Fire Resistance of One-Sided, Surface-Charred Silver Fir and European Ash Timber
Abstract
:1. Introduction
2. Materials and Methods
2.1. Small Flame Test No. 1 with Different Char Layer Thickness and Different Residual Wood Thickness
2.2. Small Flame Test No. 2 with Different Char Layer Thickness and Same Residual Wood Thickness
2.3. Infra-Red Emitter Test
2.4. Fire Resistance Test
3. Results and Discussion
3.1. Small Flame Test
3.2. Infra-Red Emitter Test
3.3. Fire Resistance Test
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- CEU; COMMU. Building and renovating. In The European Green Deal; European Commission: Luxembourg, 2019. [Google Scholar]
- Kuittinen, M.; Ludvig, A.; Weiss, G. Tools, methods and applications. In Wood in Carbon Efficient Construction; CEI-Bois: Brussels, Belgium, 2013. [Google Scholar]
- Oliver, C.D.; Nassar, N.T.; Lippke, B.R.; McCarter, J.B. Carbon, Fossil Fuel, and Biodiversity Mitigation With Wood and Forests. J. Sustain. For. 2014, 33, 248–275. [Google Scholar] [CrossRef]
- Bergman, R.; Puettmann, M.; Taylor, A.; Skog, K.E. The Carbon Impacts of Wood Products. For. Prod. J. 2014, 64, 220–231. [Google Scholar] [CrossRef]
- Ramage, M.H.; Burridge, H.; Busse-Wicher, M.; Fereday, G.; Reynolds, T.; Shah, D.U.; Wu, G.; Yu, L.; Fleming, P.; Densley-Tingley, D.; et al. The wood from the trees: The use of timber in construction. Renew. Sustain. Energy Rev. 2017, 68, 333–359. [Google Scholar] [CrossRef]
- Ott, K.; Dierks, J.; Voget-Kleschin, L. Handbuch Umweltethik; J.B. Metzler Verlag: Stuttgart, Germany, 2016. [Google Scholar]
- Österreichischen Instituts für Bautechnik. Brandschutz. In OIB Richtlinie 2; Österreichischen Instituts für Bautechnik: Vienna, Austria, 2019. [Google Scholar]
- Schober, K.P. Fassaden aus Holz, 3; Überarbeitete Auflage, ProHolz-Information; ProHolz Austria: Wien, Austria, 2018. [Google Scholar]
- Sikkema, R.; Styles, D.; Jonsson, R.; Tobin, B.; Byrne, K.A. A market inventory of construction wood for residential building in Europe—In the light of the Green Deal and new circular economy ambitions. Sustain. Cities Soc. 2023, 90, 104370. [Google Scholar] [CrossRef]
- Ebner, D.; Barbu, M.-C.; Klaushofer, J.; Čermák, P. Surface Modification of Spruce and Fir Sawn-Timber by Charring in the Traditional Japanese Method—Yakisugi. Polymers 2021, 13, 1662. [Google Scholar] [CrossRef] [PubMed]
- Ebner, D.H.; Barbu, M.-C.; Gryc, V.; Čermák, P. Surface charring of silver fir wood cladding using an enhanced traditional Japanese Yakisugi method. Bioresources 2022, 17, 2031–2042. [Google Scholar] [CrossRef]
- Ebner, D.H.; Tortora, M.; Bedolla, D.E.; Saccomano, G.; Vaccari, L.; Barbu, M.-C.; Grzybek, J.; Schnabel, T. Comparative investigation of chemical and structural properties of charred fir wood samples by Raman and FTIR spectroscopy as well as X-ray-micro-CT technology. Holzforschung 2023, 77, 734–742. [Google Scholar] [CrossRef]
- Japanese Wood Craftmanship. Available online: https://www.hughmillerfurniture.co.uk/wp-content/uploads/2016/04/WCMT-Report-Final-Online-v2.6-Spreads-Smallest-File-Size.pdf (accessed on 29 August 2023).
- Hasburgh, L.E.; Zelinka, S.L.; Bishell, A.B.; Kirker, G.T. Durability and Fire Performance of Charred Wood Siding (Shou Sugi Ban). Forests 2021, 12, 1262. [Google Scholar] [CrossRef]
- Kymäläinen, M.; Turunen, H.; Rautkari, L. Effect of Weathering on Surface Functional Groups of Charred Norway Spruce Cladding Panels. Forests 2020, 11, 1373. [Google Scholar] [CrossRef]
- Beall, F.; Eickener, H. Thermal Degradation of Wood Components: A Review of the Literature; USDA Forest Service Research Paper; Forest Products Laboratory Service: Madison, MI, USA, 1970; Volume 130. [Google Scholar]
- Tran, H.C. Experimental Data on Wood Materials. In Heat Release in Fires; Elsevier: New York, NY, USA, 1992. [Google Scholar]
- Friquin, K.L. Material properties and external factors influencing the charring rate of solid wood and glue-laminated timber. Fire Mater. 2011, 35, 303–327. [Google Scholar] [CrossRef]
- Lowden, L.A.; Hull, T.R. Flammability behaviour of wood and a review of the methods for its reduction. Fire Sci. Rev. 2013, 2, 4. [Google Scholar] [CrossRef]
- Bartlett, A.I.; Hadden, R.M.; Bisby, L.A.; Law, A. Analysis of cross-laminated timber charring rates upon exposure to nonstandard heating conditions. Fire Mater. 2015, 667–681. [Google Scholar]
- Drysdale, D. An Introduction to Fire Dynamics, 1st ed.; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar] [CrossRef]
- Bartlett, A.I.; Hadden, R.M.; Bisby, L.A. A Review of Factors Affecting the Burning Behaviour of Wood for Application to Tall Timber Construction. Fire Technol. 2018, 55, 1–49. [Google Scholar] [CrossRef]
- EN ISO 11925-2:2020-07; Prüfungen zum Brandverhalten—Entzündbarkeit von Produkten bei direkter Flammeneinwirkung—Teil 2: Einzelflammentest (translation: “Reaction to fire tests—Ignitability of products subjected to direct impingement of flamePart 2: Single-flame source test”) (ISO 11925-2:2020); Deutsche Fassung EN_ISO_11925-2:2020. Beuth Verlag GmbH: Berlin, Germany, 2020. [CrossRef]
- DIN EN 1363-1:2020-05; Feuerwiderstandsprüfungen—Teil 1: Allgemeine Anforderungen (translation: “Fire resistance tests—Part 1: General requirements”); Deutsche Fassung EN1363-1:2020. Beuth Verlag GmbH: Berlin, Germany, 2020. [CrossRef]
- Njankouo, J.M.; Dotreppe, J.C.; Franssen, J.M. Experimental study of the charring rate of tropical hardwoods. Fire Mater. 2004, 28, 15–24. [Google Scholar] [CrossRef]
- Hugi, E.; Wuersch, M.; Risi, W.; Wakili, K.G. Correlation between charring rate and oxygen permeability for 12 different wood species. J. Wood Sci. 2007, 53, 71–75. [Google Scholar] [CrossRef]
- Steinhagen, P.H. Thermal conductive properties of wood, green or dry, from −40° to +100 °C, A literature review. In USDA Forest Service General Technical Report; Forest Products Laboratory: Madison, MI, USA, 1977; Volume 9. [Google Scholar]
- Chaouch, M.; Pétrissans, M.; Pétrissans, A.; Gérardin, P. Use of wood elemental composition to predict heat treatment intensity and decay resistance of different softwood and hardwood species. Polym. Degrad. Stab. 2010, 95, 2255–2259. [Google Scholar] [CrossRef]
- White, R.H.; Dietenberger, M.A. Encyclopedia of Materials: Science and Technology; Elsevier: Amsterdam, The Netherlands, 2001; pp. 9712–9716. [Google Scholar] [CrossRef]
- Friquin, K.L.; Grimsbu, M.; Hovde, P.J. Charring rates for cross-laminated timber panels exposed to standard and parametric fires. In Proceedings of the World Conference on Timber Engineering, Trentino, Italy, 20–24 June 2010; pp. 20–24. [Google Scholar]
- Yang, T.H.; Wang, S.Y.; Tsai, M.J.; Lin, C.Y. Temperature distribution within glued laminated timber during a standard fire exposure test. Mater. Des. 2009, 30, 518–525. [Google Scholar] [CrossRef]
- Liu, J.; Fischer, E.C. Review of the charring rates of different timber species. Fire Mater. 2023, 48, 3–15. [Google Scholar] [CrossRef]
- Lin, S.; Qin, Y.; Huang, X.; Gollner, M. Use of pre-charred surfaces to improve fire performance of wood. Fire Saf. J. 2023, 136, 103745. [Google Scholar] [CrossRef]
- EN 1995-1-2; Eurocode 5: Design of Timber Structures, 1-2. General—Structural Fire Design. European Committee for Standardization: Brussels, Belgium, 2005.
- Li, X.; Yue, K.; Zhu, L.; Lv, C.; Wu, J.; Wu, P.; Li, Q.; Xu, C.; Sun, K. Relationships between wood properties and fire performance of glulam columns made from six wood species commonly used in China. Case Stud. Therm. Eng. 2024, 54, 104029. [Google Scholar] [CrossRef]
- Simpson, W.T. Equilibrium Moisture Content of Wood in Outdoor Locations in the United States and Worldwide; US Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, MI, USA, 1998; Volume 268. [Google Scholar]
Test No. 1–10 min | Test No. 2–20 min | Test No. 3–30 min | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Fir | Ash | Fir | Ash | Fir | Ash | |||||||
Ref. | 4 mm | Ref. | 3 mm | Ref. | 4 mm | Ref. | 3 mm | Ref. | 4 mm | Ref. | 3 mm | |
Original thk. (mm) | 22.0 | 19.0 | 22.0 | 17.0 | 22.0 | 19.0 | 22.0 | 19.0 | 22.0 | 20.0 | 22.0 | 20.0 |
Final thk. (mm) | 16.8 | 14.9 | 18.1 | 11.9 | 14.5 | 9.5 | 15.3 | 9.0 | 5.7 | 4.2 | 8.2 | 3.5 |
Thickness loss (mm) | 5.2 | 4.1 | 3.9 | 5.1 | 7.5 | 9.5 | 6.7 | 10.0 | 16.3 | 15.8 | 13.8 | 16.5 |
End test temp. (°C) | 619 | 637 | 612 | 627 | 600 | 630 | 605 | 618 | 625 | 640 | 621 | 623 |
Wood Species | Fir | Ash | ||||||
---|---|---|---|---|---|---|---|---|
Testing group | Ref. | 2 mm | 4 mm | 6 mm | Ref. | 1 mm | 2 mm | 3 mm |
Temperature reached (°C) | 764 | 769 | 762 | 784 | 799 | 791 | 799 | 762 |
Time till burn-through (min) | 17 | 21 | 19 | 23 | 22 | 23 | 24 | 25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ebner, D.H.; Barbu, M.-C.; Prokop, O.; Čermák, P. Fire Resistance of One-Sided, Surface-Charred Silver Fir and European Ash Timber. Forests 2024, 15, 1109. https://doi.org/10.3390/f15071109
Ebner DH, Barbu M-C, Prokop O, Čermák P. Fire Resistance of One-Sided, Surface-Charred Silver Fir and European Ash Timber. Forests. 2024; 15(7):1109. https://doi.org/10.3390/f15071109
Chicago/Turabian StyleEbner, David Hans, Marius-Catalin Barbu, Ondřej Prokop, and Petr Čermák. 2024. "Fire Resistance of One-Sided, Surface-Charred Silver Fir and European Ash Timber" Forests 15, no. 7: 1109. https://doi.org/10.3390/f15071109
APA StyleEbner, D. H., Barbu, M. -C., Prokop, O., & Čermák, P. (2024). Fire Resistance of One-Sided, Surface-Charred Silver Fir and European Ash Timber. Forests, 15(7), 1109. https://doi.org/10.3390/f15071109