The Impact of Restoration on Epigeic Arthropods in the Important European Forest Biotopes of the Danube Delta
Abstract
:1. Introduction
2. Materials and Methods
- Study area 1 (SA1)—biotope = willow–poplar floodplain forest (main species: Salix fragilis (Linne, 1753), S. alba (Linne, 1753); age of growth, 35 years); altitude, 114 m.a.s.l.; geographic coordinates (47°53′31.1″ N 17°30′25.4″ E). The area served as a reference location where no restoration was taking place.
- Study area 2 (SA2)—biotope = willow–poplar floodplain forest (main species: Salix alba (Linne, 1753), S. fragilis (Linne, 1753), Populus x canadensis (Moench, 1750), Populus x canescens (Aiton, 1750); age of growth, 30 years); altitude, 119 m.a.s.l.; geographic coordinates (47°54′36.0″ N 17°27′51.3″ E). The area served as a reference location where no restoration was taking place.
- Study area 3 (SA3)—biotope = ash–alder floodplain forests (main species: Acer negundo (Linne, 1753), Fraxinus excelsior (Linne, 1753); age of growth, 15 years); altitude, 121 m.a.s.l.; geographic coordinates (47°58′24.5″ N 17°22′09.7″ E). During the year 2021, the arms of the Danube Delta were undergoing restoration, and simulated floods were carried out.
- Study area 4 (SA4)—biotope = Pannonian poplar forest (poplar) (main species: Acer negundo (Linne, 1753), Fraxinus excelsior (Linne, 1753); age of growth, 20 years); altitude, 121 m.a.s.l.; geographic coordinates (47°58′27.4″ N 17°22′09.1″ E). During the year 2021, the arms of the Danube Delta were undergoing restoration, and simulated floods were carried out.
- Study area 5 (SA5)—biotope = poplar nursery (main species: Populus alba (Linne, 1753); age of growth, 2 years); altitude, 118 m.a.s.l.; geographic coordinates (47°53′51.5″ N 17°27′25.5″ E). During the years 2020–2021, the area was undergoing restoration, e.g., the grass was mowed among the trees.
- Study area 6 (SA6)—biotope = poplar nursery (main species: Populus alba (Linne, 1753); age of growth, 2 years); altitude, 127 m.a.s.l.; geographic coordinates (47°58′22.9″ N 17°22′02.9″ E). During the years 2020–2021, the area was undergoing restoration, e.g., the grass was mowed among the trees.
- Study area 7 (SA7)—biotope = willow–poplar floodplain forest (main species: Populus x canadensis (Moench, 1750); age of growth, 15 years); altitude, 114 m.a.s.l.; geographic coordinates (47°53′31.5″ N 17°30′30.2″ E). During the year 2021, the arms of the Danube Delta were undergoing restoration, and simulated floods were carried out.
- Study area 8 (SA8)—biotope = willow–poplar floodplain forest forest (main species: Populus x canadensis (Moench, 1750), Salix fragilis (Linne, 1753); age of growth, 30 years); altitude, 115 m.a.s.l., geographic coordinates (47°53′28.5″ N 17°28′56.9″ E). During the year 2021, the arms of the Danube Delta were undergoing restoration, and simulated floods were carried out.
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Panin, N. The Black Sea Coastal Zone—An overview. Geo-Eco-Marina 2005, 11, 21–40. [Google Scholar]
- Penka, M.; Vyskot, M.; Klimo, E.; Vašíček, F. Floodplain Forest Ecosystem. 1. Before Water Management Measures; Academia-Elsevier: Praha, Czech Republic; Amsterdam, The Netherlands, 1985; 466p. [Google Scholar]
- Hughes, F.M.R.; del Tánago, M.G.; Mountford, J.O. A Goal-Oriented Approach to Forest Landscape Restoration. In World Forests; Springer: Dordrecht, The Netherlands, 2012; 422p. [Google Scholar]
- Boháč, J.; Jahnová, Z. Environmental Indicators; Springer: Dordrecht, The Netherlands, 2015; 419p. [Google Scholar]
- Directive, H. Natura 2000. Council Directive 92/43/EEC on the conservation of natural habitats and of wild fauna and flora. Off. J. Eur. Union 1992, 206, 50. [Google Scholar]
- Langraf, V.; Petrovičová, K. Seasonal Dynamics of Epigeic Arthropods under the Conditions of Ecological Management of the Triticum aestivum Crop. Agriculture 2024, 14, 482. [Google Scholar] [CrossRef]
- Langraf, V.; Petrovičová, K.; Schlarmannová, J. The Compositionand Seasonal Variation of EpigeicArthropods in Different Types ofAgricultural Crops and Their Ecotones. Agronomy 2021, 11, 2276. [Google Scholar] [CrossRef]
- Brygadyrenko, V.V. Community structure oflitter invertebrates of forest belt ecosystems in the Ukrainian steppe zone. Int. J. Environ. Res. 2015, 9, 1183–1192. [Google Scholar]
- Brygadyrenko, V.V. Influence of tree crowndensity and density of the herbaceous layer on the structure of litter macrofauna of deciduous forestsof Ukraine’s steppe zone. Visnyk Dnipropetr. Univ. Biol. Ecol. 2015, 23, 134–148. [Google Scholar]
- Lavelle, P.; Mathieu, J.; Spain, A.; Brown, G.; Fragoso, C.; Lapied, E.; De Aquino, A.; Barois, I.; Barrios, E.; Barros, M.E.; et al. Soil macroinvertebrate communities: A world-wide assessment. Glob. Ecol. Biogeogr. 2022, 31, 1261–1276. [Google Scholar] [CrossRef]
- Litavský, J.; Stašiov, S.; Svitok, M.; Michalková, E.; Majzlan, O.; Žarnovičan, H.; Fedor, P. Epigean communities of harvestmen (Opiliones) in Pannonian Basin floodplain forests: An interaction with environmental parameters. Biologia 2018, 73, 753–763. [Google Scholar] [CrossRef]
- Majzlan, O.; Hazuchová, A. Abundance and seasonal dynamics of grasshoppers (Opiliones) in the soil of floodplain forests of Podunajska. Folia Faun. Slov. 1997, 2, 47–51. [Google Scholar]
- Merino-Sáinz, I.; Anadón, A. Local distribution patterns of harvestmen (Arachnida: Opiliones) in a northern temperate biosphere reserve landscape: Influence of orientation and soil richness. Belg. J. Zool. 2015, 145, 3–16. [Google Scholar] [CrossRef]
- Krumpálova, Z. Epigeic spiders (Araneae) of the one Middle Danube floodplain forest. Bologia 2002, 57, 161–169. [Google Scholar]
- Litavský, J.; Majzlan, O.; Stašiov, S.; Svitok, M.; Fedor, P. The associations between ground beetle (Coleoptera: Carabidae) communities and environmental condition in floodplain forests in the Pannonian Basin. Eur. J. Entomol. 2021, 118, 14–23. [Google Scholar] [CrossRef]
- Igondová, E.; Majzlan, O. Assemblages of ground beetles (Carabidae, Coleoptera) in peatland habitat, surrounding dry pine forests and meadows. Folia Oecol. 2015, 42, 21–28. [Google Scholar]
- Stork, N.E. The Role of Ground Beetles in Ecological and Environmental Studies; Intercept: UK, 1990; 424p. [Google Scholar]
- Porhajašová, J.; Šustek, Z.; Noskovič, J.; Urminská, J.; Ondrišík, P. Spatial changes and succession of carabid communities (Coleoptera, Insecta) in seminatural wetland habitats of the Žitava river foodplain. Folia Oecol. 2010, 37, 75–85. [Google Scholar]
- Stašiov, S.; Litavský, J.; Majzlan, O.; Svitok, M.; Fedor, P. Influence of Selected Environmental Parameters on Rove Beetle (Coleoptera: Staphylinidae) Communities in Central European Floodplain Forests. Wetlands 2021, 41, 115. [Google Scholar] [CrossRef]
- Schierwater, B.; DeSalle, R. Invertebrate Zoology: A Tree of Life Approach; CRC Press: London, UK, 2021; 644p. [Google Scholar]
- Ter Braak, C.J.F.; Šmilauer, P. Canoco Reference Manual and User’s Guide: Software for Ordination, Version 5.0; Microcomputer Power: Ithaca, NY, USA, 2012. [Google Scholar]
- R, Version 4.1.3; The R Foundation for Statistical Computing: Vienna, Austria, 2020.
- Hadley, D. Habits and Traits of Rove Beetles, Family Staphylinidae; ThoughtCo., 2020; p. 25. Available online: https://www.thoughtco.com/rove-beetles-family-staphylinidae-1968139 (accessed on 2 January 2020).
- Čejka, T.; Beracko, P.; Matečný, I. The impact of the Gabčíkovo hydroelectric power barrier on the Danube floodplain environment the results of long-term monitoring of land snail fauna. Environ. Monit. Assess. 2019, 192, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Adis, J.; Junk, W.J. Terrestrial invertebrates inhabiting lowland river floodplains of Central Amazonia and Central Europe: A review. Freshw. Biol. 2002, 47, 711–731. [Google Scholar] [CrossRef]
- Bunn, S.E.; Arthington, A.H. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environ. Manag. 2002, 30, 492–507. [Google Scholar] [CrossRef]
- Čejka, T.; Hamerlík, L. Land snails as indicators of soil humidity in Danubian woodland (SW Slovakia). Pol. J. Ecol. 2009, 57, 741–747. [Google Scholar]
- Stašiov, S. Ecology of Soil Organisms (Soil Animals); Technická Univerzita vo Zvolene: Zvolen, Slovakia, 2015; 150p. [Google Scholar]
- Rainio, J.; Niemela, J. Ground Beetles (Coleoptera: Carabidae) as Bioindicators. Biodivers. Conserv. 2003, 12, 487–506. [Google Scholar] [CrossRef]
- Dobrovodská, M.; Kanka, R.; Gajdoš, P.; Krištín, A.; Kollár, J.; Stašiov, S.; Lieskovsky, J. Factors affecting the biodiversity of historical landscape elements: Detailed analyses from three case studies in Slovakia. Environ. Monit. Assess. 2023, 195, 674. [Google Scholar] [CrossRef]
- Dobrovodská, M.; Kanka, R.; David, S.; Kollár, J.; Špulerová, J.; Štefunková, D.; Mojses, M.; Petrovič, F.; Krištín, A.; Stašiov, S.; et al. Assessment of the biocultural value of traditional agricultural landscape on a plot-by-plot level: Case studies from Slovakia. Biodivers. Conserv. 2019, 28, 2615–2645. [Google Scholar] [CrossRef]
- Kalivoda, H.; Petrovič, F.; Kalivodová, E.; Kürthy, A. Influence of the landscape structure on the butterfly (Lepidoptera, Hesperioidea and Papilionoidea) and bird (Aves) taxocoenoses in Vel’ké Leváre (SW Slovakia). Ekol. Bratisl. 2010, 29, 337–359. [Google Scholar] [CrossRef]
- Machar, I.; Šimek, P.; Schlossárek, M.; Pechanec, V.; Petrovič, F.; Brus, J.; Špinlerová, Z.; Seják, J. Comparison of bird diversity between temperate floodplain forests and urban parks. Urban For. Urban Green. 2022, 67, 127427. [Google Scholar] [CrossRef]
- Fazekašová, D.; Petrovič, F.; Fazekaš, J.; Štofejová, L.; Baláž, I.; Tulis, F.; Tóth, T. Soil contamination in the problem areas of agrarian Slovakia. Land 2021, 10, 1248. [Google Scholar] [CrossRef]
- Fazekašová, D.; Bobul’ovská, L. Soil organisms as an Indicator of Quality and Environmental Stress in the Soil Ecosystem. Zivotn. Prostr. 2012, 46, 103–106. [Google Scholar]
- Shupe, H.A.; Jensen, K.; Oldeland, J.; Ludewig, K. Droughts decrease and floods increase carbon sequestration rates of Quercus robur in hardwood floodplain forests. Trees For. People 2022, 9, 100294. [Google Scholar] [CrossRef]
- Saccá, M.L.; Caracciolo, A.B.; Di Lenola, M.; Grenni, P. Ecosystem services provided by soil microorganisms. In Soil Biological Communities and Ecosystem Resilience; Springer: Cham, Switzerland, 2017; pp. 1–24. [Google Scholar]
- Adhikari, K.; Hartemink, A.E. Linking soils to ecosystem services—A global review. Geoderma 2016, 262, 101–111. [Google Scholar] [CrossRef]
- Sticht, C.; Schrader, S.; Giesemann, A.; Weigel, H.J. Atmospheric CO2 enrichment induces life strategy- and species-specificresponses of collembolans in the rhizosphere of sugar beet and winter wheat. Soil Biol. Biochem. 2008, 40, 1432–1445. [Google Scholar] [CrossRef]
- Poff, N.L.; Zimmermann, J.K.H. Ecological responses to altered flow regimes: A literature review to inform the science and management of environmental flows. Freshw. Biol. 2009, 55, 194–205. [Google Scholar] [CrossRef]
- Poff, N.L.; Olden, J.D.; Merritt, D.M.; Pepin, D.M. Homogenization of regional river dynamics by dams and global biodiversity implications. Proc. Natl. Acad. Sci. USA 2007, 104, 5732–5737. [Google Scholar] [CrossRef] [PubMed]
- Zuzulová, V.; Šiška, B. Identification of drought in western Slovakia by palmer drought severity index (PDSI). Acta Reg. Et Environ. 2017, 1, 7–14. [Google Scholar] [CrossRef]
- Vale, V.S.; Schiavini, I.; Araujo, G.M.; Gussons, A.E.; Lopes, S.F.; Oliveira, A.P.; Prado, J.A.; Arantes, C.S.; Dias-Neto, O.C. Effects of reduced water flow in a riparian forest community: A conservation approach. J. Trop. Sci. 2015, 27, 13–24. [Google Scholar]
- Pazourkova, E.; Krecek, J.; Bitušík, P.; Chvojka, P.; Kamasová, L.; Senoo, T.; Špaček, J.; Stuchlik, E. Impacts of an extreme flood on the ecosystem of a headwater stream. J. Limnol. 2021, 80, 1998. [Google Scholar]
- Ungermanová, L.; Dockalova, K.; Stuchlik, E.; Senoo, T.; Horecký, J.; Kopáček, J.; Chvojka, P.; Tatosova, J.; Bitušík, P.; Fjellheim, A. Littoral macroinvertebrates of acidified lakes in the Bohemian Forest. Biologia 2014, 69, 1190–1201. [Google Scholar] [CrossRef]
- Dhiman, R.C.; Gandhi, J.N. Testing of mechanical and chemical methods for weed control in poplar (Populus deltoides Bartr.) nurseries. J. Tree Sci. 2011, 30, 60–67. [Google Scholar]
- Sixto, H.; Grau, J.M.; GarcmHa BaudmHn, J.M. Assessment of the effect of broadspectrum preemergence herbicides in poplar nurseries. Crop. Prot. 2001, 20, 121–126. [Google Scholar] [CrossRef]
Taxa | SA1 | SA2 | SA3 | SA4 | SA5 | SA6 | SA7 | SA8 | Σ | % | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N | % | N | % | N | % | N | % | N | % | N | % | N | % | N | % | |||
Scorpionida | 1 | 0.01 | 19 | 0.28 | 6 | 0.05 | 143 | 1.34 | 2 | 0.04 | 4 | 0.07 | 9 | 0.09 | 1 | 0.01 | 185 | 0.28 |
Opilionida | 123 | 1.17 | 244 | 3.65 | 90 | 0.78 | 93 | 0.87 | 81 | 1.59 | 24 | 0.43 | 425 | 4.46 | 209 | 2.96 | 1289 | 1.93 |
Araneida | 498 | 4.74 | 224 | 3.35 | 670 | 5.79 | 706 | 6.61 | 469 | 9.18 | 479 | 8.52 | 1108 | 11.6 | 440 | 6.23 | 4594 | 6.88 |
Acarina | 865 | 8.23 | 233 | 3.49 | 94 | 0.81 | 64 | 0.6 | 71 | 1.39 | 111 | 1.97 | 593 | 6.22 | 740 | 10.5 | 2771 | 4.15 |
Isopoda | 1266 | 12.1 | 955 | 14.3 | 958 | 8.28 | 1062 | 9.94 | 741 | 14.5 | 948 | 16.9 | 1207 | 12.7 | 876 | 12.4 | 8013 | 12 |
Lithobiomorpha | 382 | 3.63 | 231 | 3.46 | 294 | 2.54 | 300 | 2.81 | 213 | 4.17 | 242 | 4.3 | 439 | 4.61 | 304 | 4.3 | 2405 | 3.6 |
Julida | 756 | 7.19 | 445 | 6.66 | 220 | 1.9 | 272 | 2.55 | 337 | 6.6 | 360 | 6.4 | 435 | 4.57 | 535 | 7.57 | 3360 | 5.03 |
Polydesmida | 189 | 1.8 | 220 | 3.29 | 68 | 0.59 | 46 | 0.43 | 49 | 0.96 | 68 | 1.21 | 322 | 3.38 | 177 | 2.51 | 1139 | 1.71 |
Glomerida | 395 | 3.76 | 229 | 3.43 | 165 | 1.43 | 333 | 3.12 | 114 | 2.23 | 103 | 1.83 | 382 | 4.01 | 67 | 0.95 | 1788 | 2.68 |
Collembola | 4218 | 40.1 | 1566 | 23.4 | 4418 | 38.2 | 2917 | 27.3 | 1246 | 24.4 | 961 | 17.1 | 2218 | 23.3 | 1925 | 27.3 | 19,469 | 29.2 |
Dermaptera | 70 | 0.67 | 73 | 1.09 | 117 | 1.01 | 122 | 1.14 | 265 | 5.19 | 215 | 3.82 | 3 | 0.03 | 4 | 0.06 | 869 | 1.3 |
Orthoptera | 23 | 0.22 | 26 | 0.39 | 127 | 1.1 | 175 | 1.64 | 79 | 1.55 | 287 | 5.1 | 174 | 1.83 | 11 | 0.16 | 902 | 1.35 |
Hemiptera | 288 | 2.74 | 646 | 9.66 | 315 | 2.72 | 310 | 2.9 | 265 | 5.19 | 168 | 2.99 | 337 | 3.54 | 251 | 3.55 | 2580 | 3.86 |
Coleoptera | 748 | 7.12 | 908 | 13.6 | 3202 | 27.7 | 3393 | 31.8 | 493 | 9.65 | 823 | 14.6 | 640 | 6.72 | 837 | 11.9 | 11,044 | 16.5 |
Hymenoptera | 688 | 6.55 | 665 | 9.95 | 825 | 7.13 | 748 | 7 | 684 | 13.4 | 829 | 14.8 | 1237 | 13 | 687 | 9.73 | 6363 | 9.53 |
Σ individuals | 10,510 | 100 | 6684 | 100 | 11,569 | 100 | 10,684 | 100 | 5109 | 100 | 5622 | 100 | 9529 | 100 | 7064 | 100 | 66,771 | 100 |
SA1 | SA2 | SA3 | SA4 | SA5 | SA6 | SA7 | SA8 | |
---|---|---|---|---|---|---|---|---|
Shannon-Wiener index (H) | 2.042 | 2.308 | 1.817 | 1.99 | 2.279 | 2.301 | 2.336 | 2.207 |
Equitability | 0.7539 | 0.8525 | 0.671 | 0.7349 | 0.8416 | 0.8497 | 0.8625 | 0.8151 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrovičová, K.; David, S.; Langraf, V. The Impact of Restoration on Epigeic Arthropods in the Important European Forest Biotopes of the Danube Delta. Forests 2024, 15, 1347. https://doi.org/10.3390/f15081347
Petrovičová K, David S, Langraf V. The Impact of Restoration on Epigeic Arthropods in the Important European Forest Biotopes of the Danube Delta. Forests. 2024; 15(8):1347. https://doi.org/10.3390/f15081347
Chicago/Turabian StylePetrovičová, Kornélia, Stanislav David, and Vladimír Langraf. 2024. "The Impact of Restoration on Epigeic Arthropods in the Important European Forest Biotopes of the Danube Delta" Forests 15, no. 8: 1347. https://doi.org/10.3390/f15081347
APA StylePetrovičová, K., David, S., & Langraf, V. (2024). The Impact of Restoration on Epigeic Arthropods in the Important European Forest Biotopes of the Danube Delta. Forests, 15(8), 1347. https://doi.org/10.3390/f15081347