef]
  94. Ignea, C.; Raadam, M.H.; Koutsaviti, A.; Yong, Z.; Duan, Y.-T.; Harizani, M.; Miettinen, K.; Georgantea, P.; Rosenfeldt, M.; Viejo-Ledesma, S.E.; et al. Expanding the terpene biosynthetic code with non-canonical 16 carbon atom building blocks. Nat. Commun. 2022, 13, 5188. [Google Scholar] [CrossRef]
  95. Yang, S.-A.; Jeon, S.-K.; Lee, E.-J.; Im, N.-K.; Jhee, K.-H.; Lee, S.-P.; Lee, I.-S. Radical scavenging activity of the essential oil of Silver fir (Abies alba). J. Clin. Biochem. Nutr. 2009, 44, 253–259. [Google Scholar] [CrossRef]
  96. Nikolić, J.S.; Zlatković, B.K.; Jovanović, S.Č.; Stojanović, G.S.; Marin, P.D.; Mitić, Z.S. Needle volatiles as chemophenetic markers in differentiation of natural populations of Abies alba, A. × borisii-regis, and A. cephalonica. Phytochemistry 2021, 183, 112612. [Google Scholar] [CrossRef]
  97. Schicchi, R.; Geraci, A.; Rosselli, S.; Spinella, A.; Maggio, A.; Bruno, M. Phytochemical investigation of the needles of Abies nebrodensis (Lojac.) Mattei. Nat. Prod. Res. 2020, 34, 2131–2136. [Google Scholar] [CrossRef]
  98. Sagareishvili, T.G. Components of the essential oil of Abies nordmanniana. Chem. Nat. Compd. 1999, 35, 586. [Google Scholar] [CrossRef]
  99. Bagci, E.; Babaç, M.T. A morphometric and chemosystematic study on the Abies Miller (Fir) species in Turkey. Acta Bot. Gall. 2003, 150, 355–367. [Google Scholar] [CrossRef]
  100. Weißmann, G.; Reck, S. Identifizierung von Hybridlärchen mit Hilfe chemischer Merkmale. Silvae Genet. 1987, 36, 60–64. [Google Scholar]
  101. . Romanenko, E.P.; Domrachev, D.V.; Tkachev, A.V. Variations in essential oils from South Siberian conifers of the Pinaceae family: New data towards identification and quality control. Chem. Biodivers. 2022, 19, e202100755. [Google Scholar] [CrossRef]
  102. Persson, M.; Sjödin, K.; Borg-Karlson, A.-K.; Norin, T.; Ekberg, I. Relative amounts and enantiomeric compositions of monoterpene hydrocarbons in xylem and needles of Picea abies. Phytochemistry 1996, 42, 1289–1297. [Google Scholar] [CrossRef]
  103. Chalchat, J.C.; Gorunović, M.S. Chemotaxonomy of pines native to the Balkans (IV): Variations in the composition of essential oils of Pinus omorika Pancic according to plant part and age of specimens. Pharmazie 1995, 50, 640–641. [Google Scholar]
  104. Nikolić, B.; Tesević, V.; Djordjević, I.; Marin, P.D.; Bojović, S. Essential oil variability in natural populations of Picea omorika; a rare European conifer. Chem. Biodivers. 2009, 6, 193–203. [Google Scholar] [CrossRef]
  105. Uçar, G.; Balaban, M.; Usta, M.C. Volatile needle and wood extracts of oriental spruce Picea orientalis (L.) Link. Flav Fragr. J. 2003, 18, 368–375. [Google Scholar] [CrossRef]
  106. Roussis, V.; Petrakis, P.V.; Ortiz, A.; Mazomenos, B.E. Volatile constituents of needles of five Pinus species grown in Greece. Phytochemistry 1995, 39, 357–361. [Google Scholar] [CrossRef]
  107. Lahlou, M. Composition and molluscicidal properties of essential oils of five Moroccan Pinaceae. Pharm. Biol. 2003, 41, 207–210. [Google Scholar] [CrossRef]
  108. Mateus, E. Characterization of Pinus spp. Needles by Gas Chromatography and Mass Spectrometry: Application to Plant-Insect Interactions. Ph.D. Thesis, Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia, Lisboa, Spain, 2008; 322p. [Google Scholar]
  109. Tumen, I.; Hafizoglu, H.; Kilic, A.; Dönmez, I.E.; Sivrikaya, H.; Reunanen, M. Yields and constituents of essential oil from cones of Pinaceae spp. natively grown in Turkey. Molecules 2010, 24, 5797–5806. [Google Scholar] [CrossRef]
  110. Ustun, O.; Senol, F.S.; Kurkcuoglu, M.; Erdogan, I.; Kartal, O.M.; Can Baser, K.H. Investigation on chemical composition, anticholinesterase and antioxidant activities of extracts and essential oils of Turkish Pinus species and pycnogenol. Ind. Crop Prod. 2012, 38, 115–123. [Google Scholar] [CrossRef]
  111. Apetrei, C.L.; Tuchilus, C.; Aprotosoaie, A.C.; Oprea, A.; Malterud, K.E.; Miron, A. Chemical, antioxidant and antimicrobial investigations of Pinus cembra L. bark and needles. Molecules 2011, 16, 7773–7788. [Google Scholar] [CrossRef]
  112. Lis, A.; Kalinowska, A.; Krajewska, A.; Mellor, K. Chemical composition of the essential oils from different morphological parts of Pinus cembra L. Chem. Biodivers. 2017, 14, e201600345. [Google Scholar] [CrossRef]
  113. Dob, T.; Berramdane, T.; Chelgoum, C. Chemical composition of essential oil of Pinus halepensis Miller growing in Algeria. C. R. Chim. 2005, 8, 1939–1945. [Google Scholar] [CrossRef]
  114. Tümen, İ.; Akkol, E.K.; Taştan, H.; Süntar, I.; Kurtca, M. Research on the antioxidant; wound healing, and antiinflammatory activities and the phytochemical composition of maritime pine (Pinus pinaster Ait). J. Ethnopharmacol. 2018, 211, 235–246. [Google Scholar] [CrossRef]
  115. Mitić, Z.S.; Jovanović, B.; Jovanović, S.Č.; Stojanović-Radić, Z.Z.; Mihajilov-Krstev, T.; Jovanović, N.M.; Nikolić, B.M.; Marin, P.D.; Zlatković, B.K.; Stojanović, G.S. Essential oils of Pinus halepensis and P. heldreichii: Chemical composition, antimicrobial and insect larvicidal activity. Ind. Crops Prod. 2019, 140, 111702. [Google Scholar] [CrossRef]
  116. Hjouji, K.; Atemni, I.; Mehdaoui, I.; Ainane, A.; Berrada, S.; Rais, Z.; Taleb, M.; Ainane, T. Essential oil of Aleppo Pine needles: Antioxidant and antibacterial activities. Pharmacologyonline 2021, 2, 556–565. [Google Scholar]
  117. Simić, N.; Palić, R.M.; Andelković, S.; Vajs, V.V.; Milosavljevic, S. Essential oil of Pinus heldreichii needles. J. Essent. Oil Res. 1996, 8, 1–5. [Google Scholar] [CrossRef]
  118. Petrakis, P.V.; Tsitsimpikou, C.; Tzakou, O.; Couladis, M.; Vagias, C.; Roussis, V. Needle volatiles from five Pinus species growing in Greece. Flavour. Fragr. J. 2001, 16, 249–252. [Google Scholar] [CrossRef]
  119. Bojović, S.; Nikolić, B.; Ristić, M.; Orlović, S.; Veselinović, M.; Rakonjac, L.; Dražić, D. Variability in chemical composition and abundance of the rare tertiary relict Pinus heldreichii in Serbia. Chem. Biodivers. 2011, 8, 1754–1765. [Google Scholar] [CrossRef]
  120. Basholli-Salihu, M.; Schuster, R.; Hajdari, A.; Mulla, D.; Viernstein, H.; Mustafa, B.; Mueller, M. Phytochemical composition; anti-inflammatory activity and cytotoxic effects of essential oils from three Pinus spp. Pharm. Biol. 2017, 55, 1553–1560. [Google Scholar] [CrossRef]
  121. Mitić, Z.S.; Nikolić, B.M.; Ristić, M.S.; Tešević, V.V.; Bojović, S.R.; Marin, P.D. Terpenes as useful markers in differentiation of natural populations of relict pines Pinus heldreichi. P. nigra, and P. peuce. Chem. Biodivers. 2017, 14, e1700093. [Google Scholar] [CrossRef]
  122. Kurti, F.; Giorgi, A.; Beretta, G.; Mustafa, B.; Gelmini, F.; Testa, C.; Angioletti, S.; Giupponi, L.; Zilio, E.; Pentimalli, D.; et al. Chemical composition; antioxidant and antimicrobial activities of essential oils of different Pinus species from Kosovo. J. Essent. Oil Res. 2019, 31, 263–275. [Google Scholar] [CrossRef]
  123. Stevanovic, T.; Garneau, F.-X.; Jean, F.-I.; Gagnon, H.; Vilotić, D.; Petrović, S.S.; Ruzic, N.; Pichette, A. The essential oil composition of Pinus mugo Turra from Serbia. Flav Fragr. J. 2005, 20, 2096–2097. [Google Scholar] [CrossRef]
  124. Venditti, A.; Serrilli, A.M.; Vittori, S.; Papa, F.; Maggi, F.; Di Cecco, M.; Ciaschetti, G.; Bruno, M.; Rosselli, S.; Bianco, A. Secondary metabolites from Pinus mugo Turra subsp. mugo growing in the Majella National Park (Central Apennines; Italy). Chem. Biodivers. 2013, 10, 2091–2100. [Google Scholar] [CrossRef]
  125. Hajdari, A.; Mustafa, B.; Ahmeti, G.; Pulaj, B.; Lukas, B.; Ibraliu, A.; Stefkov, G.; Quave, C.L.; Novak, J. Essential oil composition variability among natural populations of Pinus mugo Turra in Kosovo. SpringerPlus 2015, 4, 828. [Google Scholar] [CrossRef]
  126. Bojović, S.; Jurc, M.; Ristić, M.; Popović, Z.; Matić, R.; Vidaković, V.; Stefanović, M.; Jurc, D. Essential-oil variability in natural populations of Pinus mugo Turra from the Julian Alps. Chem. Biodivers. 2016, 13, 181–187. [Google Scholar] [CrossRef]
  127. Mitić, Z.S.; Jovanović, B.; Jovanović, S.Č.; Mihajilov-Krstev, T.; Stojanović-Radić, Z.Z.; Cvetković, V.J.; Mitrović, T.L.; Marin, P.D.; Zlatković, B.K.; Stojanović, G.S. Comparative study of the essential oils of four Pinus species: Chemical composition; antimicrobial and insect larvicidal activity. Ind. Crop Prod. 2018, 111, 55–62. [Google Scholar] [CrossRef]
  128. Adams, R.P.; Tashev, A.N. Composition of the leaf volatile terpenoids of Pinus mugo Turra from Bulgaria compared with oils from other regions. Phytologia 2019, 101, 74–80. [Google Scholar]
  129. Mitić, Z.S.; Jovanović, S.Č.; Zlatković, B.K.; Milanovici, S.J.; Nikolić, B.M.; Petrović, G.M.; Stojanović, G.S.; Marin, P.D. Variation of needle volatiles in native populations of Pinus mugo—evidence from multivariate statistical analysis. Plant Biosyst. 2021, 155, 700–710. [Google Scholar] [CrossRef]
  130. Gorunović, M.; Mimica-Dukić, N.; Kite, G.; Stošić, D. Sur l‘huile essentielle de Pinus peuce Griseb.; Pinaceés de Monténégro. Pharmazie 1992, 47, 647–648. [Google Scholar]
  131. Koukos, P.K.; Papadopoulou, K.I.; Patiaka, D.T.; Papagiannopoulos, A.D. Chemical composition of essential oils from needles and twigs of Balkan pine (Pinus peuce Grisebach) grown in Northern Greece. J. Agric. Food Chem. 2000, 48, 1266–1268. [Google Scholar] [CrossRef]
  132. Karapandzova, M.; Stefkov, G.; Kulevanova, S. Essential oils composition of Pinus peuce Griseb. (Pinaceae) growing on Pelister Mtn.; Republic of Macedonia. Maced. Pharm. Bull. 2011, 56, 13–22. [Google Scholar] [CrossRef]
  133. Kleinhentz, M.; Jactel, H.; Menassieu, P. Terpene attractant candidates of Dioryctria sylvestrella in Maritime pine (Pinus pinaster) oleoresin; needles; liber; and headspace samples. J. Chem. Ecol. 1999, 25, 2741–2756. [Google Scholar] [CrossRef]
  134. Arrabal, C.; García-Vallejo, M.C.; Cadahia, E.; Cortijo, M.; de Simon, B.F. Characterization of two chemotypes of Pinus pinaster by their terpene and acid patterns in needles. Plant Syst. Evol. 2012, 298, 511–522. [Google Scholar] [CrossRef]
  135. Ruas, A.; Graça, A.; Marto, J.; Gonçalves, L.; Oliveira, A.; da Silva, A.N.; Pimentel, M.; Moura, A.M.; Serra, A.T.; Figueiredo, A.C.; et al. Chemical characterization and bioactivity of commercial essential oils and hydrolates obtained from Portuguese forest logging and thinning. Molecules 2022, 27, 3572. [Google Scholar] [CrossRef]
  136. Semiz, G.; Heijari, J.; Isik, K.; Holopainen, J.K. Variation in needle terpenoids among Pinus sylvestris L. (Pinaceae) provenances from Turkey. Biochem. Syst. Ecol. 2007, 35, 652–661. [Google Scholar] [CrossRef]
  137. Bonikowski, R.; Celiński, K.; Wojnicka-Półtorak, A.; Maliński, T. Composition of essential oils isolated from the needles of Pinus uncinata and P. uliginosa grown in Poland. Nat. Prod. Commun. 2015, 10, 371–373. [Google Scholar] [CrossRef]
  138. Kunst, L.; Samuels, A.L. Biosynthesis and secretion of plant cuticular wax. Prog. Lipid Res. 2003, 42, 51–80. [Google Scholar] [CrossRef]
  139. Gülz, P.G. Epicuticular leaf waxes in the evolution of the plant kingdom. J. Plant Physiol. 1994, 143, 453–464. [Google Scholar] [CrossRef]
  140. Corrigan, D.; Timoney, R.F.; Donnelly, D.M. n-Alkanes and ω-hydroxyalkanoic acids from the needles of twenty-eight Picea species. Phytochemistry 1978, 17, 907–910. [Google Scholar] [CrossRef]
  141. Maffei, M.E.; Badino, S.F.; Bossi, S. Chemotaxonomic significance of leaf wax n-alkanes in the Pinales (Coniferales). J. Biol. Res. 2004, 1, 3–19. [Google Scholar]
  142. Herbin, G.A.; Robins, P.A. Studies on plant cuticular waxes—III. The leaf wax alkanes and ω-hydroxy acids of some members of the Cupressaceae and Pinaceae. Phytochemistry 1968, 7, 1325–1337. [Google Scholar] [CrossRef]
  143. Lockheart, M.J.; Poole, I.; Van Bergen, P.F.; Evershed, R.P. Leaf carbon isotope compositions and stomatal characters: Important considerations for palaeoclimate reconstructions. Org. Geochem. 1998, 29, 1003–1008. [Google Scholar] [CrossRef]
  144. Oros, D.R.; Standley, L.J.; Chen, X.; Simoneit, B.R.T. Epicuticular wax compositions of predominant conifers of Western North America. Z. Naturforsch C 1999, 54, 17–24. [Google Scholar] [CrossRef]
  145. Mitić, Z.S.; Nikolić, J.S.; Dimitrijević, I.S.; Jevtović, S.Č.; Nikolić, B.M.; Zlatković, B.K.; Stojanović, G.S. Cuticular wax variability of Abies alba, A.×borisii-regis and A. cephalonica from the Balkans: Chemophenetic and ecological aspects. Chem. Biodivers. 2023, 20, e202300553. [Google Scholar] [CrossRef]
  146. Nikolić, B.; Tešević, V.; Đorđević, I.; Todosijević, M.; Jadranin, M.; Bojović, S.; Marin, P.D. Variability of n-alkanes and nonacosan-10-ol in natural populations of Picea omorika. Chem. Biodivers. 2013, 10, 473–483. [Google Scholar] [CrossRef]
  147. Nikolić, B.M.; Ballian, D.A.; Đorđević, I.Ž.; Rajčević, N.F.; Todosijević, M.M.; Stanković Jeremić, J.M.; Mitić, Z.S.; Bojović, S.R.; Tešević, V.V. n-Alkanes variability in natural populations of Picea omorika (Pančić) Purk. from Bosnia and Herzegovina. Biochem. Syst. Ecol. 2023, 106, e104544. [Google Scholar] [CrossRef]
  148. Nikolić, B.; Tešević, V.; Đorđević, I.; Todosijević, M.; Jadranin, M.; Bojović, S.; Marin, P.D. Chemodiversity of nonacosan-10-ol and n-alkanes in the needle wax of Pinus heldreichii. Chem. Biodivers. 2012, 9, 80–90. [Google Scholar] [CrossRef]
  149. Mitić, Z.S.; Nikolić, J.S.; Zlatković, B.K.; Milanovici, S.J.; Jovanović, S.Č.; Nikolić, B.M.; Stojanović, G.S.; Marin, P.D. Epicuticular waxes provide insights into phytochemical differentiation of natural populations of Pinus mugo Turra sensu stricto. Chem. Biodivers. 2018, 15, e1800378. [Google Scholar] [CrossRef]
  150. Bojović, S.; Šarac, Z.; Nikolić, B.; Tešević, V.; Todosijević, M.; Veljić, M.; Marin, P.D. Composition of n-alkanes in natural populations of Pinus nigra from Serbia—Chemotaxonomic implications. Chem. Biodivers. 2012, 9, 2761–2774. [Google Scholar] [CrossRef]
  151. Mitić, Z.S.; Zlatković, B.K.; Jovanović, S.Č.; Stojanović, G.S.; Marin, P.D. Geographically related variation in epicuticular wax traits of Pinus nigra populations from Southern Carpathians and Central Balkans—Taxonomic considerations. Chem. Biodivers. 2016, 13, 931–942. [Google Scholar] [CrossRef]
  152. Nikolić, B.; Tešević, V.; Đorđević, I.; Todosijević, M.; Jadranin, M.; Bojović, S.; Marin, P.D. Population variability of nonacosan-10-ol and n-alkanes in needle cuticular waxes of Macedonian pine (Pinus peuce GRISEB.). Chem. Biodivers. 2012, 9, 1155–1165. [Google Scholar] [CrossRef]
  153. Nikolić, B.; Todosijević, M.; Đorđević, I.; Stanković, J.; Mitić, Z.S.; Tešević, V.; Marin, P.D. Nonacosan-10-ol and n-alkanes in leaves of Pinus pinaster. Nat. Prod. Commun. 2020, 15, 1934578X20926073. [Google Scholar] [CrossRef]
  154. Bella, E.; Liepelt, S.; Parducci, L.; Drouzas, D. Genetic insights into the hybrid origin of Abies × borisii-regis Mattf. Plant Syst. Evol. 2015, 301, 749–759. [Google Scholar] [CrossRef]
  155. Siskas, E.; Bella, E.; Papageorgiou, A.C.; Kappas, I.; Tsiripidis, I.; Drouzas, A.D. DNA-based identification of Abies cephalonica, A. alba and their hybrid (A.×borisii-regis) at the individual-level. Plant Biosyst. 2022, 157, 24–37. [Google Scholar] [CrossRef]
  156. Aleksić, J.M.; Geburek, T. Quaternary population dynamics of an endemic conifer, Picea omorika, and their conservation implications. Conserv. Genet. 2014, 15, 87–107. [Google Scholar] [CrossRef]
  157. Naydenov, K.D.; Naydenov, M.K.; Alexandrov, A.; Vasilevski, K.; Hinkov, G.; Metevski, V.; Nikolić, B.; Goudiaby, V.; Riegert, D.; Paitaridou, D.; et al. Ancient genetic bottleneck and Plio-Pleistocene climatic changes imprinted the phylobiogeography of European Black Pine populations. Eur. J. For. Res. 2017, 136, 767–786. [Google Scholar] [CrossRef]
  158. Scotti-Saintagne, C.; Giovannelli, G.; Scotti, I.; Roig, A.; Spanu, I.; Vendramin, G.G.; Guibal, F.; Fady, B. Recent, Late Pleistocene fragmentation shaped the phylogeographic structure of the European black pine (Pinus nigra Arnold). Tree Genet. Genomes 2019, 15, 76. [Google Scholar] [CrossRef]
  159. Ballian, D. Procjena genetičke varijabilnosti obične jele (Abies alba Mill.) analizom cpDNA u dijelu prirodnih populacija Bosne i Hercegovine i Hrvatske. Šumarski List 2003, 7–8, 347–357. [Google Scholar]
  160. Ballian, D.; Kajba, D. Estimation of the isoenzyme genetic variability of the silver fir (Abies alba Mill.) from the area of Gorski kotar (Croatia). Period. Biol. 2005, 107, 67–72. [Google Scholar]
  161. Ziegenhagen, B.; Fady, B.; Kuhlenkamp, V.; Liepelt, S. Differentiating groups of Abies species with a simple molecular marker. Silvae Genet. 2005, 54, 123–126. [Google Scholar] [CrossRef]
  162. Voleková, M.; Krajmerová, D.; Paule, L.; Zhelev, P.; Gömöry, D. Natural hybridization in the genus Abies: II. Mitochondrial variation in the hybridogenous complex Abies alba—A. borisii-regis—A. cephalonica. Folia Oecol. 2014, 41, 100–105. [Google Scholar]
  163. Balao Robles, F.J.; Lorenzo Romero, M.T.; Sánchez Robles, J.M.; Paun, O.; García Castaño, J.L.; Terrab, B.A. Early diversification and permeable species boundaries in the Mediterranean firs. Ann. Bot. 2020, 125, 495–507. [Google Scholar] [CrossRef]
  164. Fady, B.; Conkle, M.T. Allozyme variation and possible phylogenetic implications in Abies cephalonica Loudon and some related eastern Mediterranean firs. Silvae Genet. 1993, 42, 351–359. [Google Scholar]
  165. Hrivnák, M.; Paule, L.; Krajmerová, D.; Kulaç, Ş.; Şevik, H.; Turna, İ.; Gömöry, D. Genetic variation in Tertiary relics: The case of eastern-Mediterranean Abies (Pinaceae). Ecol. Evol. 2017, 7, 10018–10030. [Google Scholar] [CrossRef]
  166. Krajmerová, D.; Paule, L.; Zhelev, P.; Voleková, M.; Evtimov, I.; Gagov, V.; Gömöry, D. Natural hybridization in eastern-Mediterranean firs: The case of Abies borisii-regis. Plant Biosyst. 2016, 150, 1189–1199. [Google Scholar] [CrossRef]
  167. Liepelt, S.; Mayland-Quellhorst, E.; Lahme, M.; Ziegenhagen, B. Contrasting geographical patterns of ancient and modern genetic lineages in Mediterranean Abies species. Plant Syst. Evol. 2010, 284, 141–151. [Google Scholar] [CrossRef]
  168. Sánchez-Robles, J.M.; Balao, F.; Terrab, A.; García-Castaño, J.L.; Ortiz, M.A.; Vela, E.; Talavera, S. Phylogeography of SW Mediterranean firs: Different European origins for the North African Abies species. Mol. Phylogenet. Evol. 2014, 79, 42–53. [Google Scholar] [CrossRef]
  169. Scaltsoyiannes, A.; Tsaktsira, M.; Drouzas, A.D. Allozyme differentiation in the Mediterranean firs (Abies, Pinaceae). A first comparative study with phylogenetic implications. Plant Syst. Evol. 1999, 216, 289–307. [Google Scholar] [CrossRef]
  170. Vicario, F.; Vendramin, G.G.; Rossi, P.; Lio, P.; Giannini, R. Allozyme, chloroplast DNA and RAPD markers for determining genetic relationships between Abies alba and the relic population of Abies nebrodensis. Theor. Appl. Genet. 1995, 90, 1012–1018. [Google Scholar] [CrossRef]
  171. Conte, L.; Cristofolini, G. Assessment of RAPD variation in Abies nebrodensis (Lojac.) Mattei (Pinaceae) using haploid tissue analysis. Isr. J. Plant Sci. 2003, 51, 199–206. [Google Scholar] [CrossRef]
  172. Vendramin, G.G.; Michelozzi, M.; Lelli, L.; Tognetti, R. Genetic variation in Abies nebrodensis: A case study for a highly endangered species. For. Gen. 1995, 2, 171–175. [Google Scholar]
  173. Parducci, L.; Szmidt, A.E.; Madaghiele, A.; Anzidei, M.; Vendramin, G.G. Genetic variation at chloroplast microsatellites (cpSSRs) in Abies nebrodensis (Lojac.) Mattei and three neighboring Abies species. Theor. Appl. Genet. 2001, 102, 733–740. [Google Scholar] [CrossRef]
  174. Salaj, T.; Matusikova, I.; Panis, B.; Swennen, R.; Salaj, J. Recovery and characterisation of hybrid firs (Abies alba × A. cephalonica, Abies alba × A. numidica) embryogenic tissues after cryopreservation. Cryo Lett. 2010, 31, 206–217. [Google Scholar]
  175. Lucău-Dănilă, A.; Scheepers, D.; Lucău-Dănilă, C.; Horodnic, S.; Gleizes, M.; Comps, B.; Briquet, M. Allozyme, terpene and RAPD markers for determining genetic relationships among populations of Silver Fir (Abies alba Mill.). Anu. Muzeului Natl. Bucov. 1999, 15, 125–137. [Google Scholar]
  176. Conte, L.; Cotti, C.; Schicchi, R.; Raimondo, F.M.; Cristofolini, G. Detection of ephemeral genetic sub-structure in the narrow endemic Abies nebrodensis (Lojac.) Mattei (Pinaceae) using RAPD markers. Plant Biosyst. 2004, 138, 279–289. [Google Scholar] [CrossRef]
  177. Jaramillo-Correa, J.P.; Grivet, D.; Terrab, A.; Kurt, Y.; De-Lucas, A.I.; Wahid, N.; Vendramin, G.G.; González-Martínez, S.C. The Strait of Gibraltar as a major biogeographic barrier in Mediterranean conifers: A comparative phylogeographic survey. Mol. Ecol. 2010, 19, 5452–5468. [Google Scholar] [CrossRef]
  178. Gros-Louis, M.C.; Bousquet, J.; Pâques, L.E.; Isabel, N. Species-diagnostic markers in Larix spp. based on RAPDs and nuclear, cpDNA, and mtDNA gene sequences, and their phylogenetic implications. Tree Genet. Genomes 2005, 1, 50–63. [Google Scholar] [CrossRef]
  179. Gramazio, P.; Plesa, I.M.; Truta, A.M.; Sestras, A.F.; Vilanova, S.; Plazas, M.; Vicente, O.; Boscaiu, M.; Prohens, J.; Sestras, R.E. Highly informative SSR genotyping reveals large genetic diversity and limited differentiation in European larch (Larix decidua) populations from Romania. Turk. J. Agric. For. 2018, 42, 165–175. [Google Scholar] [CrossRef]
  180. Heitkam, T.; Schulte, L.; Weber, B.; Liedtke, S.; Breitenbach, S.; Kögler, A.; Morgenstern, K.; Brückner, M.; Tröber, U.; Wolf, H.; et al. Comparative repeat profiling of two closely related conifers (Larix decidua and Larix kaempferi) reveals high genome similarity with only few fast-evolving satellite DNAs. Front. Genet. 2021, 12, 683668. [Google Scholar] [CrossRef]
  181. Sestras, A.F.; Holonec, L.; Sestras, R.E. Genetic variation and potential genetic resources of several Romanian larch populations. Turk. J. Agric. For. 2017, 41, 82–91. [Google Scholar] [CrossRef]
  182. Arcade, A.; Anselin, F.; Rampant, P.F.; Lesage, M.C.; Paques, L.E.; Prat, D. Application of AFLP, RAPD and ISSR markers to genetic mapping of European and Japanese larch. Theor. Appl. Genet. 2000, 100, 299–307. [Google Scholar] [CrossRef]
  183. Pluess, A.R. Pursuing glacier retreat: Genetic structure of a rapidly expanding Larix decidua population. Mol. Ecol. 2011, 20, 473–485. [Google Scholar] [CrossRef]
  184. Zhulanov, A.; Chertov, N.; Nechaeva, Y.; Pechenkina, V.; Zhulanova, L.; Boronnikova, S.; Kalendar, R. Genetic uniqueness and genetic structure of populations of Picea obovata Ledeb. and Larix sibirica Ledeb. in the Northern and Middle Urals. Forests 2023, 14, 1822. [Google Scholar] [CrossRef]
  185. Kozyrenko, M.M.; Artyukova, E.V.; Reunova, G.D.; Levina, E.A.; Zhuravlev, Y.N. Genetic diversity and relationships among Siberian and Far Eastern larches inferred from RAPD analysis. Russ. J. Genet. 2004, 40, 401–409. [Google Scholar] [CrossRef]
  186. Chertov, N.; Vasilyeva, Y.; Zhulanov, A.; Nechaeva, Y.; Boronnikova, S.; Kalendar, R. Genetic structure and geographical differentiation of Larix sibirica Ledeb. in the Urals. Forests 2021, 12, 1401. [Google Scholar] [CrossRef]
  187. Vasyutkina, E.A.; Adrianova, I.Y.; Kozyrenko, M.M.; Artyukova, E.V.; Reunova, G.D.; Zhuravlev, Y.N. Genetic differentiation of larch populations from the Larix olgensis range and their relationships with larches from Siberia and Russian Far East. For. Sci. Technol. 2007, 3, 132–138. [Google Scholar] [CrossRef]
  188. Novikova, S.V.; Oreshkova, N.V.; Sharov, V.V.; Semerikov, V.L.; Krutovsky, K.V. Genetic structure and geographical differentiation of Siberian larch (Larix sibirica Ledeb.) populations based on genome genotyping by sequencing. Contemp. Probl. 2023, 16, 631–644. [Google Scholar] [CrossRef]
  189. Oreshkova, N.V.; Putintseva, Y.A.; Sharov, V.V.; Kuzmin, D.A.; Krutovsky, K.V. Development of microsatellite genetic markers in Siberian larch (Larix sibirica Ledeb.) based on the de novo whole genome sequencing. Russ. J. Genet. 2017, 53, 1194–1199. [Google Scholar] [CrossRef]
  190. Bondar, E.I.; Putintseva, Y.A.; Oreshkova, N.V.; Krutovsky, K.V. Siberian larch (Larix sibirica Ledeb.) chloroplast genome and development of polymorphic chloroplast markers. BMC Bioinf. 2019, 20, 47–52. [Google Scholar] [CrossRef]
  191. Celiński, K.; Kijak, H.; Wojnicka-Półtorak, A.; Buczkowska-Chmielewska, K.; Sokołowska, J.; Chudzińska, E. Effectiveness of the DNA barcoding approach for closely related conifers discrimination: A case study of the Pinus mugo complex. C. R. Biol. 2017, 340, 339–348. [Google Scholar] [CrossRef]
  192. Ballian, D. Procjena genetičke varijabilnosti obične jele (Abies alba Mill.) analizom izoenzima u dijelu prirodnih populacija Bosne i Hercegovine i Hrvatske. Sumar. List. 2003, 3–4, 135–151. [Google Scholar]
  193. Ballian, D.; Bogunić, F.; Božič, G. Genetic Research of Norway spruce (Picea abies (L.) Karst.) from extreme areas of Spaghno-Piceetum in Slovenia & Bosnia and Herzegovina. Dendrobiology 2009, 61, 137–144. [Google Scholar]
  194. Bucci, G.; Menozzi, P. Spatial autocorrelation and linkage of Mendelian RAPD markers in a population of Picea abies Karst. Mol. Ecol. 2002, 11, 305–315. [Google Scholar] [CrossRef]
  195. Binelli, G.; Bucci, G. A genetic linkage map of Picea abies Karst., based on RAPD markers, as a tool in population genetics. Theor. Appl. Genet. 1994, 88, 283–288. [Google Scholar] [CrossRef]
  196. Bucci, T.L.; Kubisiak, W.L.; Nance, G.; Menozzi, P. A population ‘consensus’, partial linkage map of Picea abies Karst. based on RAPD markers. Theor. Appl. Genet. 1997, 95, 6433654. [Google Scholar] [CrossRef]
  197. Lehner, A.; Campbell, M.A.; Wheeler, N.C.; Pöykkö, T.; Glössl, J.; Kreike, J.; Neale, D.B. Identification of a RAPD marker linked to the pendula gene in Norway spruce (Picea abies (L.) Karst. f. pendula). Theor. Appl. Genet. 1995, 91, 1092–1094. [Google Scholar] [CrossRef]
  198. Bucci, G.; Menozzi, P. Genetic variation of RAPD markers in a Picea abies Karst. population. Heredity 1995, 75, 188–197. [Google Scholar] [CrossRef]
  199. Collignon, A.M.; Favre, J.M. Contribution to the postglacial history at the western margin of Picea abies’ natural area using RAPD markers. Ann. Bot. 2000, 85, 713–722. [Google Scholar] [CrossRef]
  200. Bouillé, M.; Senneville, S.; Bousquet, J. Discordant mtDNA and cpDNA phylogenies indicate geographic speciation and reticulation as driving factors for the diversification of the genus Picea. Tree Genet. Genomes 2011, 7, 469–484. [Google Scholar] [CrossRef]
  201. Ran, J.H.; Wei, X.X.; Wang, X.Q. Molecular phylogeny and biogeography of Picea (Pinaceae): Implications for phylogeographical studies using cytoplasmic haplotypes. Mol. Phylogenet. Evol. 2006, 41, 405–419. [Google Scholar] [CrossRef]
  202. Nkongolo, K.K. RAPD and cytological analyses of Picea spp. from different provenances: Genomic relationships among taxa. Hereditas 1999, 130, 137–144. [Google Scholar] [CrossRef]
  203. Kravchenko, A.N.; Ekart, A.K.; Larionova, A.Y. Genetic diversity and differentiation of Siberian spruce populations at nuclear microsatellite loci. Russ. J. Genet. 2016, 52, 1142–1148. [Google Scholar] [CrossRef]
  204. Ballian, D.; Gömöry, D.; Longauer, R.; Mikić, T.; Paule, L. Izoenzimska analiza uključujući problem reprodukcije i konzervacije, populacija pančićeve omorike (Picea omorika (Panč.) Purk.) sa Višegradskog područja. Glas. Šumarskog Fak. Banja Luci 2004, 3, 23–34. [Google Scholar]
  205. Aleksić, J.M.; Geburek, T. Mitochondrial DNA reveals complex genetic structuring in a stenoendemic conifer Picea omorika [(Panč.) Purk.] caused by its long persistence within the refugial Balkan region. Plant Syst. Evol. 2010, 285, 1–11. [Google Scholar] [CrossRef]
  206. Nasri, N.; Bojovic, S.; Vendramin, G.G.; Fady, B. Population genetic structure of the relict Serbian spruce, Picea omorika, inferred from plastid DNA. Plant Syst. Evol. 2008, 271, 1–7. [Google Scholar] [CrossRef]
  207. Güney, D.; Yahyaoglu, Z.; Bayraktar, A.; Atar, F.; Turna, I. Genetic diversity of Picea orientalis (L.) Link populations in Turkey. Sumar. List. 2019, 11–12, 539–547. [Google Scholar] [CrossRef]
  208. Özdilek, A. Assessment of Genetic Diversity in Picea orientalis (L.) Link. in Genetic Resources by Microsatellites. Ph.D. Thesis, The Graduate School of Natural and Applied Sciences of Middle East Technical University, Ankara, Turkey, 2015. [Google Scholar]
  209. Gülsoy, A.M. The Phylogenetic Analysis of Picea orientalis Populations from Northeastern Turkey with Respect to Non-Coding Trn and Matk Regions of Chloroplast Genome. Master’s Thesis, Middle East Technical University, Faculty of Arts and Sciences, Department of Biology, Ankara, Turkey, 2011. [Google Scholar]
  210. Campbell, C.S.; Wright, W.A.; Cox, M.; Vining, T.F.; Major, C.S.; Arsenault, M.P. Nuclear ribosomal DNA internal transcribed spacer 1 (ITS1) in Picea (Pinaceae): Sequence divergence and structure. Mol. Phylogenet. Evol. 2005, 35, 165–185. [Google Scholar] [CrossRef]
  211. Yusuf, K.; Cengel, B.; Velioglu, E.; González-Martínez, S.C.; Grivet, D.; Kaya, N. Chloroplast microsatellite diversity of Pinus brutia Ten. and Pinus halepensis Mill. populations across the Mediterranean basin: Inferences of their distributions. For. Syst. 2023, 32, e008. [Google Scholar] [CrossRef]
  212. Al-Hawija, B.N.; Wagner, V.; Hensen, I. Genetic comparison between natural and planted populations of Pinus brutia and Cupressus sempervirens in Syria. Turk. J. Agric. For. 2014, 38, 267–280. [Google Scholar] [CrossRef]
  213. Houminer, N.; Doron-Faigenboim, A.; Shklar, G.; De La Torre, A.R.; Neale, D.; Korol, L.; Ashkenazi, M.; Moshe, Y.; Riov, J.; Osem, Y.; et al. Transcriptome-based single-nucleotide polymorphism markers between Pinus brutia and Pinus halepensis and the analysis of their hybrids. Tree Genet. Genomes 2021, 17, 1–11. [Google Scholar] [CrossRef]
  214. Tozkar, C.Ö. Comparative Sequence Analysis of the Internal Transcribed Spacer 2 Region of Turkish Red Pine (Pinus brutia Ten.) and Natural Aleppo Pine (Pinus halepensis Mill.) Populations from Turkey. Master’s Thesis, Orta Doğu Teknik Üniversitesi, Faculty of Arts and Sciences, Department of Biology, Ankara, Turkey, 2007. [Google Scholar]
  215. Gad, M.A.; Mohamed, S.Y. Phylogenetic evaluation of some Pinus species from different genetic resources using protein, isozymes, RAPD and ISSR analyses. J. Am. Sci. 2012, 8, 311–321. [Google Scholar]
  216. Icgen, Y.; Kaya, Z.; Cengel, B.; Velioğlu, E.; Öztürk, H.; Önde, S. Potential impact of forest management and tree improvement on genetic diversity of Turkish red pine (Pinus brutia Ten.) plantations in Turkey. For. Ecol. Manag. 2006, 225, 328–336. [Google Scholar] [CrossRef]
  217. Kurt, Y.; González-Martínez, S.C.; Alía, R.; Isik, K. Genetic differentiation in Pinus brutia Ten. using molecular markers and quantitative traits: The role of altitude. Ann. For. Sci. 2012, 69, 345–351. [Google Scholar] [CrossRef]
  218. Semerikova, S.A.; Semerikov, N.V. Low variation and high differentiation of marginal relict populations of Pinus brutia Ten. in the Crimean–Caucasian region. Russ. J. Ecol. 2020, 51, 20–30. [Google Scholar] [CrossRef]
  219. Georgolopoulos, G.; Parducci, L.; Drouzas, A.D. A short phylogenetically informative cpDNA fragment for the identification of Pinus species. Biochem. Syst. Ecol. 2016, 66, 166–172. [Google Scholar] [CrossRef]
  220. Gugerli, F.; Rüegg, M.; Vendramin, G.G. Gradual decline in genetic diversity in Swiss stone pine populations (Pinus cembra) across Switzerland suggests postglacial re-colonization into the Alps from a common eastern glacial refugium. Bot. Helv. 2009, 119, 13–22. [Google Scholar] [CrossRef]
  221. Lendvay, B.; Höhn, M.; Brodbeck, S.; Mîndrescu, M.; Gugerli, F. Genetic structure in Pinus cembra from the Carpathian Mountains inferred from nuclear and chloroplast microsatellites confirms post-glacial range contraction and identifies introduced individuals. Tree Genet. Genomes 2014, 10, 1419–1433. [Google Scholar] [CrossRef]
  222. Rellstab, C.; Dauphin, B.; Zoller, S.; Brodbeck, S.; Gugerli, F. Using transcriptome sequencing and pooled exome capture to study local adaptation in the giga-genome of Pinus cembra. Mol. Ecol. Resour. 2019, 19, 536–551. [Google Scholar] [CrossRef]
  223. Höhn, M.; Hufnagel, L.; Cseke, K.; Vendramin, G. Current range characteristics of Swiss stone pine (Pinus cembra L.) along the Carpathians revealed by chloroplast SSR markers. Acta Biol. Hung. 2010, 61, 61–67. [Google Scholar] [CrossRef]
  224. Wojnicka-Półtorak, A.; Celiński, K.; Chudzińska, E.; Prus-Głowacki, W.; Niemtur, S. Genetic resources of Pinus cembra L. marginal populations from the Tatra Mountains: Implications for Conservation. Biochem. Genet. 2015, 53, 49–61. [Google Scholar] [CrossRef]
  225. Gugerli, F.; Senn, J.; Anzidei, M.; Madaghiele, A.; Büchler, U.; Sperisen, C.; Vendramin, G.G. Chloroplast microsatellites and mitochondrial nad1 intron 2 sequences indicate congruent phylogenetic relationships among Swiss stone pine (Pinus cembra), Siberian stone pine (Pinus sibirica), and Siberian dwarf pine (Pinus pumila). Mol. Ecol. 2001, 10, 1489–1497. [Google Scholar] [CrossRef]
  226. Gugerli, F.; Brodbeck, S.; Lendvay, B.; Dauphin, B.; Bagnoli, F.; van Der Knaap, W.O.; Tinner, W.; Höhn, M.; Vendramin, G.G.; Morales-Molino, C.; et al. A range-wide postglacial history of Swiss stone pine based on molecular markers and palaeoecological evidence. J. Biogeogr. 2023, 50, 1049–1062. [Google Scholar] [CrossRef]
  227. Höhn, M.; Gugerli, F.; Abran, P.; Bisztray, G.; Buonamici, A.; Cseke, K.; Hufnagel, F.; Quintela-Sabaris, C.; Sebastiani, F.; Vendramin, G.G. Variation in the chloroplast DNA of Swiss stone pine (Pinus cembra L.) reflects contrasting post-glacial history of populations from the Carpathians and the Alps. J. Biogeogr. 2009, 36, 1798–1806. [Google Scholar] [CrossRef]
  228. Köbölkuti, Z.A.; Tóth, E.G.; Jahn, D.; Heinze, B.; Höhn, M. SNP marker development in Pinus sylvestris L. in stress-responsive genes characterized from Pinus cembra L. transcriptomes. Mol. Biol. Rep. 2020, 47, 4841–4847. [Google Scholar] [CrossRef]
  229. Ceuca, V.; Meana, O.V. Pinus cembra L. subsp. cembra genetic variability in Roumanian Carpathians-analyzed with morfological ANA molecular markers. Bulletin of University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca. Horticulturae 2007, 64, 1996. [Google Scholar] [CrossRef]
  230. Pinzauti, F.; Sebastiani, F.; Budde, K.B.; Fady, B.; González-Martínez, S.C.; Vendramin, G.G. Nuclear microsatellites for Pinus pinea (Pinaceae), a genetically depauperate tree, and their transferability to P. halepensis. Am. J. Bot. 2012, 99, e362–e365. [Google Scholar] [CrossRef]
  231. Nikolić, B.; Kovačević, D.; Mladenović-Drinić, S.; Nikolić, A.; Mitić, Z.; Bojović, S.; Marin, P.D. Relationships among some pines from subgenera Pinus and Strobus revealed by nuclear EST-microsatellites. Genetika 2018, 50, 69–84. [Google Scholar] [CrossRef]
  232. Leonarduzzi, C.; Spanu, I.; Labriola, M.; González-Martínez, S.C.; Piotti, A.; Vendramin, G.G. Development and characterization of three highly informative EST-SSR multiplexes for Pinus halepensis Mill. and their transferability to other Mediterranean pines. Plant Mol. Biol. Rep. 2016, 34, 993–1002. [Google Scholar] [CrossRef]
  233. Soto, A.; Robledo-Arnuncio, J.J.; González-Martínez, S.C.; Smouse, P.E.; Alía, R. Climatic niche and neutral genetic diversity of the six Iberian pine species: A retrospective and prospective view. Mol. Ecol. 2010, 19, 1396–1409. [Google Scholar] [CrossRef]
  234. Naydenov, K.D.; Tremblay, F.M.; Bergeron, Y.; Alexandrov, A.; Fenton, N. Dissimilar patterns of Pinus heldreichii Christ. populations in Bulgaria revealed by chloroplast microsatellites and terpenes analysis. Biochem. Syst. Ecol. 2005, 33, 133–148. [Google Scholar] [CrossRef]
  235. Boratyńska, K.; Dzialuk, A.; Lewandowski, A.; Marcysiak, K.; Jasińska, A.K.; Sobierajska, K.; Tomaszewski, D.; Burczyk, J.; Boratyński, A. Geographic distribution of quantitative traits variation and genetic variability in natural populations of Pinus mugo in Central Europe. Dendrobiology 2014, 72, 65–84. [Google Scholar] [CrossRef]
  236. Dzialuk, A.; Boratynski, A.; Boratynska, K.; Burczyk, J. Geographic patterns of genetic diversity of Pinus mugo (Pinaceae) in Central European mountains. Dendrobiology 2012, 68, 31–41. [Google Scholar]
  237. Dzialuk, A.; Boratyńska, K.; Romo, A.; Boratyński, A. Taxonomic and geographic variation of the Pinus mugo complex on chloroplast microsatellite markers. Syst. Biodivers. 2017, 15, 464–479. [Google Scholar] [CrossRef]
  238. Heuertz, M.; Teufel, J.; González-Martínez, S.C.; Soto, A.; Fady, B.; Alía, R.; Vendramin, G.G. Geography determines genetic relationships between species of mountain pine (Pinus mugo complex) in western Europe. J. Biogeogr. 2010, 37, 541–556. [Google Scholar] [CrossRef]
  239. Wachowiak, W.; Odrzykoski, I.; Myczko, Ł.; Prus-Głowacki, W. Lack of evidence on hybrid swarm in the sympatric population of Pinus mugo and P. sylvestris. Flora 2006, 201, 307–316. [Google Scholar] [CrossRef]
  240. Slavov, G.T.; Zhelev, P. Allozyme variation, differentiation, and inbreeding in populations of Pinus mugo in Bulgaria. Can. J. For. Res. 2004, 34, 2611–2617. [Google Scholar] [CrossRef]
  241. Bogunić, F.; Siljak-Yakovlev, S.; Muratović, E.; Ballian, D. Different karyotype patterns among allopatric Pinus nigra (Pinaceae) populations revealed by molecular cytogenetics. Plant Biol. 2011, 13, 194–200. [Google Scholar] [CrossRef]
  242. Żukowska, W.B.; Wachowiak, W. Nuclear microsatellite markers reveal the low genetic structure of Pinus mugo Turra (dwarf mountain pine) populations in Europe. Plant Syst. Evol. 2017, 303, 641–651. [Google Scholar] [CrossRef]
  243. Sannikov, S.N.; Petrova, I.V.; Schweingruber, F.; Egorov, E.V.; Parpan, T.V. Genetic differentiation of Pinus mugo Turra and P. sylvestris L. populations in the Ukrainian Carpathians and the Swiss Alps. Russ. J. Ecol. 2011, 42, 270–276. [Google Scholar] [CrossRef]
  244. Wachowiak, W.; Palme, A.E.; Savolainen, O. Speciation history of three closely related pines Pinus mugo (T.), P. uliginosa (N.) and P. sylvestris (L.). Mol. Ecol. 2011, 20, 1729–1743. [Google Scholar] [CrossRef]
  245. Monteleone, I.; Ferrazzini, D.; Belletti, P. Effectiveness of neutral RAPD markers to detect genetic divergence between the subspecies uncinata and mugo of Pinus mugo Turra. Silva Fenn. 2007, 40, 391–406. [Google Scholar] [CrossRef]
  246. Šarac, Z.; Dodoš, T.; Rajčević, N.; Bojović, S.; Marin, P.D.; Aleksić, J.M. Genetic patterns in Pinus nigra from the central Balkans inferred from plastid and mitochondrial data. Silva Fenn. 2015, 49, 1415. [Google Scholar] [CrossRef]
  247. Naydenov, K.D.; Mladenov, I.; Alexandrov, A.; Naydenov, M.K.; Gyuleva, V.; Goudiaby, V.; Nikolić, B.; Kamary, S. Patterns of genetic diversity resulting from bottlenecks in European black pine, with implications on local genetic conservation and management practices in Bulgaria. Eur. J. For. Res. 2015, 134, 669–681. [Google Scholar] [CrossRef]
  248. Naydenov, K.D.; Naydenov, M.K.; Alexandrov, A.; Vasilevski, K.; Gyuleva, V.; Matevski, V.; Nikolic, B.; Goudiaby, V.; Bogunic, F.; Paitaridou, D.; et al. Ancient split of major genetic lineages of European Black Pine: Evidence from chloroplast DNA. Tree Genet. Genomes 2016, 12, 68. [Google Scholar] [CrossRef]
  249. Afzal-Rafii, Z.; Dodd, R.S. Chloroplast DNA supports a hypothesis of glacial refugia over postglacial recolonization in disjunct populations of black pine (Pinus nigra) in western Europe. Mol. Ecol. 2007, 16, 723–736. [Google Scholar] [CrossRef]
  250. Naydenov, K.D.; Tremblay, F.M.; Fenton, N.J.; Alexandrov, A. Structure of Pinus nigra Arn. populations in Bulgaria revealed by chloroplast microsatellites and terpenes analysis: Provenance tests. Biochem. Syst. Ecol. 2006, 34, 562–574. [Google Scholar] [CrossRef]
  251. Liber, Z.; Nikolić, T.; Mitić, B.; Šatović, Z. RAPD markers and black pine [Pinus nigra Arnold] intraspecies taxonomy-evidence from the study of nine populations. Acta Soc. Bot. Pol. 2003, 72, 249–257. [Google Scholar] [CrossRef]
  252. Rubio-Moraga, A.; Candel-Perez, D.; Lucas-Borja, M.E.; Tiscar, P.A.; Viñegla, B.; Linares, J.C.; Gómez-Gómez, L.; Ahrazem, O. Genetic diversity of Pinus nigra Arn. populations in southern Spain and northern Morocco revealed by inter-simple sequence repeat profiles. Int. J. Mol. Sci. 2012, 13, 5645–5658. [Google Scholar] [CrossRef]
  253. Cengel, B.; Tayanç, Y.; Kandemir, G.; Velioglu, E.; Alan, M.; Kaya, Z. Magnitude and efficiency of genetic diversity captured from seed stands of Pinus nigra (Arnold) subsp. pallasiana in established seed orchards and plantations. New For. 2012, 43, 303–317. [Google Scholar] [CrossRef]
  254. Naydenov, K.D.; Naydenov, M.K.; Alexandrov, A.; Gurov, T.; Gyuleva, V.; Hinkov, G.; Ivanovska, S.; Tsarev, A.; Nikolić, B.; Goudiaby, V.; et al. Speciation and historical migration pattern interaction: Examples from P. nigra and P. sylvestris phylogeography. Eur. J. For. Res. 2023, 142, 1–26. [Google Scholar] [CrossRef]
  255. Perdiguero, P.; Soto, Á.; Collada, C. Comparative analysis of Pinus pinea and Pinus pinaster dehydrins under drought stress. Tree Genet. Genomes 2015, 11, 70. [Google Scholar] [CrossRef]
  256. Burban, C.; Petit, R.J. Phylogeography of maritime pine inferred with organelle markers having contrasted inheritance. Mol. Ecol. 2003, 12, 1487–1495. [Google Scholar] [CrossRef]
  257. Fallour, D.; Fady, B.; Lefèvre, F. Study on isozyme variation in Pinus pinea L.: Evidence of low polymorphism. Silvae Genet. 1997, 46, 201–207. [Google Scholar]
  258. Vendramin, G.G.; Fady, B.; González-Martínez, S.C.; Hu, F.S.; Scotti, I.; Sebastiani, F.; Soto, A.; Petit, R.J. Genetically depauperate but widespread: The case of an emblematic Mediterranean pine. Evolution 2008, 62, 680–688. [Google Scholar] [CrossRef]
  259. Ábrahám, B.; Miklóssy, I.; Kovács, E.; Tamás, É.; Mészáros, I.; Szilveszter, S.; Brezeanu, A.; Lányi, S. Genetic analysis of Pinus sylvestris L. and Pinus sylvestris forma turfosa L. using RAPD markers. Not. Sci. Biol. 2010, 2, 129–132. [Google Scholar] [CrossRef]
  260. Naugžemys, D.; Žvingila, D.; Aučina, A.; Rančelis, V. Comparison of DNA polymorphism in seedlings of Pinus sylvestris L. from different populations by RAPD markers. Biologija 2006, 52, 30–35. [Google Scholar]
  261. Szmidt, A.E.; Wang, X.R.; Lu, M.Z. Empirical assessment of allozyme and RAPD variation in Pinus sylvestris (L.) using haploid tissue analysis. Heredity 1996, 76, 412–420. [Google Scholar] [CrossRef]
  262. Yazdani, R.; Yeh, F.C.; Rimsha, J. Genomic mapping of Pinus sylvestris (L.) using random amplified polymorphic DNA markers. For. Genet. 1995, 2, 109–116. [Google Scholar]
  263. Robledo-Arnuncio, J.J.; Collada, C.; Alía, R.; Gil, L. Genetic structure of montane isolates of Pinus sylvestris L. in a Mediterranean refugial area. J. Biogeogr. 2005, 32, 595–605. [Google Scholar] [CrossRef]
  264. Hall, D.; Olsson, J.; Zhao, W.; Kroon, J.; Wennström, U.; Wang, X.-R. Divergent patterns between phenotypic and genetic variation in Scots pine. Plant Commun. 2021, 2, 100139. [Google Scholar] [CrossRef]
  265. Bruxaux, J.; Zhao, W.; Hall, D.; Curtu, A.L.; Androsiuk, P.; Drouzas, A.D.; Gailing, O.; Konrad, H.; Sullivan, A.R.; Semerikov, V.; et al. Scots pine—Panmixia and the elusive signal of genetic adaptation. New Phytol. 2024, 1–16. [Google Scholar] [CrossRef]
  266. Pawlaczyk, E.M.; Bączkiewicz, A.; Wawrzyniak, P.K.; Czołpińska, M.; Gonera, P.; Buczkowska-Chmielewska, K. Population differences in morphological and anatomical traits of Pinus mugo Turra needles from the Polish part of the Tatra Mountains. Leśne Pr. Badaw. (For. Res. Pap.) 2017, 78, 67–76. [Google Scholar] [CrossRef]
  267. Popović, V.; Šešlija Jovanović, D.; Lučić, A.; Rakonjac, L.; Jovanović, S.; Vasiljević, A.; Miljković, D. Spatial variation of morphological needle traits of silver fir (Abies alba Mill.) populations in the Balkan peninsula in relation to climatic factors. Sum. List. 2022, 146, 309–318. [Google Scholar] [CrossRef]
Table 1. Morpho-anatomical characteristics of leaves (needles) of 23 European Pinaceae species.
Table 1. Morpho-anatomical characteristics of leaves (needles) of 23 European Pinaceae species.
Morphological PropertiesAnatomical PropertiesCountryReference
Length (mm)Width (mm)Thickness (mm)Epidermis Thickness (µm)Hypodermis
Thickness (µm)
No of Resin DuctsResin Ducts
Diameter (µm)
1. Abies alba
15–302–2.5 [2]
17.9–22.02.1–2.4
(2.3)
2.1–2.417–77
(36.7–51.3)
13.0–44.5
(25.9–32.1)
(2)49.5–297.0
(133–164)
North Macedonia[22] *
10–29
(18.9)
1.3–2.4
(1.9)
0.6–1.3
(1.0)
13–26
(17.0)
(2)44.0–180.0
(110)
Poland[23] *
12–23
(16.8)
1.7–2.5
(2.1)
0.8–1.3
(1.1)
13–31
(22)
(2)70–200Poland[24] *
(150)Romania[25]
9–31
(18.8)
1–2.5(0.4–1)7–219.9–26.6(2)67–172Serbia[26]
24.71.90.618.017.9(2)104.8Greece[27] *
23.21.90.662019(2)101NE Europe[28] *
(13–25)(1.9–2.1)(0.2–0.4)(18–24) (2) Germany[29] *
2. Abies borisii-regis
≤30 [2]
(17.1–24.8)(2.0–2.2)(0.6–0.65)(18–19)(41)(2)(65–70)Bulgaria, Greece[30] *
3. Abies cephalonica
20–25 [2]
20–2118.2–20.0 Greece[31] *
20.42.21.025.821.5(1.99)91Greece[27] *
20.52.11.02622(2)86Turkey[28] *
(17.1–26.8)(1.8 –1.9)(0.8)(19–21)(40.5–45.8)(2)(60–62)Greece[30] *
4. Abies nebrodensis
10–12 [2]
14.92.20.925.121.7(2)83Italy (Sicily)[27] *
5. Abies nordmanniana
15–302–2.5 [2]
(100)Romania[25]
231.90.82319(2)78Turkey[28] *
6. Abies pinsapo
8–15 [2]
(10.6–13.3)(2.2–2.3)(1.1–1.25)(23.4–25.2)(22–23)(1.97)(130)Spain[32] *
11.92.21.22621(2)131.5Spain[28] *
7. Larix decidua
20–40 5–7.5 [33]
10–30<1 [2]
8. Larix sibirica
30–40≤1 [2]
9. Picea abies
10–20
(25)
1.0 [2]
15–25 [34]
12–24 30Romania[35]
(18.1–19.1) *
(18.6)
(1.09–2.5)(0.3–1.95)(8.1–25.5)(9.9–26.3)(2)(33.0—172.4)Serbia[26] *
9–13.30.55–0.980.9–1.2 [36]
12.06 ± 2.080.96 ± 0.11 3.1 Artificial origin[37]
10–20
(25)
1.0 [2]
10. Picea obovata
10–18 [2]
11. Picea omorika
10–20≤2 [2]
15.2–18.52.4–2.8 12.5–19.99.5–20.0 [38]
(9.0–13.3)
9.9
0.95–1.94 [39]
≤22 [34]
(12.1–19.7)
15.5–19.0
(1–2.1)
1.3–1.7
0.7–0.9 70.7–87.3 [40]
-(1.1–1.8)
1.4
(1.1–1.8)
1.4
(0.6–0.9)
0.8
28.0–165.0
(81.5)
[41]
(8–20.5)
13.6 ± 0.06
(0.9–2.2)
1.49 ± 6.32
(0.5–1.2)
0.8 ± 3.1
(16.6–29.1)
22.8 ± 0.10
(12.5–25.0)
17.5 ± 0.09
0–2
(0.74)
(16.6–145.6)
51.2 ± 0.62
Serbia[17] *
13.74 ± 2.040.87 ± 0.15 1.1 [37]
12. Picea orientalis
6–8 (10) [2]
6–12 [34]
13. Pinus brutia
120–1801–1.50.6–0.814–1862–773–1062–77
(108)
[2]
171.01.050.57 (10.1) Greece[42] *
136.11.120.68 (9.84) Greece[43] *
107.2–125.0
(116.6)
1.09–1.26 (1.17)0.70–0.84
(0.75)
(1.31–3.0)
(2.15)
Italy, plantation[18] *
122–1371.07–1.24 (7.38–9.71) Krit, Greece[44] *
150 [34]
14. Pinus cembra
50–80
(120)
1 [2]
71 Turkey[45]
80 [34]
15. Pinus halepensis
60–1000.79–1.200.5– 0.7 77–852–1077–85 [2]
(102.8–143.9)(0.81–1.03)(0.49–0.69) (4.68–8.60) Greece[42] *
920.950.58 (6.83) Greece[43] *
60–110 [34]
66 Mediterran[45]
107.4–119.2 Spain[46] *
16. Pinus heldreichii
60–1001.5–2 [2]
60–80 Serbia[47] *
60–90 [34]
51–102
(71)
1.2–1.8 (1.5)0.6–1.1 (0.8)12.5–23.6
(17.7)
3–1124–123Yugoslavia[48] *
35–113
(71–77)
Greece[49] *
50–98
(72)
Greece[50] *
- 9–1025.8–27.829–30.62–11
(5.5)
110Serbia[51] *
- 927.328.83–10
(6.1)
92.4Bosnia & Herzegovina[51] *
--927.326.6–29.22–12
(5.7)
76.3Bulgaria[51] *
60–1001.30–1.347.5–8.416–22 (4) Serbia[52] *
85–124
(97)
1.3–1.5
(1.4)
7–9
(8)
3–5
(4.5)
37.5–97.5
(67.5)
Serbia[53] *
63–116
(72–100)
1.4–1.69–10 4–1060–135Serbia[54] *
96–1041.2–1.56–8 5–6.3 Bulgaria[55] *
59.5–82.01.22–1.310.71–0.76 (2.42–3.86) Bulgaria[56] *
59–155
(83)
1.5916.6–25.0
(22.4)
17.64–1065Serbia[57] *
51–123
(73–82)
1.4–1.5 11.4–37.519–23.50–1322–51Montenegro[57] *
17. Pinus mugo
30–40
(8)
1.5–2 [2]
40–60 [34]
46.2–132.6 [58] *
46.71.40.80.4 [59] *
18. Pinus nigra
80–1601–2 [2]
ssp. nigra1.580.9722–4014–29(9.5) [2]
ssp. gočensis1.440.8522–3214–25(8.3) [2]
var. illyrica1.500.9118–3214–29(7.6) [2]
ssp. dalmatica1.761.0825–4018–34(11.1) [2]
ssp. pallasiana1.680.9918–3222–36(7.4) [2]
120–160 [34]
1291.71.0 2–16
(8.4)
Greece[60] *
7–12.6 Croatia (Dalmatia)[61] *
1241.41.0 (6) Croatia[62] *
19. Pinus peuce
70–100<1 [2]
70–1201.07.2–7.613–16≤ 26–32(2) Serbia[52] *
80–120 [34]
114 Mediterran[45] *
48–102
(71.4)
0.58–1.79
(0.86)
0.44–0.93
(0.66)
6.7–21.2
(13.3)
9–30
(16.2)
0–2
(1.98)
18.4–111.9
(52.5)
Serbia and Montenegro[63] *
20. Pinus pinaster
100–200 [2]
197 Mediterran[45] *
21. Pinus pinea
100–1501.5–2 [2]
<160 [34]
22. Pinus sylvestris
40–702 [2]
50–70 [34]
511.30.7 24.5(9.7) [64] *
45.51.40.70.3 [59] *
1.10.525.6 (9.8) [65]
651.20.7 [66]
23. Pinus uncinata
49–82
(66.4)
132–199
(160)
77–106
(91)
28–38
(32)
1–5.7 (3.6) [67] *
Mean values are given in parentheses; * population studies.
Table 2. The main terpene compounds of leaves (needles) of 23 European Pinaceae species.
Table 2. The main terpene compounds of leaves (needles) of 23 European Pinaceae species.
Main Terpene CompoundsOriginReference
123456
1. Abies alba
Bornyl acetate
> *
Camphene
>
3–Carene
=
Tricyclene
>
Limonene Artificial[95]
β-Pinene
>
Limonene/β-Phellandrene
>
Camphene
>
α-Pinene
>>
Tricyclene
>
Bornyl acetateBosnia and Herzegovina, Serbia, North Macedonia,
Bulgaria
[96]
β-Pinene
>>
α-Pinene
>
Camphene
>
Limonene
>
Bornyl acetate
>
β-PhellandreneBosnia and Herzegovina, Serbia, North Macedonia,
Bulgaria
[72]
2. Abies borisii-regis
β-Pinene
>
α-Pinene
>
Camphene >Limonene/β-Phellandrene>Tricyclene
>
(E)-Caryophyl-Bulgaria, Greece[96]
β-Pinene
>
α-Pinene
>
(E)-Caryophyl-
>
Limonene
>
Camphene
>
Bornyl acetateBulgaria, Greece[72]
3. Abies cephalonica
β-Pinene
>
α-Pinene
>>
Camphene
>
Limonene/β-Phellandrene>>Tricyclene
>
MyrceneGreece[96]
β-Pinene
>
α-Pinene
>>
Camphene
>
β-Phellandrene
>
Limonene
>
Bornyl acetateGreece[72]
4. Abies nebrodensis
β-Pinene
>>
α-Pinene
>
Camphene
>
β-Phellandrene
>
Santene
=
Bornyl acetateArtificial[97]
5. Abies nordmanniana
α-Pinene
>
β-Myrcene
>
β-Pinene
=
Camphene Georgia[98]
δ-3-Carene
>
β-Caryophyl-
>
Camphene
=
α-Chumullene
=
α-Pinene
>
p-CymeneTurkey[99]
7. Larix decidua
α-Pinene
>>>
β-Pinene
>
Myrcene
>
δ-3-Carene
>
β-Phellandrene
=
LimoneneGermany[100]
8. Larix sibirica
δ-3-Carene
>
α-Pinene
>
β-Pinene
>
β-Phellandrene
>
Germecrene D
>
TerpinoleneRussia[101]
9. Picea abies
Camphene
>
Limonene
>
α-Pinene
>
Myrcene
>
Limonene
>
TricycleneSweden[102]
10. Picea obovata
Bornyl
acetate
>>>
Camphene >Limonene >α-Pinene
>
δ-3-Carene
>
β-MyrceneSouthern Siberia[101]
11. Picea omorika
Bornyl acetate
>>>
Limonene
>
Camphene
>
Isoborneol
=
Exoborneol
>
γ-CadineneBosnia and Herzegovina[103]
Bornyl acetate
>>
Camphene
>
α-Pinene
>
Limonene
>
α-Cadinol
>
SanteneWest Serbia[104]
12. Picea orientalis
Bornyl acetate
>
Limonene/β-Phellandrene>δ-3-Carene
>
β-Pinene
>
β-Myrcene
>
α-PineneTurkey[105]
13. Pinus brutia
β-Pinene
>>
α-Pinene
>
Germacrene D
>
3-Carene Greece[106]
Tricyclene
>
β-Pinene
>
α-Pinene
>
Myrcene
=
δ-3-Carene
>
ThujeneGreece, artificial[78]
β-Pinene
>>
α-Pinene
>
β-Caryophyllene
>>
α-Humulene
>
δ-3-Carene
>
α-TerpineolMorocco[107]
α-Pinene
>>
β-Pinene
>
Myrcene Italy, artificial[90]
β-Pinene
>
α-Pinene
>>>
Limonene
>
Myrcene Portugal[108]
β-Pinene
>
α-Pinene
>>>
δ-3-Carene
>
β-Caryophyllene
>
Limonene/β-Phellan-drene Turkey[109]
β-Pinene
>>
α-Pinene
>
β-Caryophyllene
>
α-Terpineol
>
δ-3-Carene
>
MyrceneTurkey[110]
β-Pinene
>
α-Pinene
>
Germacrene D
>
β-Caryophyllene
>
Myrcene
=
α-Terpinyl acetateGreece or artificial[88]
14. Pinus cembra
α-Pinene
>>>
Limonene/β-Phellandrene
=
α-Cadinene Romania[111]
Germacrene D
=
α-Pinene
>
β-Phellandrene
>
Bicyclogermacrene
>
β-Pinene
>
δ-CadineneGreece or artificial[88]
α-Pinene
>
Limonene
>
β-Phellandrene
>
β-Pinene
>
δ-Cadinene
>
Germacrene DPoland, Artificial origin[112]
15. Pinus halepensis
α-Pinene
>
Limonene
>
β-Pinene
>
Germacrene D Greece[106]
α-Pinene
>
β-Myrcene
>
β-Caryophyllene
>
Terpinolene
>
Sabinene
>
β-PineneMorocco[107]
Myrcene
>
α-Pinene
>>
β- Caryophy-llene
>
Terpinolene
>
Sabinene
>
α-HumuleneItaly[113]
α-Pinene
>>
Myrcene
>
Sabinene
>
δ-3-Carene
>
β-Pinene
Italy
Artificial
origin
[90]
(Z)-β-Caryophyllene
>>>
α-Humullene
=
Aromadendrene
>
Myrcene
>
α-Pinene
>
SabineneAlgeria[114]
α-Pinene
>
β-Pinene
>
Myrcene
>
Limonene
>
Camphene
=
α-PhellandrenePortugal[108]
α-Pinene
>>
β-Caryophyl-
>
Caryophyllene
>
β-Myrcene
>
β-Pinene
=
α-HumuleneTurkey[109]
β-Pinene
>
α-Pinene
>
β-Caryophyllene
>
Germacrene D
>
Limonene
>
α-Terpinyl acetateTurkey[110]
β-Caryophyllene
>
β-Myrcene
>
α-Pinene
>
α-Humulene
>
β-Pinene
>
SabineneGreece or artificial[88]
(E)-Caryophyllene
>
Thunbergol
>>
Phenylethyl 3-methylbutanoate
>
α-Humulene
>
Myrcene
>
α-PineneGreece[115]
Caryophyllene
>
β-Pinene
>
α-Pinene
>
Cembrene
>
α-Humulene
>
β-phenylethyl isovalerateMorocco[116]
16. Pinus heldreichii
Germacrene D
>
Limonene
>
β-Caryophyllene
>
Serbia[117]
Limonene
>>
α-Pinene
>
Germacrene D
>
(E)-Caryophyllene
>
Aristolene
>
β-Pinene
>
Greece[118]
Limonene
>>
α-Pinene
>
Germacrene D
>
(E)-Caryophyllene
>
β-Pinene
>
δ-3-Carene
>
Greece[106]
Limonene
>
Germacrene D
>
β-Caryophyllene
>
δ-3-Carene
>
β-Pinene
>
β-MyrceneSouth West Serbia[119]
Limonene
>
Germacrene D
>
δ-3-Carene
>
α-Pinene
>
β-Pinene
>
MyrceneNatural or artificial origin[88]
Germacrene D
>
Limonene
>
α-Pinene
>
β-Caryophyllene
>
β-Pinene
North Macedonia[15]
Limonene
>>
Germacrene D
>
α-Pinene
>
(E)-Caryophyllene
>
Serbia (Kosovo)[120]
Limonene
>
Germacrene D
>
α-Pinene
>
(E)-Caryophyllene
>
β-Pinene Serbia and Montenegro[121]
Limonene
>
α-Pinene
>
Germacrene D
>
β-Pinene
>
β-Caryophy-llene
>
β-MyrceneSerbia (Kosovo)[122]
Limonene
>
α-Pinene
>
Germacrene D
>
β-Pinene
>
Myrcene
>
α-HumuleneBulgaria[115]
17. Pinus mugo
δ-3-Carene
>
α-Pinene
>
β-Pinene
>
β-Phellandrene Serbia[123]
Bornyl acetate
>
α-Terpineol
>
(E)-Caryophyl-
>
α-Cadinol
>
Terpinen-4-ol Italy[124]
α-Pinene
>
Germacrene D
>
δ-3-Carene
>
Myrcene
>
Sabinene Greece or artificial[88]
δ-3-
Carene
>
α-Pinene
>
β-Pinene
>
Limonene/β-Phellandrene
>
Germacrene D Serbia (Kosovo)[125]
δ-3-Carene
>
β-Phellandrene
>
α-Pinene
>
β-Caryophyllene
>
β-Pinene
>
Germacrene DSlovenia[126]
α-Pinene
>
δ-3-Carene
>
(E)-Caryophyllene
>
Germacrene D
>
Limonene
>
β-PineneSerbia (Kosovo)[120]
δ-3-Carene
>
α-Pinene
>
Limonene/β-Phellandrene
>
(E)-Caryophyllene
>
β-Pinene South Serbia and surroundings[84]
δ-3-Carene
>
α-Pinene
>
Limonene/β-Phellandrene
>
Terpinolene
>
Bornyl acetate
>
(E)-Caryophyllene >Southwest and South Serbia[127]
δ-3-Carene
>
β-Phellan-drene
>
α-Pinene
>
(E)-Caryophyllene
>
Bornyl acetate
>
TerpinoleneBulgaria[128]
δ-3-Carene
>
α-Pinene
=
α-Terpinolene
>
β-Phellandrene
>
β-Caryophy-llene
>
Serbia (Kosovo)[122]
α-Pinene
>
δ-3-Carene
>>
Limonene/β-Phellan-drene
>
β-Pinene
>
Camphene
>
TerpinoleneJ. Alps, Carpathians and Balkan Peninsula[129]
18. Pinus nigra
α-Pinene
>
Germacrene D
>
Limonene
>
β-Pinene Greece[106]
α-Pinene
>>
Myrcene
>
Terpinolene
>
Sabinene
>
δ-3-Carene
>
β-PinenePortugal[108]
α-Pinene
>>>
Caryophy-llene oxide
>
18-norabieta-8,11,13-triene
>
Dehydroabietal
>
Palustral
>
Abieta-8,11,13-trieneTurkey[109]
α-Pinene
>>
β-Pinene
>
Germacrene D
>
β-Caryophyllene Turkey[110]
Germacrene D
>
α-Pinene
>
β-Caryophy-llene >β-Pinene
>
α-Humulene
>
δ-Cadinene
>
Greece or artificial[88]
α-Pinene
>
Germacrene D
>>
(E)- Caryophyllene
>
β-Pinene
>
Limonene Serbia[79]
Germacrene D
>>
(E)-Caryophyllene
>
δ-Cadinene
>
α-Humulene Serbia[84]
α-Pinene
>
Germacrene D
>>
(E)- Caryophyllene
>
β-Pinene
>
Limonene Serbia[121]
α-Pinene
>
Germacrene D
>
β-Pinene
>
Limonene/β-Phellandrene South Serbia[127]
α-Pinene
>
β-Pinene
>
Camphene
>
Germacrene D
>
Limonene
>
β-Caryophyllene
>
Serbia (Kosovo)[122]
19. Pinus peuce
Isobornyl acetate
>>
Caryophyllene oxide
>
Isoborneol
>
Terpinenyl acetate
>
α-Pinene Montenegro[130]
α-Pinene
=
γ- Muuro-lene
>
δ-3-Carene
=
Sabinene
=
Bornyl acetate Serbia[117]
α-Pinene
=
β-Pinene
>
Citronellol
>
Bornyl acetate Greece[131]
α-Pinene
>
Germacrene D
>
β-Pinene
>
(E)-Caryophyllene
>
Myrcene Greece[118]
α-Pinene
>
Germacrene D
>
β-Pinene
>
(E)-Caryophyl-
>
Myrcene Greece[106]
α-Pinene
>
Bornyl acetate
>
β-Pinene
>
Camphene
>
α- Terpinyl acetate Republic North Macedonia[132]
α-Pinene
>
Germacrene D
>
β-Pinene
>
β-Caryophyllene
>
Bornyl acetate
>
CampheneNatural or artificial origin[88]
α-Pinene
>
β-Pinene
>
Germacrene D
>
α-Terpineol
>
Camphene
>
β-PhellandreneSerbia (Kosovo)[120]
α-Pinene
>>
Germacrene D
>
Camphene
>
β-Pinene
=
Bornyl acetate
>
(E)-CaryophylleneSouth West Serbia, South Serbia and Montenegro[121]
α-Pinene
>>>
β-Pinene
>
Camphene
=
Bornyl acetate
>
Germacrene D
>
Limonene/βPhellan-dreneSouth Serbia[127]
α-Pinene
>
β-Pinene
>
Camphene
>
Germacrene D
>
Limoneneβ-MyrceneSerbia (Kosovo)[122]
20. Pinus pinaster
β-Pinene
=
Germacrene D
>
α-Pinene
>
β-Caryophyllene
>
Limonene
>
δ-3-CareneFrance Artificial[133]
α-Pinene
>
Germacrene D
>
(E)-Caryophyl-
>
Cembrene
>
α-Humulene
>
δ-ElemeneGreece[118]
α-Pinene
>
Germacrene D >(E)-Caryophyllene >Cembrene
>
α-Humulene
>
Greece[106]
β- Caryophy-llene =α-Pinene
>>
γ-Muurolene
>
Guaiol
=
α-Humulene
>
D-LimoneneMorocco[107]
β- Caryo-phyllene
>
Germacrene D
>
Phenylethyl-3-methyl 1 butanoate >α-Humulene
>
δ-Cadinene Italy[113]
β-Pinene
>
α-Pinene
>>
Myrcene
>
Limonene Portugal[108]
β-Pinene
>
α-Pinene
>>
Myrcene
>
Limonene/β-Phellandrene
>
δ-3-Carene Spain[134]
Isoabienol
>
Sclarene
>
Germacrene D
>
Abietadiene
>
Abienol
>
AbietatrieneGreece or artificial origin[88]
α-Pinene
>
β-Caryophyl-
>
Abietadiene
>
β-Pinene
>
Rimuen
>
AbietatrieneTurkey[109]
α-Pinene
>>
β-Pinene
>>
β-Caryophyllene
>
β-Myrcene
>
Germacrene D
>
LimonenePortugal[135]
21. Pinus pinea
Limonene
>>
Germacrene D
>
α-Pinene
>
β-Pinene Greece[106]
Limonene
>>>
β-Phellan-drene >α-Pinene
>
Myrcene >β-Pinene Italy[113]
Limonene/β-Phellandrene >>>α-Pinene
>
β-Pinene Turkey[109]
α-Pinene
>>>
Farnesyl acetate
>
Phenylethyl isobu-turate
>
α-Eudesmol
>
β-Pinene
>
FarnesolMorocco[107]
Limonene
>>>
α-Pinene
>
Myrcene
>
β-Pinene Portugal[108]
β-Pinene
>>>
α-Pinene
>
Germacrene D
>
α-Terpineol
>
β- Caryophy-llene
>
MyrceneTurkey[110]
Limonene
>>>
Abienol
>
Sylvestrene
>
α-Pinene
>
Germacrene D
>
Methyl levopimarateGreece or artificial origin[88]
22. Pinus sylvestris
α-Pinene
>
β-Pinene
>
Limonene
>
Turkey[136]
α-Pinene
>
β-Pinene
>
δ-3-Carene
>
Myrcene
>
Limonene
>
TerpinolenePortugal[108]
18-norabieta-8,11,13-triene
>
α-Pinene
>
Caryophyllene oxide >Dehydroabietal
>
Abieta-8,11,13-riene >19-norabieta-8,11,13-trieneTurkey[109]
α-Pinene
>>
Germacrene D
=
β-Pinene
>
β- Caryophy-llene
>
δ-Cadinene Turkey[110]
α-Pinene
>>>
n.i.
>
δ-Cadinene
>
Bicycloger-macrene
>
Germacrene D
>
β-CaryophylleneGreece or artificial origin[88]
α-Pinene
>>>
δ-Cadinene
>
δ-3-Carene
=
β-Pinene
=
Germacrene D South Serbia[127]
α-Pinene
>>
β-Pinene
>
δ-Cadinene
>
Germacrene D
>
β-
Myrcene
β-Caryophy-lleneSerbia (Kosovo)[122]
23. Pinus uncinata
Bornyl acetate
>
α-Pinene
>
(E)-β-Caryo-phyllene
>
Limonene
>
Camphene
>
MyrcenePoland[137]
*—symbols refer to Petrakis et al. 2001 [118] are used to denote differences in compound amounts presented as percentages of total terpene amount: 0.1–1.0% (=); 1.1–5.0% (>); 5.1–15.0% (>>); more than 15.0% (>>>).
Table 3. The main n-alkanes in leaves (needles) of 23 European Pinaceae species.
Table 3. The main n-alkanes in leaves (needles) of 23 European Pinaceae species.
SpeciesMain n-Alkane C atomsOriginReference
Abies sp.
1. A. albaC31, C25, C28, C29Artificial[141]
C27, C29, C31, C25, C23Natural[145]
2. A. borisii-regisC29, C27, C25, C23Natural[145]
3. A. cephalonicaC29, C27, C25, C31Natural[145]
5. A. nordmannianaC31, C25, C23Artificial[141]
6. A. pinsapoC27, C18, C22Artificial[141]
Larix sp.
7. L. deciduaC31, C24, C30, C29Artificial[141]
Picea sp.
9. P. abiesC31, C24, C25, C23, C26Artificial[141]
C33, C31, C29, C35Artificial[140]
10. P. obovataC27, C33, C31, C29Artificial[140]
11. P. omorikaC27, C25, C23, C21Artificial[140]
C31, C24, C25, C22Artificial[141]
C29, C31, C27, C25Natural[146]
C29, C23, C27, C25Natural[147]
12. P. orientalisC33, C29, C27, C22, C23Artificial[140]
C31, C26, C24, C25Artificial[141]
Pinus sp.
14. Pinus cembraC31, C27, C26, C25, C24Artificial[141]
C29, C27Artificial[73]
16. P. heldreichiiC31, C24, C25, C26Artificial[141]
C23, C25, C27, C21, C29Natural[148]
C27, C29Artificial[73]
C29, C27, C25, C23, C20Natural[149]
C29Artificial[73]
18. P. nigraC31, C23, C25, C24, C22Artificial[141]
C25, C27, C29, C23Natural[150]
C29, C27Artificial[73]
C27, C25, C23, C29Natural[151]
19. P. peuceC29, C25, C27, C23, C31Artificial[73]
C29, C25Artificial[73]
C29, C25, C27, C23Natural[152]
20. P. pinasterC27Artificial[153]
C29, C27Artificial[73]
21. P. pineaC31, C29, C33, C27Artificial[142]
C24, C25, C23, C31Artificial[141]
C29, C27Artificial[73]
22. P. sylvestrisC31, C24, C25, C23Artificial[141]
C29, C25Artificial[73]
Table 4. Molecular markers of 23 European Pinaceae species.
Table 4. Molecular markers of 23 European Pinaceae species.
Molecular MarkersCountryReference
1. Abies alba
cpDNABosnia and Herzegovina and Croatia[159]
IsoenyzmesCroatia[160]
mtDNA: nad5-4No data[161]
mtDNA: nad5-4Bulgaria, North Macedonia, Italy[162]
SNPsSpain, Austria, Italy, Romania[163]
cpDNA: PCR–RFLPs, cpSSRs
mtDNA: nad5-4
Slovenia, Romania[154]
AllozymesFrance[164]
nDNA: nSSRsBulgaria[165]
nDNA: nSSRsItaly, Bulgaria, North Macedonia[166]
cpDNA: PCR–RFLPs, cpSSRs
mtDNA: nad5-4
Spain, France, Switzerland, Germany, Italy, Czech Republic, Croatia, Skovakia, Romania, Bulgaria, North Macedonia[167]
nDNA: nSSRsAndorra, Spain, Poland, Ukraine[28]
AFLPs
cpDNA: cpSSRs
Spain[168]
AllozymesMerkada’s arboretum (origin Italy, Croatia)[169]
cpDNA: PCR–RFLPs
mtDNA: nad5-4
Austria, Montenegro[155]
Allozymes
cpDNA: RFLPs (trnT, trnL, trnF)
RAPDs
Italy[170]
RAPDsForstbotanischer Garten, Eberswalde, Germany[171]
Allozymes
cpDNA: PCR–RFLPs
RAPDs
Italy[172]
cpDNA: cpSSRsGermany, Italy[173]
RAPDsNo data[174]
Allozymes
RAPDs
Romania, France[175]
2. Abies borisii-regis
mtDNA: nad5-4Greece[162]
SNPsGreece, Bulgaria[163]
cpDNA: PCR–RFLPs, cpSSRs
mtDNA: nad5-4
Greece[154]
AllozymesGreece[164]
nDNA: nSSRsGreece[166]
cpDNA: PCR–RFLPs, cpSSRsNorth Macedonia[167]
nDNA: nSSRsBulgaria[28]
AllozymesMerkada’s arboretum (origin Greece)[169]
cpDNA: PCR–RFLPs
mtDNA: nad5-4
Greece[155]
3. Abies cephalonica
mtDNA: nad5-4No data[161]
mtDNA: nad5-4Greece[163]
SNPsGreece[163]
cpDNA: PCR–RFLPs; cpSSRs
mtDNA: nad5-4
Greece[154]
AllozymesGreece[164]
nDNA: nSSRsGreece[165]
nDNA: nSSRsGreece[166]
cpDNA: PCR–RFLPs, cpSSRs
mtDNA: nad5-4
Greece[167]
nDNA: nSSRsGreece[28]
AllozymesMerkada’s arboretum (origin Greece)[169]
cpDNA: PCR–RFLPs
mtDNA: nad5-4
Greece[155]
RAPDsForstbotanischer Garten, Eberswalde, Germany[171]
cpDNA: cpSSRsGreece[173]
RAPDsNo data[174]
ISSRs
RAPDs
Greece[31]
4. Abies nebrodensis
SNPsItaly[163]
nDNA: nSSRs
AllozymesItaly[28]
cpDNA: RFLPs (trnT, trnL, trnF)
RAPDsItaly[170]
RAPDsItaly[171]
RAPDsItaly[176]
5. Abies nordmanniana
mtDNA: nad5-4No data[161]
SNPsTurkey[163]
nDNA: nSSRsTurkey, Georgia, Russia[165]
cpDNA: PCR–RFLPs, cpSSRs
mtDNA: nad5-4
Georgia[167]
nDNA: nSSRsTurkey[28]
AllozymesGazi Institute for Education (origin Turkey)[169]
RAPDsForstbotanischer Garten, Eberswalde, Germany[171]
6. Abies pinsapo
mtDNA: nad5-4No data[161]
SNPsSpain[163]
cpDNA: PCR–RFLPs, cpSSRs
mtDNA: nad5-4
Morocco[167]
nDNA: nSSRsSpain[28]
AFLPs
cpDNA: cpSSRs
Spain[168]
AllozymesNational Forest Research Institute of Spain (origin Spain)[169]
cpDNA: cpSSRs
mtDNA: nad5-4
Spain, Morocco[177]
RAPDsBotanischer Garten, Frankfurt am Main, Germany[171]
7. Larix decidua
SNPs
cpDNA: matK, trnL-intron, trnT–trnL, trnL–trnF
mtDNA: cox1-1, matR-1, nad1- b/c, nad3-1, nad5-1
RAPDs
Provenance- Québec, Canada (origin-Germany, Slovakia, Poland, Austria, Italy, France, Switzerland, Denmark, Hungary)[178]
SSRsRomania[179]
satDNAForest Park Tharandt[180]
RAPDsRomania[181]
ISSRs, AFLPs
RAPDs
Czech Republic (provenance)[182]
SSRsSwitzerland[183]
8. Larix sibirica
ISSRsRussia[184]
SNPs
cpDNA: matK, trnL-intron, trnT–trnL, trnL–trnF
mtDNA: cox1-1, matR-1, nad1- b/c, nad3-1, nad5-1
RAPDs
Provenance- Québec, Canada (origin Russia)[178]
RAPDsRussia[185]
satDNAStaatsbetrieb Sachsenforst Graupa[180]
SSRsRussia[186]
RAPDsRussia[187]
SNPsRussia[188]
SSRsRussia[189]
SNPs
cpDNA: cpSSRs
Russia[190]
9. Picea abies
cpDNA: matK, rbcL, trnH-psbA, trnL-trnF, rpl20-rps18, trnV, ycf1, ycf2Dendrological Garden of the Poznan University of Life Sciences, Poland[191]
IsoenzymesBosnia and Herzegovina[159,192,193]
RAPDsItaly[194]
RAPDsItaly[195]
RAPDsItaly[196]
RAPDsNo data[197]
RAPDsItaly[198]
RAPDsFrance, Poland, Romania, Czech Republic, Germany, Switzerland[199]
cpDNA: trnK, rbcL, trnTLF
mtDNA: nad1-2
Canadian Forest Service, Laval Arboretum of Centre d’étude de la forêt, Québec, Canada[200]
cpDNA: trnC-trnD, trnT-trnF
mtDNA: nad5-1
Botanic Garden, Kunming Institute of Botany, Yunnan, China[201]
RAPDsBritish Columbia Tree Center (Survey), Canadian Forest Service (Fredericton), and Quebec Ministry of Forestry (Bertierville) (Provenance in Canada, Romania,
Litvania and Czech Republic)
[202]
10. Picea obovata
cpDNA: trnK, rbcL, trnTLF
mtDNA: nad1-2
Holden Arboretum, Ohio, U.S.A.[200]
cpDNA: trnC-trnD, trnT-trnF
mtDNA: nad5-1
China[201]
ISSRsRussia[184]
nDNA: nSSRsRussia[203]
11. Picea omorika
IsoenzymesBosnia and Herzegovina[203]
16 loci in 12 enz.systemsBosnia and Herzegovina[204]
mtDNA: nad1-2Serbia, Bosnia and Herzegovina[205]
nDNA: nEST-SSRs
mtDNA: nad1-2
Serbia, Bosnia and Herzegovina[156]
cpDNA: trnK, rbcL, trnTLF
mtDNA: nad1-2
Arnold Arboretum, Massachusetts, U.S.A.[200]
cpDNA: trnC-trnD, trnT-trnF
mtDNA: nad5-1
Royal Botanic Garden, Kew, UK[201]
RAPDsBritish Columbia Tree Center (Survey), Canadian Forest Service (Fredericton), and Quebec Ministry of Forestry (Bertierville) (provenance in Germany)[202]
cpDNA: cpSSRsSerbia, Bosnia and Herzegovina[206]
12. Picea orientalis
cpDNA: trnK, rbcL, trnTLF
mtDNA: nad1-2
Arnold Arboretum, Massachusetts, U.S.A.[200]
cpDNA: trnC-trnD, trnT-trnF
mtDNA: nad5-1
Jordan Botanic Garden, Geneva, Switzerland[201]
IsoenzymesTurkey[207]
nDNA: nEST-SSRs, nSSRsNatural Growth, Seed Stand, Gene Conservation Forest, Turkey[208]
cpDNA: Trn, matKTurkey[209]
ITS1Arnold Arboretum, Jamaica Plain, Massachusetts, USA[210]
13. Pinus brutia
cpDNA: cpSSRsTurkey, Cyprus[211]
RAPDsSyria[212]
SNPsGreece, Turkey, Israel, Eshtaol nursery[213]
ITS-ribosomal DNATurkey[214]
ISSRs
RAPDs
Turkey, Syria, Tunisia[215]
RAPDsTurkey[216]
cpDNA: cpSSRsTurkey[217]
cpDNA: cpSSRsTurkey[218]
cpDNA: trnV-trnHGreece[219]
14. Pinus cembra
cpDNA: cpSSRsSwitzerland[220]
nDNA: nSSRs
cpDNA: cpSSRs
Poland, Slovakia, Ukraine, Romania[221]
SNPsExperimental garden, 131 of the Swiss Federal Research Institute WSL, Birmensdorf, Switzerland[222]
cpDNA: cpSSRsPoland, Slovakia, Ukraine, Romania[223]
IsozymesPoland, Slovakia[224]
cpDNA: cpSSRs
mtDNA: nad1-2
Switzerland[225]
nDNA: nSSRs
cpDNA: cpSSRs
Austria, Switzerland, France, Germany, Italy, Poland, Romania, Slovakia, Ukraine[226]
cpDNA: cpSSRsSwitzerland, Poland, Slovakia, Ukraine, Romania[227]
SNPsAustria[228]
RAPDsRomania[229]
15. Pinus halepensis
nDNA: nSSRsSpain[230]
cpDNA: cpSSRs
mtDNA: nad1-2
Spain, Morocco[177]
nDNA: nEST-SSRsCroatia[231]
cpDNA: cpSSRsTurkey, Spain, Greece, Italy, Tunisia, Morocco[211]
SNPsFrance, Tunisia, Spain, Israel, Greece, Eshtaol nursery[213]
ITS-ribosomal DNATurkey[214]
ISSRs
RAPDs
Turkey, Syria, Tunisia[215]
nDNA: nEST-SSRsSpain, Italy[232]
cpDNA: trnV-trnHGreece[219]
cpDNA: cpSSRsSpain[233]
16. Pinus heldreichii
nDNA: nEST-SSRsBelgrade parks, Belgrade, Serbia[231]
cpDNA: cpSSRsBulgaria[234]
17. Pinus mugo
Isozymes
cpDNA: cpSSRs
Poland, Germany, Austria, Italy[235]
cpDNA: matK, rbcL, trnH-psbA, trnL-trnF, rpl20-rps18, trnV, ycf1, ycf2Dendrological Garden of the Poznan University of Life Sciences, Poland[191]
cpDNA: cpSSRs
RAPDs
Czech Republics, Poland, Germany, Austria, Italy[236]
cpDNA: cpSSRsGermany, Austria, Italy, Slovenia, Ukraine, Romania, Bosnia and Herzegovina, Montenegro, Poland, Slovakia, Bulgaria,[237]
cpDNA: cpSSRsFrance, Austria,[238]
Isozymes
cpDNA: trnL-trnF
Peat bog reserve “Bor na Czerwonem”, Poland[239]
AllozymesBulgaria, Poland[240]
CMA and DAPI heterochromatinSlovenia, Bosnia and Herzeovina, Kosovo, Croatia, Montenegro, Austria[241]
nDNA: nSSRsPoland, Italy, Germany, Austria, Slovenia, Romania, Bosnia and Herzegovina, Montenegro, Bulgaria[242]
allozymesUkrania, Switzerland[243]
dhn1, dhn2, dhn4, dhn9, ef, lea, abaR, phytP, gia, gib, chcs, rpS10, eph, phy
cpDNA: trnF-trnL, trnV intron
mtDNA: nad7-1
Poland, Slovakia, Ukraine, Romania[244]
nDNA: nEST-SSRsBelgrade parks (Serbia), Belgrade, Serbia[231]
RAPDsItaly, France[245]
18. Pinus nigra
cpDNA: cpSSRs
mtDNA: nad1-2, nad5-4, nad7-1
Serbia[246]
Karyotype analysisBosnia and Herzegovina[241]
nDNA: nSSRsBulgaria[247]
cpDNA: cpSSRsAlbania, Austria, Bosnia and Herzegovina, Bulgaria, Crimean Peninsulas, Cyprus island, Spain, France, Greece, Croatia, Italy, Morocco, North Macedonia, Romania, Serbia, Montenegro, Russia, Turkey[248]
cpDNA: cpSSRs
mtDNA: nad1-2, nad5-1, nad7-1
Spain, Morocco[177]
cpDNA: cpSSRsFrance, Spain, Italy, Slovenia,[249]
cpDNA: cpSSRsBulgaria (provenance test “Siracovo”)[250]
RAPDsAustria, Turkey, Croatia[251]
ISSRsSpain, Morocco[252]
nDNA: nSSRs
cpDNA: SSRs, matK, rbcL, trnH-psbA
mtDNA: nad5–4
Italy, Turkey, Croatia, Algeria, Cyprus, France, Serbia, Austria, Romania, Ukraine, Russia, Spain[158]
nDNA: nEST-SSRsBelgrade parks (Serbia), Croatia[231]
cpDNA: cpSSRsTurkey[218]
cpDNA: trnV-trnHGreece[219]
RAPDsTurkey[253]
cpDNA: cpSSRsSpain[233]
cpDNA: cpSSRsAlbania, Austria, Bosnia and Herzegovina, Bulgaria, Crimean Peninsulas, Cyprus island, Spain, France, Greece, Croatia, Italy, Morocco, North Macedonia, Romania, Serbia, Montenegro, Russia, Turkey[254]
SNPs
cpDNA: cpSSRs
Albania, Austria, Bosnia and Herzegovina, Bulgaria, Crimean Peninsulas, Cyprus island, Spain, France, Greece, Croatia, Italy, Morocco, North Macedonia, Romania, Serbia, Montenegro, Russia, Turkey[157]
19. Pinus peuce
nDNA: nEST-SSRsSerbia[231]
20. Pinus pinaster
DehydrinSpain[255]
cpDNA: cpSSRs
mtDNA: nad1-2
Spain, Morocco[177]
cpDNA: psaA-trnS
mtDNA: nad1-2
No data[256]
nDNA: nEST-SSRsCroatia[231]
cpDNA: cpSSRsSpain[233]
21. Pinus pinea
DehydrinSpain[255]
nDNA: nSSRsPortugal, Spain, Morocco, France, Tunisia, Italy, Lebanon, Israel, Cyprus, Greece, Turkey[230]
nDNA: nEST-SSRsCroatia[231]
ISSRs
RAPDs
Turkey, Syria[215]
cpDNA: trnV-trnHGreece[219]
IsozymesSpain, Greece, Italy, Lebanon, Portugal, Turkey, France[257]
cpDNA: cpSSRsNo data[258]
cpDNA: cpSSRsSpain[233]
22. Pinus sylvestris
cpDNA: matK, rbcL, trnH-psbA, trnL-trnF, rpl20-rps18, trnV, ycf1, ycf2Dendrological Garden of the Poznan University of Life Sciences, Poland[191]
cpDNA: cpSSRsFrance[238]
Isozymes
cpDNA: trnL-trnF
Peat bog reserve “Bor na Czerwonem”, Poland[244]
allozymesUkrania, Switzerland[243]
dhn1, dhn2, dhn4, dhn9, ef, lea, abaR, phytP, gia, gib, chcs, rpS10, eph, phy
cpDNA: trnF-trnL, trnV intron
mtDNA: nad7-1
Poland, Slovakia, Ukraine, Romania[244]
nDNA: nEST-SSRsBelgrade parks, Belgrade, Serbia[231]
SNPsAustria[228]
cpDNA: cpSSRsTurkey[218]
cpDNA: trnV-trnHGreece[219]
RAPDsRomania[259]
RAPDsBotanical Garden of Vilnius University, Lithuania[260]
Allozymes
RAPDs
Sweden[261]
RAPDsSweden[262]
cpDNA: cpSSRsSpain[263]
cpDNA: cpSSRsSpain[233]
SNPsAcross Scandinavia into western Russia[264]
SNPsEntire geographic distribution of species[265]
23. Pinus uncinata
cpDNA: matK, rbcL, trnH-psbA, trnL-trnF, rpl20-rps18, trnV, ycf1, ycf2Dendrological Garden of the Poznan University of Life Sciences, Poland[191]
cpDNA: cpSSRsItaly, Spain, France, Andorra[237]
cpDNA: cpSSRsSpain, France, Switzerland, Italy[238]
CMA and DAPI heterochromatinSpain[241]
RAPDsItaly, France[245]
cpDNA: cpSSRsSpain[233]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Nikolić, B.M.; Ballian, D.; Mitić, Z.S. Autochthonous Conifers of Family Pinaceae in Europe: Broad Review of Morpho-Anatomical and Phytochemical Properties of Needles and Genetic Investigations. Forests 2024, 15, 989. https://doi.org/10.3390/f15060989

AMA Style

Nikolić BM, Ballian D, Mitić ZS. Autochthonous Conifers of Family Pinaceae in Europe: Broad Review of Morpho-Anatomical and Phytochemical Properties of Needles and Genetic Investigations. Forests. 2024; 15(6):989. https://doi.org/10.3390/f15060989

Chicago/Turabian Style

Nikolić, Biljana M., Dalibor Ballian, and Zorica S. Mitić. 2024. "Autochthonous Conifers of Family Pinaceae in Europe: Broad Review of Morpho-Anatomical and Phytochemical Properties of Needles and Genetic Investigations" Forests 15, no. 6: 989. https://doi.org/10.3390/f15060989

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop