Climate Change-Induced Growth Decline in Planted Forests of Quercus variabilis Blume near Beijing, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Climate Data
2.3. Forest Inventory Data
2.4. Data Processing
2.4.1. Hegyi Competition Index
2.4.2. Tree Growth
3. Results
3.1. Temporal Changes in Tree Growth
3.2. Effects of Meteorological Factors on Tree Growth
3.2.1. Effects of Climate Variables on BAI
3.2.2. Effects of Climate Variables on EW and LW
4. Discussion
4.1. Variations in Meteorological Conditions
4.2. Radial Growth of Q. variabilis
4.3. Climate–Growth Relationships
5. Conclusions
- 1.
- Implementing forest thinning treatments
- 2.
- Improving species composition
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheng, S.; Xu, Z.; Su, Y.; Zhen, L. Spatial and temporal flows of China’s forest resources: Development of a framework for evaluating resource efficiency. Ecol. Econ. 2010, 69, 1405–1415. [Google Scholar] [CrossRef]
- Jia, G.; Liu, Z.; Chen, L.; Yu, X. Distinguish water utilization strategies of trees growing on earth-rocky mountainous area with transpiration and water isotopes. Ecol. Evol. 2017, 7, 10640–10651. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.X.; Pradit, S.; Loh, P.S.; Wang, J.J. Storage and dynamics of soil organic carbon in allochthonous-dominated and nitrogen-limited natural and planted mangrove forests in southern Thailand. Mar. Pollut. Bull. 2024, 200, 116064. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.J.; He, C.; Qiu, L.; Li, C.; Zhang, J.S.; Meng, P. Stable isotope analysis reveals prolonged drought stress in poplar plantation mortality of the three-north shelter forest in Northern China. Agric. For. Meteorol. 2018, 252, 39–48. [Google Scholar] [CrossRef]
- Zhao, P.; Xu, C.; Zhou, M.; Zhang, B.; Ge, P.; Zeng, N. Rapid regeneration offsets losses from warming-induced tree mortality in an aspen dominated broad-leaved forest in Northern China. PLoS ONE 2018, 13, e0195630. [Google Scholar] [CrossRef] [PubMed]
- Trouvé, R.; Bontemps, J.D.; Collet, C.; Seynave, I.; Lebourgeois, F. Growth partitioning in forest stands is affected by stand density and summer drought in Sessile oak and Douglas-fir. For. Ecol. Manag. 2014, 334, 358–368. [Google Scholar] [CrossRef]
- Russo, S.E.; Davies, S.J.; King, D.A.; Tan, S. Soil-related performance variation and distributions of tree species in a Bornean rain forest. J. Ecol. 2005, 93, 879–889. [Google Scholar] [CrossRef]
- Coudun, C.; Gegout, J.; Piedallu, C.; Rameau, J. Soil nutritional factors improve models of plant species distribution: An illustration with Acer campestre (L.) in France. J. Biogeogr. 2006, 33, 1750–1763. [Google Scholar] [CrossRef]
- Lévesque, M.; Walthert, L.; Weber, P. Soil nutrients influence growth response of temperate tree species to drought. J. Ecol. 2016, 104, 377–387. [Google Scholar] [CrossRef]
- Seynave, I.; Gégout, J.C.; Hervé, J.C.; Dhôte, J.F. Is the spatial distribution of European beech (Fagus sylvatica L.) limited by its potential height growth? J. Biogeogr. 2008, 35, 1851–1862. [Google Scholar] [CrossRef]
- Foster, J.R.; Finley, A.O.; D’Amato, A.W.; Bradford, J.B.; Banerjee, S. Predicting tree biomass growth in the temperate-boreal ecotone: Is tree size, age, competition, or climate response most important? Glob. Chang. Biol. 2016, 22, 2138–2151. [Google Scholar] [CrossRef]
- Luo, D.W.; Huang, J.G.; Jiang, X.Y.; Ma, Q.Q.; Liang, H.X.; Guo, X.L.; Zhang, S.K. Effect of climate and competition on radial growth of Pinus massoniana and Schima superba in China’s subtropical monsoon mixed forest. Dendrochronologia 2017, 46, 24–34. [Google Scholar] [CrossRef]
- Huang, J.; Tardif, J.C.; Bergeron, Y.; Denneler, B.; Berninger, F.; Girardin, M.P. Radial growth response of four dominant boreal tree species to climate along a latitudinal gradient in the eastern Canadian boreal forest. Glob. Chang. Biol. 2010, 16, 711–731. [Google Scholar] [CrossRef]
- Jump, A.S.; Hunt, J.M.; Penuelas, J. Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica. Glob. Chang. Biol. 2006, 12, 2163–2174. [Google Scholar] [CrossRef]
- Babst, F.; Poulter, B.; Trouet, V.; Tan, K.; Neuwirth, B.; Wilson, R.; Carrer, M.; Grabner, M.; Tegel, W.; Levanic, T. Site- and species-specific responses of forest growth to climate across the European continent. Glob. Ecol. Biogeogr. 2013, 22, 706–717. [Google Scholar] [CrossRef]
- Matias, L.; Linares, J.C.; Sanchez-Miranda, A.; Jump, A.S. Contrasting growth forecasts across the geographical range of Scots pine due to altitudinal and latitudinal differences in climatic sensitivity. Plant Biotechnol. 2017, 33, 4106–4116. [Google Scholar] [CrossRef]
- Andrade, J.L.; Meinzer, F.C.; Goldstein, G.; Schnitzer, S.A. Water uptake and transport in Lianas and co-occurring trees of a seasonally dry tropical forest. Trees Struct. Funct. 2005, 19, 282–289. [Google Scholar] [CrossRef]
- Nie, Y.P.; Chen, H.S.; Wang, K.L.; Tant, W.; Deng, P.Y.; Yang, J. Seasonal water use patterns of woody species growing on the continuous dolostone outcrops and nearby thin soils in subtropical China. Plant Soil 2011, 341, 399–412. [Google Scholar] [CrossRef]
- Gao, W.Q.; Ni, Y.Y.; Xue, Z.M.; Wang, X.F.; Kang, F.F.; Hu, J.; Gao, Z.H.; Jiang, Z.P.; Liu, J.F. Population structure and regeneration dynamics of Quercus variabilis along latitudinal and longitudinal gradients. Ecosphere 2017, 8, e01737. [Google Scholar] [CrossRef]
- Gao, W.Q.; Liu, J.F.; Xuea, Z.M.; Zhang, Y.T.; Gao, Z.H.; Ni, Y.Y.; Wang, X.F.; Jiang, Z.P. Geographical patterns and drivers of growth dynamics of Quercus variabilis. For. Ecol. Manag. 2018, 429, 256–266. [Google Scholar] [CrossRef]
- Zhang, X.P.; Xu, X.L.; Su, W.; Zhao, X.P.; Xu, X.L. Spring precipitation effects on formation of first row of earlywood vessels in Quercus variabilis at Qinling Mountain (China). Trees 2019, 33, 457–468. [Google Scholar] [CrossRef]
- Santiago, B.; Sergio, M.; Vicente, S.; Reig, F.; Latorre, B. Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 2014, 34, 3001–3023. [Google Scholar] [CrossRef]
- Ram, S. Tree growth–climate relationships of conifer trees and reconstruction of summer season Palmer drought severity index (PDSI) at Pahalgam in Srinagar, India. Quatern. Int. 2012, 254, 152–158. [Google Scholar] [CrossRef]
- D’Orangeville, L.; Duchesne, L.; Houle, D.; Kneeshaw, D.; Côté, B.; Pederson, N. Northeastern North America as a potential refugium for boreal forests in a warming climate. Science 2016, 352, 1452–1455. [Google Scholar] [CrossRef]
- Clark, J.S.; Bell, D.M.; Hersh, M.H.; Nichols, L. Climate change vulnerability of forest biodiversity: Climate and competition tracking of demographic rates. Glob. Chang. Biol. 2011, 17, 1834–1849. [Google Scholar] [CrossRef]
- Seidel, D.; Leuschner, C.; Müller, A.; Krause, B. Crown plasticity in mixed forests–quantifying asymmetry as a measure of competition using terrestrial laser scanning. For. Ecol. Manag. 2011, 261, 2123–2132. [Google Scholar] [CrossRef]
- Jia, H.; Guan, C.; Zhang, J.; He, C.; Yin, C.; Meng, P. Drought effects on tree growth, water use efficiency, vulnerability and canopy health of Quercus variabilis-Robinia pseudoacacia mixed plantation. Front. Plant Sci. 2022, 13, 1018405–1018417. [Google Scholar] [CrossRef]
- Stokes, M.A.; Smiley, T.L. An Introduction to Tree-Ring Dating; The University of Arizona Press: Tucson, Arizona, 1996; 73p. [Google Scholar] [CrossRef]
- Arsalani, M.; Pourtahamsi, K.; Azizi, G.; Mohammadi, H. Tree-ring based December-February precipitation reconstruction in the southern Zagros Mountains, Iran. Dendrochronologia 2018, 49, 45–56. [Google Scholar] [CrossRef]
- Holmes, R.L. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull. 1983, 44, 69–75. [Google Scholar] [CrossRef]
- Hegyi, F. A Simulation Model for Managing Jack-Pine Stands; Department of Forest Yield Research, Royal College of Forestry: Stockholm, Sweden, 1974. [Google Scholar]
- Bai, X.P.; Zhang, X.L.; Li, J.X.; Duan, X.Y.; Jin, Y.T.; Chen, Z.J. Altitudinal disparity in growth of Dahurian larch (Larix gmelinii Rupr.) in response to recent climate change in northeast China. Sci. Total Environ. 2019, 670, 466–477. [Google Scholar] [CrossRef]
- Aminzadeh, M.; Or, D.; Stevens, B.; AghaKouchak, A.; Shokri, N. Upper bounds of maximum land surface temperatures in a warming climate and limits to plant growth. Earth’s Future 2023, 11, e2023EF003755. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Yu, X.X.; Jia, G.D. Water uptake by coniferous and broad-leaved forest in a rocky mountainous area of northern China. Agric. For. Meteorol. 2019, 265, 381–389. [Google Scholar] [CrossRef]
- Gao, W.Q.; Lei, D.X.; Fu, L.Y.; Duan, G.S.; Zhou, M.L.; Cao, J. Radial growth response of two oaks to climate at their disparate distribution limits in semiarid areas, Beijing, China. Ecosphere 2020, 11, e03062. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007: The Physical Science Basis; Solomon, S., Ed.; Contribution of Working Group 1 to the Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Lebourgeois, F. Climatic signal in annual growth variation of silver fir (Abies alba Mill.) and spruce (Picea abies Karst.) from the French Permanent Plot Network (RENECOFOR). Ann. For. Sci. 2007, 64, 333–343. [Google Scholar] [CrossRef]
- Bogino, S.; Fernández Nieto, M.J.; Bravo, F. Climate effect on radial growth of Pinus sylvestris at its southern and western distribution limits. Silva Fenn. 2009, 43, 609–623. [Google Scholar] [CrossRef]
- Manuel, S.H.; Vicente, R.I.; García, G. Chronologies of earlywood vessels and latewood width disentangle climate drivers of oak growth in a mild oceanic region. Dendrochronologia 2018, 51, 40–53. [Google Scholar] [CrossRef]
- Dakos, V.; Carpenter, S.R.; Brock, W.A.; Ellison, A.M.; Guttal, V.; Ives, A.R.; Scheffer, M. Methods for detecting early warnings of critical transitions in time series illustrated using simulated ecological data. PLoS ONE 2012, 7, e41010. [Google Scholar] [CrossRef]
- de Luis, M.; Čufar, K.; Di Filippo, A.; Novak, K.; Papadopoulos, A.; Piovesan, G.; Rathgeber, C.B.K.; Raventós, J.; Saz, M.A.; Smith, K.T. Plasticity in dendroclimatic response across the distribution range of Aleppo pine (Pinus halepensis). PLoS ONE 2013, 8, e83550. [Google Scholar] [CrossRef]
- Rozas, V.; Camarero, J.J.; Sangüesa-Barreda, G.; Souto, M.; García-González, I. Summer drought and ENSO-related cloudiness distinctly drive Fagus sylvatica growth near the species rear-edge in Northern Spain. Agric. For. Meteorol. 2015, 201, 153–164. [Google Scholar] [CrossRef]
- Rozas, V.; Lamas, S.; García, G.I. Differential tree-growth responses to local and large-scale climatic variation in two Pinus and two Quercus species in Northwest Spain. Ecoscience 2009, 16, 299–310. [Google Scholar] [CrossRef]
- Aloni, R. Ecophysiological implications of vascular differentiation and plant evolution. Trees 2015, 29, 1–16. [Google Scholar] [CrossRef]
- García-González, I.; Eckstein, D. Climatic signal of earlywood vessels of oak on a maritime site. Tree Physiol. 2003, 23, 497–504. [Google Scholar] [CrossRef]
- García-González, I.; Souto-Herrero, M.; Campelo, F. Ring-porosity and earlywood vessels: A review on extracting environmental information through time. IAWA J. 2016, 37, 295–314. [Google Scholar] [CrossRef]
- Fonti, P.; von Arx, G.; García-González, I.; Eilmann, B.; Sass-Klaassen, U.; Gärtner, H.; Eckstein, D. Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New Phytol. 2010, 185, 42–53. [Google Scholar] [CrossRef]
- King, G.; Fonti, P.; Nievergelt, D.; Buntgen, U.; Frank, D. Climatic drivers of hourly to yearly tree radius variations along a 6 °C natural warming gradient. Agric. For. Meteorol. 2013, 168, 36–46. [Google Scholar] [CrossRef]
- Rossi, S.; Deslauriers, A.; Griçar, J. Critical temperatures for xylogenesis in conifers of cold climates. Glob. Ecol. Biogeogr. 2008, 17, 696–707. [Google Scholar] [CrossRef]
- Bowman, D.M.; Williamson, G.J.; Keenan, R.; Prior, L.D. A warmer world will reduce tree growth in evergreen broadleaf forests: Evidence from Australian temperate and subtropical eucalypt forests. Glob. Ecol. Biogeogr. 2014, 23, 925–934. [Google Scholar] [CrossRef]
- Martin, B.D.; Anchukaitis, K.J.; Evans, M.N.; Del, R.M.; Beeckman, H.; ‘Cañellas, I. Effects of drought on xylem anatomy and water-use efficiency of two co-occurring pine species. Forests 2017, 8, 332. [Google Scholar] [CrossRef]
- Holz, A.; Hart, S.J.; Williamson, G.J.; Veblen, T.T.; Aravena, J.C. Radial growth response to climate change along the latitudinal range of the world’s southernmost conifer in southern South America. J. Biogeogr. 2018, 45, 1140–1152. [Google Scholar] [CrossRef]
- Goldblum, D. The geography of white Oak’s (Quercus alba L.) response to climatic variables in North America and speculation on its sensitivity to climate change across its range. Dendrochronologia 2010, 28, 73–83. [Google Scholar] [CrossRef]
- Camarero, J.J.; Linares, J.C.; García-Cervigón, A.I.; Batllori, E.; Martínez, I.; Gutiérrez, E. Back to the future: The responses of alpine treelines to climate warming are constrained by the current ecotone structure. Ecosystems 2017, 20, 683–700. [Google Scholar] [CrossRef]
- Tardif, J.C.; Conciatori, F.; Gagnon, P.N.; Gagnon, D. Radial growth and climate responses of white Oak (Quercus alba) and Northern red oak (Quercus rubra) at the Northern distribution limit of white Oak in Quebec, Canada. J. Biogeogr. 2010, 33, 1657–1669. [Google Scholar] [CrossRef]
- Galiano, L.; Martínez-Vilalta, J.; Lloret, F. Drought-induced multifactor decline of Scots pine in the Pyrenees and potential vegetation change by the expansion of co-occurring Oak Species. Ecosystems 2010, 13, 978–991. [Google Scholar] [CrossRef]
- Lyu, L.X.; Suvanto, S.; Njd, P.; Henttonen, H.M.; Zhang, Q.B. Tree growth and its climate signal along latitudinal and altitudinal gradients: Comparison of tree rings between Finland and the Tibetan Plateau. Biogeosciences 2017, 14, 3083–3095. [Google Scholar] [CrossRef]
- Olsen, S.L.; Töpper, J.P.; Skarpaas, O.; Vandvik, V.; Klanderud, K. From facilitation to competition: Temperature-driven shift in dominant plant interactions affects population dynamics in semi natural grasslands. Glob. Chang. Biol. 2016, 22, 1915–1926. [Google Scholar] [CrossRef]
- Rozas, V.; Garcia-Gonzalez, I. Non-stationary influence of El Nino-Southern Oscillation and winter temperature on Oak latewood growth in NW Iberian Peninsula. Int. J. Biometeorol. 2012, 56, 787–800. [Google Scholar] [CrossRef]
- Trouvé, R.; Bontemps, J.D.; Collet, C.; Seynave, I.; Lebourgeois, F. Radial growth resilience of sessile oak after drought is affected by site water status, stand density, and social status. Trees 2017, 31, 517–529. [Google Scholar] [CrossRef]
- Liu, Z.; Yu, X.; Jia, G.; Jia, J.; Lou, Y.; Zhang, K. Water use characteristics of Platycladus orientalis and Quercus variabilis in Beijing mountain area. Sci. Silv. Sin. 2016, 52, 22–30. [Google Scholar] [CrossRef]
- Wang, J.; Fu, B.; Lu, N.; Zhang, L. Seasonal variation in water uptake patterns of three plant species based on stable isotopes in the semi-arid Loess Plateau. Sci. Total Environ. 2017, 609, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Peddinti, S.R.; Kambhammettua, B.V.N.P.; Lad, R.S.; Šimůnek, J.; Gade, R.M.; Adinarayana, J. A macroscopic soil-water transport model to simulate root water uptake in the presence of water and disease stress. J. Hydrol. 2020, 587, 124940. [Google Scholar] [CrossRef]
- Richburg, J.A. Timing Treatments to the Phenology of Root Carbohydrate Reserves to Control Woody Invasive Plants. Ph.D. Thesis, University of Massachusetts Amherst, America, MA, USA, 2005. [Google Scholar]
- Maestre, F.T.; Callaway, R.M.; Valladares, F.; Lortie, C.J. Refining the stress-gradient hypothesis for competition and facilitation in plant communities. J. Ecol. 2009, 97, 199–205. [Google Scholar] [CrossRef]
- Mantgem, P.J.V.; Stephenson, N.L.; Byrne, J.C.; Daniels, L.D.; Franklin, J.F.; Fulé, P.Z.; Harmon, M.E.; Larson, A.J.; Smith, J.M.; Taylor, A.H. Widespread increase of tree mortality rates in the Western United States. Science 2009, 323, 521–524. [Google Scholar] [CrossRef] [PubMed]
- Jordan, B.; Patrick, V.; Thomas, P.; Philippe, B.; Vincent, S.; Sandrine, P.; Camille, C.; Nathalie, K. How do mixing tree species and stand density affect seasonal radial growth during drought events? For. Ecol. Manag. 2019, 432, 436–445. [Google Scholar] [CrossRef]
- Manrique-Alba, A.; Beguería, S.; Tomas-Burguera, M.; Camarero, J.J. Increased post-drought growth after thinning in Pinus nigra plantations. Forests 2021, 12, 985. [Google Scholar] [CrossRef]
- Bréda, N.; Granier, A.; Aussenac, G. Effects of thinning on soil and tree water relations, transpiration and growth in an Oak forest (Quercus petrea (Matt.) Liebl.). Tree Physiol. 1995, 15, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Loreau, M.; Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 2001, 412, 72–76. [Google Scholar] [CrossRef] [PubMed]
- Forrester, D.I. Transpiration and water-use efficiency in mixed-species forests versus monocultures: Effects of tree size, stand density and season. Tree Physiol. 2015, 35, 289–304. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Crowther, T.W.; Picard, N.; Wiser, S.; Zhou, M.; Alberti, G.; Schulze, E.D.; McGuire, A.D.; Bozzato, F.; Pretzsch, H.; et al. Positive biodiversity-productivity relationship predominant in global forests. Science 2016, 354, aaf8957. [Google Scholar] [CrossRef]
- Tian, D.Y.; He, P.; Jiang, L.C.; Gaire, D. Developing crown width model for mixed forests using soil, climate and stand factors. J. Ecol. 2024, 112, 427–442. [Google Scholar] [CrossRef]
- Richards, A.E.; Forrester, D.I.; Bauhus, J.; Scherer, L.M. The influence of mixed tree plantations on the nutrition of individual species: A review. Tree Physiol. 2010, 30, 1192–1208. [Google Scholar] [CrossRef]
- Niinemets, Ü. A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance. Ecol. Res. 2010, 25, 693–714. [Google Scholar] [CrossRef]
- Eduardo, C.; Míriam, P.; Jaime, C.; Javier, D.D.G.; Carla, F.; Lluís, C. Close-to-nature management effects on tree growth and soil moisture in Mediterranean mixed forests. For. Ecol. Manag. 2023, 549, 121457–121466. [Google Scholar] [CrossRef]
- Merlin, M.; Perot, T.; Perret, S.; Korboulewsky, N.; Vallet, P. Effects of stand composition and tree size on resistance and resilience to drought in Sessile oak and Scots pine. For. Ecol. Manag. 2015, 339, 22–33. [Google Scholar] [CrossRef]
Crown Classes | Period | No. of Trees (Disks) | Ave. Age (a) | Ave. DBH (cm) | Ave. TH (m) | Ave. CD (m) | Ave. BAI (cm2/year) | Ave. EW (cm/year) | Ave. LW (cm/year) |
---|---|---|---|---|---|---|---|---|---|
D | 1962–2020 | 213/212 | 47 | 20.2 | 15.8 | 5.23 | 17.05 | 0.361 | 1.230 |
CD | 1970–2020 | 320/315 | 45 | 17.9 | 13.7 | 3.52 | 15.71 | 0.355 | 1.156 |
S | 1979–2020 | 331/316 | 38 | 14.7 | 10.3 | 2.23 | 12.15 | 0.341 | 1.116 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keram, A.; Liu, P.; Li, G.; Liu, W.; Halik, Ü. Climate Change-Induced Growth Decline in Planted Forests of Quercus variabilis Blume near Beijing, China. Forests 2024, 15, 1086. https://doi.org/10.3390/f15071086
Keram A, Liu P, Li G, Liu W, Halik Ü. Climate Change-Induced Growth Decline in Planted Forests of Quercus variabilis Blume near Beijing, China. Forests. 2024; 15(7):1086. https://doi.org/10.3390/f15071086
Chicago/Turabian StyleKeram, Ayjamal, Puyuan Liu, Guolei Li, Wen Liu, and Ümüt Halik. 2024. "Climate Change-Induced Growth Decline in Planted Forests of Quercus variabilis Blume near Beijing, China" Forests 15, no. 7: 1086. https://doi.org/10.3390/f15071086
APA StyleKeram, A., Liu, P., Li, G., Liu, W., & Halik, Ü. (2024). Climate Change-Induced Growth Decline in Planted Forests of Quercus variabilis Blume near Beijing, China. Forests, 15(7), 1086. https://doi.org/10.3390/f15071086