Guardians of the Forest: The Impact of Indigenous Peoples on Forest Loss in Chile
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Determining Deforestation Variables
Name | Source | Units | Descriptive |
---|---|---|---|
Forest cover loss * | Hansen et al., 2022 [38] | Categorical | Deforested = 1; Non-deforested = 0 |
Indigenous lands | Ministerio de Desarrollo Social de Chile, 2015 [39] | Categorical | Indigenous land = 1; Non-Indigenous land = 0 |
Protected area | Protected Planet, 2020 [40] | Categorical | Protected area = 1; Non-protected area = 0 |
Roads | Biblioteca del Congreso Nacional de Chile, 2020 [61] | Categorical | Within 5 km of a road = 1 More than 5 km away from a road = 0 |
Railways | Biblioteca del Congreso Nacional de Chile, 2020 [61] | Categorical | Within 10 km of a railway = 1; More than 10 km away = 0 |
Waterways | Humanitarian OpenStreetMap Team, 2021 [62] | Categorical | Within 1 km of a waterway = 1; More than 1 km away = 0 |
Urban areas | Biblioteca del Congreso Nacional de Chile, 2020 [61] | Categorical | Within 10 km of an urban area = 1; More than 10 km away = 0 |
Agricultural land | Xiong et al., 2017 [41] | Categorical | Within 500 m of agriculture = 1; More than 500 m away = 0 |
Slope | Jarvis et al., 2008 [63] | Degrees | Min = 0, max = 82.6, mean = 5.6 |
Elevation | Jarvis et al., 2008 [63] | Meter | Min = −22, max = 3732, mean = 743.9 |
2.3. Spatial Analysis
2.4. Logistic Regression Analysis
2.5. Model Validation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Neruda, P. Memoirs; Farrar, Straus and Giroux: New York, NY, USA, 1977. [Google Scholar]
- Henríquez-piskulich, P.A.; Schapheer, C.; Vereecken, N.J.; Villagra, C. Agroecological Strategies to Safeguard Insect Pollinators in Biodiversity Hotspots: Chile as a Case Study. Sustainability 2021, 13, 6728. [Google Scholar] [CrossRef]
- Kalin, M.; Marquet, P.; Marticorena, C.; Simonetti, J.; Cavieres, L. Chilean winter rainfall-Valdivian forests. In Hotspots: Earth’s Biological Richest and Most Endangered Terrestrial Ecoregions; CEMEX: Mexico City, Mexico, 2004; pp. 99–103. Available online: https://www.researchgate.net/publication/283359219_Chilean_winter_rainfall-Valdivian_forests (accessed on 30 May 2024).
- Villalobos-Barrantes, H.M.; Meriño, B.M.; Walter, H.E.; Guerrero, P.C. Independent Evolutionary Lineages in a Globular Cactus Species Complex Reveals Hidden Diversity in a Central Chile Biodiversity Hotspot. Genes 2022, 13, 240. [Google Scholar] [CrossRef] [PubMed]
- Garnett, S.T.; Burgess, N.D.; Fa, J.E.; Fernández-Llamazares, Á.; Molnár, Z.; Robinson, C.J.; Watson, J.E.M.; Zander, K.K.; Austin, B.; Brondizio, E.S.; et al. A spatial overview of the global importance of Indigenous lands for conservation. Nat. Sustain. 2018, 1, 369–374. [Google Scholar] [CrossRef]
- United States Bureau of Democracy, Human. Rights. and Labour. Report on Human Rights Practices 2006: Chile. 2006. Available online: https://2001-2009.state.gov/g/drl/rls/hrrpt/2006/78884.htm (accessed on 30 May 2024).
- National Institute of Statistics INE. Síntesis de Resultados Censo. 2018. Available online: https://www.censo2017.cl/descargas/home/sintesis-de-resultados-censo2017.pdf (accessed on 15 May 2021).
- Myers, N.; Mittermeler, R.A.; Mittermeler, C.G.; da Fonseca, G.A.B.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, A.; Rocha, C.; Montagna, P. Data Collection with Indigenous People: Fieldwork Experiences from Chile; Springer: Berlin/Heidelberg, Germany, 2020; pp. 105–127. [Google Scholar] [CrossRef]
- “Biodiversity Hotspots Defined”. Critical Ecosystem Partnership Fund. Conservation International. Available online: https://www.cepf.net/our-work/biodiversity-hotspots/hotspots-defined (accessed on 10 August 2020).
- PROFOR. Chile: Forests, Trees and Conservation in Degraded Lands. 2017. Available online: https://www.profor.info/knowledge/chile-forests-trees-and-conservation-degraded-lands (accessed on 15 May 2021).
- Millalen, P.; Nahuelpan, H.; Hofflinger, A.; Martinez, E. COVID-19 and Indigenous peoples in Chile: Vulnerability to contagion and mortality. AlterNative Int. J. Indig. Peoples 2020, 16, 399–402. [Google Scholar] [CrossRef]
- Newbold, J. Balancing economic considerations and the rights of Indigenous people. The Mapuche people of Chile. Sustain. Dev. 2004, 12, 175–182. [Google Scholar] [CrossRef]
- FAO; FILAC. Forest Governance by Indigenous and Tribal Peoples. An Opportunity for Climate Action in Latin America and the Caribbean; FAO: Rome, Italy, 2021. [Google Scholar] [CrossRef]
- Hiriart-Bertrand, L.; Silva, J.A.; Gelcich, S. Challenges and opportunities of implementing the marine and coastal areas for Indigenous peoples policy in Chile. Ocean Coast. Manag. 2020, 193, 105233. [Google Scholar] [CrossRef]
- Miranda, A.; Altamirano, A.; Cayuela, L.; Lara, A.; González, M. Native forest loss in the Chilean biodiversity hotspot: Revealing the evidence. Reg. Environ. Change 2017, 17, 285–297. [Google Scholar] [CrossRef]
- Kim, D.H.; Sexton, J.O.; Townshend, J.R. Accelerated deforestation in the humid tropics from the 1990s to the 2000s. Geophys. Res. Lett. 2015, 42, 3495–3501. [Google Scholar] [CrossRef]
- Ellis, E.C. Anthropogenic transformation of the terrestrial biosphere. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2011, 369, 1010–1035. [Google Scholar] [CrossRef]
- Aylwin, J.; Fuenzalida, N.Y.; Sánchez, R. Pueblo Mapuche y Recursos Forestales en Chile: Devastación y Conservación en un Contexto de Globalización Económica; Observatorio Ciudadano IWGIA: Copenhagen, Denmark, 2013. [Google Scholar]
- Neira Ceballos, Z.; MAlarcón, A.; Jelves, I.; Ovalle, P.; Conejeros, A.M.; Verdugo, V. Espacios ecológico-culturales en un territorio mapuche de la región de la Araucanía en Chile. Chungará 2012, 44, 313–323. [Google Scholar] [CrossRef]
- Bello, Á. Migración, identidad y comunidad mapuche en Chile: Entre utopismos y realidades. Asun. Indígenas 2002, 3, 40–47. [Google Scholar]
- Andrade, M.J. La lucha por el territorio mapuche en Chile: Una cuestión de pobreza y medio ambiente. L’Ordinaire Amériques 2019, 225. [Google Scholar] [CrossRef]
- Becerra, S.; Merino, M.E.; Webb, A.; Larrañaga, D. Recreated practices by Mapuche women that strengthen place identity in new urban spaces of residence in Santiago, Chile. Ethn. Racial Stud. 2018, 41, 1255–1273. [Google Scholar] [CrossRef]
- ODEPA. Panorama de La Agricultura Chilena (Chilean Agriculture Overview). 2019. Available online: www.odepa.gob.cl (accessed on 15 May 2021).
- Urbina, M.A.; Guerrero, P.C.; Jerez, V.; Lisón, F.; Luna-Jorquera, G.; Matus-Olivares, C.; Ortiz, J.C.; Pavez, G.; Pérez-Alvarez, M.J.; Riquelme-Bugueño, R.; et al. Extractivist policies hurt Chile’s ecosystems. Science 2021, 373, 1208–1209. [Google Scholar] [CrossRef]
- Bidegain, G. From cooperation to confrontation: The Mapuche movement and its political impact, 1990–2014. In Social Movements in Chile: Organization, Trajectories, and Political Consequences; Springer: Berlin/Heidelberg, Germany, 2017; pp. 99–129. [Google Scholar]
- TUBS. Image: Araucania in Chile (Equirectangular Projection) (Zoom).svg—Wikimedia Commons. CC BY-SA 3.0 Attribution-ShareAlike. 15 November 2011. Available online: https://ia.wikipedia.org/wiki/File:Araucania_in_Chile_(equirectangular_projection)_(zoom).svg (accessed on 20 April 2023).
- Heilmayr, R.; Echeverría, C.; Fuentes, R.; Lambin, E.F. A plantation-dominated forest transition in Chile. Appl. Geogr. 2016, 75, 71–82. [Google Scholar] [CrossRef]
- LandMark. LandMarkMap Global Platform of Indigenous and Community Lands. 2021. Available online: https://www.landmarkmap.org/ (accessed on 20 April 2023).
- Armenteras, D.; Gast, F.; Villareal, H. Andean forest fragmentation and the representativeness of protected natural areas in the eastern Andes, Colombia. Biol. Conserv. 2003, 113, 245–256. [Google Scholar] [CrossRef]
- Dale, V.H.; Pearson, S.M. Quantifying habitat fragmentation due to land use change in Amazonia. In Tropical Forest Remnants; Bierregaard, L., Ed.; The University of Chicago Press: Chicago, IL, USA, 1997; pp. 400–414. [Google Scholar]
- Echeverria, C.; Coomes, D.; Salas, J.; María Rey-Benayas, J.; Lara, A.; Newton, A. Rapid deforestation and fragmentation of Chilean Temperate Forests. Biol. Conserv. 2006, 130, 481–494. [Google Scholar] [CrossRef]
- Iida, S.; Nakashizuka, T. Forest fragmentation and its effect on species diversity in sub-urban coppice forests in Japan. Forest Ecol. Manag. 1995, 73, 197–210. [Google Scholar] [CrossRef]
- Noss, R. Forest fragmentation in the southern Rocky Mountains. Landsc. Ecol. 2000, 16, 371–372. [Google Scholar] [CrossRef]
- Meza, L.E. Mapuche Struggles for Land and the Role of Private Protected Areas in Chile. J. Lat. Am. Geogr. 2009, 8, 149–163. [Google Scholar] [CrossRef]
- Youkee, M.; Indigenous Chileans Defend Their Land against Loggers with Radical Tactics. The Guardian. 1 August 2018. Available online: https://www.theguardian.com/world/2018/jun/14/chile-mapuche-Indigenous-arson-radical-environmental-protest (accessed on 1 July 2022).
- National Tourism Service of Araucanía. ARAUCANÍA Biosphere Reserve National Parks and other Wild Protected Areas; National Tourism Service of Araucanía: Temuco, Chile, 2018; Available online: http://www.araucania.cl/images/descargas/PARQUE%20NACIONAL%20ARAUCAN%C3%8DA%20INGL%C3%89S.pdf (accessed on 1 April 2024).
- Hansen, M.C.; Potapov, R.; Moore, M.; Hancher, S.A. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed]
- Ministerio de Desarrollo Social de Chile. Catastro Tierras y Aguas Indígenas 2015: Títulos de Merced. Sistema Integrado de Información—Corporación Nacional de Desarrollo Indígena. 2015. Available online: http://siic.conadi.cl/ (accessed on 2 February 2023).
- Protected Planet. Protected Areas Chile. 2020. Available online: https://www.protectedplanet.net/ (accessed on 20 May 2022).
- Xiong, J.; Thenkabail, P.; Tilton, J.; Gumma, M.; Teluguntla, P.; Congalton, R.; Yadav, K.; Dungan, J.; Smith, C.; Massey, R.; et al. NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Global Food Security-support Analysis Data (GFSAD) Cropland Extent 2015 Africa 30 m V001 [Dataset]; Processes DAAC: Boulder, CO, USA, 2017. [Google Scholar] [CrossRef]
- Felicisimo, A.; Francés, E.; María Fernández López, J.; Varas, J. Modeling the potential distribution of forests with GIS. Photogramm. Eng. Remote Sens. 2002, 68, 455–461. Available online: https://www.researchgate.net/publication/232423522_Modeling_the_potential_distribution_of_forests_with_GIS (accessed on 2 June 2021).
- Pir Bavaghar, M. Deforestation modelling using logistic regression and GIS. J. For. Sci. 2015, 61, 193–199. [Google Scholar] [CrossRef]
- Geist, H.; Lambin, E. Proximate Causes and Underlying Driving Forces of Tropical Deforestation. BioScience 2002, 52, 143–150. Available online: https://academic.oup.com/bioscience/article/52/2/143/341135?login=false (accessed on 12 May 2023). [CrossRef]
- Arekhi, M. Modeling spatial pattern of deforestation using GIS and logistic regression: A case study of northern Ilam forests, Ilam province, Iran. Afr. J. Biotechnol. 2013, 10, 16236–16249. [Google Scholar] [CrossRef]
- Bax, V.; Francesconi, W.; Quintero, M. Spatial modeling of deforestation processes in the Central Peruvian Amazon. J. Nat. Conserv. 2016, 29, 79–88. [Google Scholar] [CrossRef]
- Kaimowitz, D.; Mendez, P.; Puntodewo, A.; Vanclay, J. Spatial regression analysis of deforestation in Santa Cruz, Bolivia. In Land Use and Deforestation in the Amazon; Wood, C.H., Porro, R., Eds.; University Press of Florida: Gainesville, FL, USA, 2002; pp. 41–65. ISBN 0-8130-2464-1. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=df7b01a1ad798679fad25ea0e30e87200a51a491 (accessed on 12 May 2023).
- Kucsicsa, G.; Dumitrică, C. Spatial modelling of deforestation in Romanian Carpathian Mountains using GIS and Logistic Regression. J. Mt. Sci. 2019, 16, 1005–1022. [Google Scholar] [CrossRef]
- Ludeke, A.K.; Maggio, R.C.; Reid, L.M. An analysis of anthropogenic deforestation using logistic regression and GIS. J. Environ. Manag. 1990, 31, 247–259. [Google Scholar] [CrossRef]
- Sharma, P.; Thapa, R.B.; Matin, M.A. Examining forest cover change and deforestation drivers in Taunggyi District, Shan State, Myanmar. Environ. Dev. Sustain. 2020, 22, 5521–5538. [Google Scholar] [CrossRef]
- Armenteras, D.; Espelta, J.M.; Rodríguez, N.; Retana, J. Deforestation dynamics and drivers in different forest types in Latin America: Three decades of studies (1980–2010). Glob. Environ. Change 2017, 46, 139–147. [Google Scholar] [CrossRef]
- Gibbs, H.K.; Ruesch, A.S.; Achard, F.; Clayton, M.K.; Holmgren, P.; Ramankutty, N.; Foley, J.A. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc. Natl. Acad. Sci. USA 2010, 107, 16732–16737. [Google Scholar] [CrossRef] [PubMed]
- Clapp, R.A. Tree Farming and Forest Conservation in Chile: Do Replacement Forests Leave Any Originals Behind? Soc. Nat. Resour. 2010, 14, 341–356. [Google Scholar] [CrossRef]
- FAO. Global Forest Resources Assessment. 2010. Available online: https://www.fao.org/3/i1757e/i1757e.pdf (accessed on 3 January 2021).
- Zamorano-Elgueta, C.; Rey Benayas, J.M.; Cayuela, L.; Hantson, S.; Armenteras, D. Native forest replacement by exotic plantations in southern Chile (1985–2011) and partial compensation by natural regeneration. For. Ecol. Manag. 2015, 345, 10–20. [Google Scholar] [CrossRef]
- Mamingi, N.; Chomitz, K.M.; Gray, D.A.; Lambin, E.F. Spatial Patterns of Deforestation in Cameroon and Zaire; Policy Research Department, The World Bank: Washington, DC, USA, 1996. [Google Scholar]
- Echeverria, C.; Coomes, D.A.; Hall, M.; Newton, A.C. Spatially explicit models to analyze forest loss and fragmentation between 1976 and 2020 in southern Chile. Ecol. Model. 2008, 212, 439–449. [Google Scholar] [CrossRef]
- Minetos, D.; Polyzos, S. Deforestation processes in Greece: A spatial analysis by using an ordinal regression model. For. Policy Econ. 2010, 12, 457–472. [Google Scholar] [CrossRef]
- Arriagada, R.A.; Echeverria, C.M.; Moya, D.E. Creating Protected Areas on Public Lands: Is There Room for Additional Conservation? PLoS ONE 2016, 11, e0148094. [Google Scholar] [CrossRef]
- Miteva, D.A.; Pattanayak, S.K.; Ferraro, P.J. Do Biodiversity Policies Work? The Case for Conservation Evaluation 2.0. Nat. Balance 2014, 250–284. [Google Scholar] [CrossRef]
- Biblioteca del Congreso Nacional de Chile. Mapas Vectoriales. 2020. Available online: https://www.bcn.cl/siit/mapas_vectoriales/index_html (accessed on 21 May 2021).
- Humanitarian OpenStreetMap Team (2021) Chile Waterways. Available online: https://data.humdata.org/dataset/hotosm_chl_waterways (accessed on 21 May 2021).
- Jarvis, A.; Reuter, H.; Nelson, A.; Guevara, E. Hole-Filled Seamless SRTM Data V4, International Centre for Tropical Agriculture (CIAT). 2008. Available online: http://srtm.csi.cgiar.org (accessed on 21 April 2021).
- Esri. How Slope Works. Online ArcGIS Pro Documentation. 2024. Available online: https://pro.arcgis.com/en/pro-app/latest/tool-reference/3d-analyst/how-slope-works.htm (accessed on 2 April 2024).
- Asner, G.P.; Broadbent, E.N.; Oliveira, P.J.C.; Keller, M.; Knapp, D.E.; Silva, J.M.M. Condition and fate of logged forests in the Brazilian Amazon. Proc. Natl. Acad. Sci. USA 2006, 103, 12947–12950. [Google Scholar] [CrossRef]
- Chomitz, K.M.; Gray, D.A. Roads, land use, and deforestation: A spatial model applied to Belize. World Bank Econ. Rev. 1996, 10, 487–512. [Google Scholar] [CrossRef]
- Deininger, K.; Minten, B. Determinants of forest cover and the economics of protection: An application to Mexico. Am. J. Agric. Econ. 2021, 84, 943–960. [Google Scholar] [CrossRef]
- Mertens, B.; Lambin, E.F. Spatial modeling of deforestation in southern Cameroon: Spatial disaggregation of diverse deforestation processes. Appl. Geogr. 1997, 17, 143–162. [Google Scholar] [CrossRef]
- Chomitz, K.; Thomas, T.S. Geographic Patterns of Land Use and Land Intensity in the Brazilian Amazon; World Bank Publications: Washington, DC, USA, 2001. [Google Scholar] [CrossRef]
- Nepstad, D.; Carvalho, G.; Barros, A.C.; Alencar, A.; Capobianco, J.P.; Bishop, J.; Moutinho, P.; Lefebvre, P.; Silva, U.L.; Prins, E. Road paving, fire regime feedbacks, and the future of Amazon forests. For. Ecol. Manag. 2001, 154, 395–407. [Google Scholar] [CrossRef]
- Alves, D.S. Space-time dynamics of deforestation in Brazilian Amazônia. Int. J. Remote Sens. 2002, 23, 2903–2908. [Google Scholar] [CrossRef]
- Barber, C.P.; Cochrane, M.A.; Souza, C.M.; Laurance, W.F. Roads, deforestation, and the mitigating effect of protected areas in the Amazon. Biol. Conserv. 2014, 177, 203–209. [Google Scholar] [CrossRef]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, 3rd ed.; Assessing the Accuracy of Remotely Sensed Data; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar] [CrossRef]
- Linkie, M.; Smith, R.J.; Leader-Williams, N. Mapping and predicting deforestation patterns in the lowlands of Sumatra. Biodivers. Conserv. 2004, 13, 1809–1818. [Google Scholar] [CrossRef]
- Bartosik, A.; Whittingham, H. Evaluating safety and toxicity. In The Era of Artificial Intelligence, Machine Learning, and Data Science in the Pharmaceutical Industry; Elsevier: Amsterdam, The Netherlands, 2021; pp. 119–137. [Google Scholar] [CrossRef]
- Schneider, L.C.; Gil Pontius, R. Modeling land-use change in the Ipswich watershed, Massachusetts, USA. Agric. Ecosyst. Environ. 2001, 85, 83–94. [Google Scholar] [CrossRef]
- Hu, X.; Wu, C.; Hong, W.; Qiu, R.; Li, J.; Hong, T. Forest cover change and its drivers in the upstream area of the Minjiang River, China. Ecol. Indic. 2014, 46, 121–128. [Google Scholar] [CrossRef]
- Gayen, A.; Saha, S. Deforestation probable area predicted by logistic regression in Pathro river basin: A tributary of Ajay River. Spat. Inf. Res. 2018, 26, 1–9. [Google Scholar] [CrossRef]
- Salas-Eljatib, C.; Fuentes-Ramirez, A.; Gregoire, T.G.; Altamirano, A.; Yaitul, V. A study on the effects of unbalanced data when fitting logistic regression models in ecology. Ecol. Indic. 2018, 85, 502–508. [Google Scholar] [CrossRef]
- Soto, P.J.; Costa, G.A.; Feitosa, R.Q.; Ortega, M.X.; Bermudez, J.D.; Turnes, J.N. Domain-adversarial neural networks for deforestation detection in tropical forests. IEEE Geosci. Remote Sens. Lett. 2022, 19, 2504505. [Google Scholar] [CrossRef]
- Zanella, L.; Folkard, A.M.; Blackburn, G.A.; Carvalho, L.M. How well does random forest analysis model deforestation and forest fragmentation in the Brazilian Atlantic forest? Environ. Ecol. Stat. 2017, 24, 529–549. [Google Scholar] [CrossRef]
- Nagelkerke, N.J.D. A note on a general definition of the coefficient of determination. Biometrika 1991, 78, 691–692. [Google Scholar] [CrossRef]
- Eastman, J.R. Guide to GIS and Image Processing; Clark University: Worcester, MA, USA, 2006. [Google Scholar]
- Hosmer, D.W.; Lemeshow, S.; Sturdivant, R.X. Applied Logistic Regression, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2013; pp. 1–510. [Google Scholar] [CrossRef]
- Jaimovich, D.; Toledo, F. The Grievances of a Failed Reform: Chilean Land Reform and Conflict with Indigenous Communities. Munich Personal RePEc Archive (MPRA) No. 109136. 2021. Available online: https://mpra.ub.uni-muenchen.de/109136/ (accessed on 21 May 2024).
- Belmar, A.; Larrain, S.; Schaeffer, C.; Sustentable, C. Conflicts over Water in Chile: Between Human Rights and Market Rules; Chile Sustentable: Santiago de Chile, Chile, 2010. [Google Scholar]
- The World Bank. Urban Population (% of Total Population)—Chile|Data. 2020. Available online: https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS?locations=CL (accessed on 15 April 2022).
Distance Variables | Distance Tested |
---|---|
Roads | 1–25 km, with 5 km steps |
Railways | 1–25 km, with 5 km steps |
Waterways | 1–25 km, with 5 km steps |
Urban areas | 1–20 km, with 5 km steps |
Agricultural land | 0.5–15 km, with 0.5 (0.5–2 km)/1 km steps (2–15 km) |
Variables | β | S.E. | Sig | Exp(B) |
---|---|---|---|---|
Slope *** | −0.016 | 0.005 | <0.001 | 0.966 |
Roads | 0.452 | 0.317 | 0.154 | 1.571 |
Railway *** | 0.402 | 0.088 | <0.001 | 1.495 |
Rivers * | −0.255 | 0.084 | 0.002 | 0.775 |
Elevation *** | −0.001 | 0.000 | <0.001 | 0.998 |
Indigenous lands *** | −1.189 | 0.131 | <0.001 | 0.324 |
Protected areas *** | −1.511 | 0.125 | <0.001 | 0.200 |
Urban areas *** | 0.000 | 0.000 | <0.001 | 1.000 |
Agriculture *** | 1.209 | 0.224 | <0.001 | 3.350 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vocht, R.; Dias, E. Guardians of the Forest: The Impact of Indigenous Peoples on Forest Loss in Chile. Forests 2024, 15, 1208. https://doi.org/10.3390/f15071208
Vocht R, Dias E. Guardians of the Forest: The Impact of Indigenous Peoples on Forest Loss in Chile. Forests. 2024; 15(7):1208. https://doi.org/10.3390/f15071208
Chicago/Turabian StyleVocht, Robin, and Eduardo Dias. 2024. "Guardians of the Forest: The Impact of Indigenous Peoples on Forest Loss in Chile" Forests 15, no. 7: 1208. https://doi.org/10.3390/f15071208
APA StyleVocht, R., & Dias, E. (2024). Guardians of the Forest: The Impact of Indigenous Peoples on Forest Loss in Chile. Forests, 15(7), 1208. https://doi.org/10.3390/f15071208