Phytoremediation Potential of Urban Trees in Mitigating Air Pollution in Tehran
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Site
2.2. Selected Trees
Trees Species | Vegetative Characteristics |
---|---|
Morus alba | Indigenous to Iran, fast-growing, deciduous, medium-sized, 4–10 m height, dense spreading with spherical crown, generally wider than the height, leaves light green, simple or compound, 5–15 cm long, dentate, palmate-veined, coriaceous and caduceus, Tehran is one of its distribution areas, and alternate phyllotaxis |
Platanus orientalis | Indigenous to Iran, 20–30 m height, open spherical crown with wide shade, leaves simple, deeply lobed, and palmate or maple-like, 14–16 cm long, petiole swollen at the base, deciduous, and Tehran is one of its distribution areas |
Fraxinus excelsior | Indigenous to Iran, deciduous tree, 5–7 m height, trunk up to 2 m diameter, leaves opposite, 20–35 cm long, pinnately compound leaf containing 7–13 leaflets with coarsely serrated margins, elliptic to narrowly elliptic, 3–12 cm long and 0.8–3 cm wide and sessile on the leaf rachis, containing a round crown of erect-spreading branches, Tehran is one of its distribution areas, and seldom shrubs |
Pinus eldarica | Non-indigenous, medium-sized tree, reaching 20–35 m tall with a trunk diameter of up to 1 m. The evergreen leaves are needle-like, slender, 10–16 cm long, dark green to yellow–green, long bunch leaves and 2–5 of them in a pod, monopodial growth, with long and short broad branches with different crowns, mostly cylindrical, and Tehran is one of its distribution areas. |
2.3. Measurement of Ambient Air Pollutant Gases
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Antenozio, M.L.; Caissutti, C.; Caporusso, F.M.; Marzi, D.; Brunetti, P. Urban air pollution and plant tolerance: Omics responses to ozone, nitrogen oxides, and particulate matter. Plants 2024, 13, 2027. [Google Scholar] [CrossRef] [PubMed]
- Gong, C.; Xian, C.; Wu, T.; Liu, J.; Ouyang, Z. Role of urban vegetation in air phytoremediation: Differences between scientific research and environmental management perspectives. Urban Sustain. 2023, 3, 24. [Google Scholar] [CrossRef]
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021; Available online: https://apps.who.int/iris/handle/10665/345329 (accessed on 28 May 2023).
- Picone, N.; Esposito, A.; Emmanuel, R.; Buccolieri, R. Potential impacts of green infrastructure on NOx and PM10 in different local climate zones of Brindisi, Italy. Sustainability 2024, 16, 229. [Google Scholar] [CrossRef]
- Fitzky, A.C.; Sandén, H.; Karl, T.; Fares, S.; Calfapietra, C.; Grote, R.; Saunier, A.; Rewald, B. The interplay between ozone and urban vegetation—BVOC emissions, ozone deposition, and tree ecophysiology. Front. For. Glob. Change 2019, 2, 50. [Google Scholar] [CrossRef]
- Fidanova, S.; Zhivkov, P.; Roeva, O. InterCriteria analysis applied on air pollution influence on morbidity. Mathematics 2022, 10, 1195. [Google Scholar] [CrossRef]
- European Environment Agency. Air Quality in Europe 2022. 2023. Available online: https://www.eea.europa.eu/publications/air-quality-in-europe-2022/air-quality-in-europe-2022 (accessed on 2 November 2023).
- Jiang, Y.; Huang, J.; Li, G.; Wang, W.; Wang, K.; Wang, J.; Wei, C.; Li, Y.; Deng, F.; Baccarelli, A.A.; et al. Ozone pollution and hospital admissions for cardiovascular events. Eur. Heart J. 2023, 44, 1622–1632. [Google Scholar] [CrossRef] [PubMed]
- Petrus, M.; Popa, C.; Bratu, A.-M. Determination of ozone concentration levels in urban environments using a laser spectroscopy system. Environments 2024, 11, 9. [Google Scholar] [CrossRef]
- Zhang, B.; Weuve, J.; Langa, K.M.; D’Souza, J.; Szpiro, A.; Faul, J.; Mendes de Leon, C.; Gao, J.; Kaufman, J.D.; Sheppard, L.; et al. Comparison of particulate air pollution from different emission sources and incident dementia in the US. JAMA Intern. Med. 2023, 183, 1080–1089. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Josey, K.; Kamareddine, L.; Caine, M.C.; Liu, T.; Mickley, L.J.; Cooper, M.; Dominici, F. Excess of COVID-19 cases and deaths due to fine particulate matter exposure during the 2020 wildfires in the United States. Sci. Adv. 2021, 7, eabi8789. [Google Scholar] [CrossRef]
- Lavigne, É.; Bélair, M.A.; Do, M.T.; Stieb, D.M.; Hystad, P.; van Donkelaar, A.; Martin, R.V.; Crouse, D.L.; Crighton, E.; Chen, H.; et al. Maternal exposure to ambient air pollution and risk of early childhood cancers: A population-based study in Ontario, Canada. Environ. Int. 2017, 100, 139–147. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, Y.; Talarico, R.; Qiu, X.; Schwartz, J.; Fell, D.B.; Oskoui, M.; Lavigne, E.; Messerlian, C. Prenatal exposure to ambient air pollution and cerebral palsy. JAMA Netw. Open. 2024, 7, e2420717. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Q.; Ji, Y.; Huang, Z.; Liu, C.; Dai, A.; Zhu, Z. Influence of urban-road green space plant configurations on NO2 concentrations in Nanjing city during winter. Forests 2023, 14, 1892. [Google Scholar] [CrossRef]
- Tefera, Y.; Soebarto, V.; Bishop, C.; Kandulu, J.; Williams, C. A scoping review of urban planning decision support tools and processes that account for the health, environment, and economic benefits of trees and greenspace. Int. J. Environ. Res. Public Health 2024, 21, 48. [Google Scholar] [CrossRef] [PubMed]
- Dewald, J.R.; Southworth, J.; Szapocznik, J.; Lombard, J.L.; Brown, S.C. Greening the urban landscape: Assessing the impact of tree-planting initiatives and climate influences on Miami-Dade County’s greenness. Remote Sens. 2024, 16, 157. [Google Scholar] [CrossRef]
- Zhu, H.; Nan, X.; Kang, N.; Li, S. How much visual greenery can street trees generate from a humanistic perspective? An attempt to quantify the canopy green view index based on tree morphology. Forests 2024, 15, 88. [Google Scholar] [CrossRef]
- Cheng, P.; Wu, L.; Zhang, H.; Zhou, J. Inclusion of root water absorption and reinforcement in upper bound limit stability analysis of vegetated slopes. Comput. Gheotech. 2024, 169, 106227. [Google Scholar] [CrossRef]
- Setälä, H.; Viippola, V.; Rantalainen, A.-L.; Pennanen, A.; Yli-Pelkonen, V. Does urban vegetation mitigate air pollution in northern conditions? Environ. Pollut. 2013, 183, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.; Wang, Y.; Zhou, D.; Gu, Z.; Meng, X. Effects of urban vegetation on microclimate and building energy demand in winter: An evaluation using coupled simulations. Sustain. Cities Soc. 2024, 102, 105199. [Google Scholar] [CrossRef]
- Patel, S. The potential for urban vegetation to mitigate ambient air pollution threats to public health. Topophilia 2020, 53–63. [Google Scholar] [CrossRef]
- Mandal, M.; Popek, R.; Przybysz, A.; Roy, A.; Das, S.; Sarkar, A. Breathing fresh air in the city: Implementing avenue trees as a sustainable solution to reduce particulate pollution in urban agglomerations. Plants 2023, 12, 1545. [Google Scholar] [CrossRef]
- Franceschi, E.; Moser-Reischl, A.; Rahman, M.A.; Pauleit, S.; Pretzsch, H.; Rötzer, T. Crown shapes of urban trees-their dependences on tree species, tree age and local environment, and effects on ecosystem services. Forests 2022, 13, 748. [Google Scholar] [CrossRef]
- Huang, Y.D.; Hou, R.W.; Liu, Z.Y.; Song, Y.; Cui, P.Y.; Kim, C.N. Effects of wind direction on the airflow and pollutant dispersion inside a long street Canyon. Aerosol Air Qual. Res. 2019, 19, 1152–1171. [Google Scholar] [CrossRef]
- Nemitz, E.; Vieno, M.; Carnell, E.; Fitch, A.; Steadman, C.; Cryle, P.; Holland, M.; Morton, R.D.; Hall, J.; Mills, G.; et al. Potential and limitation of air pollution mitigation by vegetation and uncertainties of deposition-based evaluations. Phil. Trans. R. Soc. A 2020, 378, 20190320. [Google Scholar] [CrossRef]
- Yousefian, F.; Faridi, S.; Azimi, F.; Aghaei, M.; Shamsipour, M.; Yaghmaeian, K.; Hassanvand, M.S. Temporal variations of ambient air pollutants and meteorological influences on their concentrations in Tehran during 2012–2017. Sci. Rep. 2020, 10, 292. [Google Scholar] [CrossRef]
- Heger, M.; Sarraf, M. Air Pollution in Tehran: Health Costs, Sources, and Policies; Environment and Natural Resources Global Practice Discussion Paper, 2019, No. 6; World Bank Group: Washington, DC, USA, 2019; Available online: http://documents.worldbank.org/curated/en/160681527012587818/Air-Pollution-in-Tehran-Health-Costs-Sources-and-Policies-Discussion-Paper (accessed on 12 August 2024).
- Yousefi, H. Sights of Tehran; Gisoom Pub.: Tehran, Iran, 2001; p. 80. [Google Scholar]
- Ghahraman, A. Color Flora of Iran; Botany Section; Publication of the Research Institute of Forests and Pastures: Tehran, Iran, 1988. [Google Scholar]
- SAS Institute. SAS/STAT Software, Version 9.1 for Windows; SAS Institute: Cary, NC, USA, 2003. [Google Scholar]
- Wikipedia: The Free Encyclopedia; Wikipedia Foundation, Inc: 2024. Available online: https://en.wikipedia.org/wiki/Main_Page (accessed on 31 July 2024).
- Masoudi, M.; Asadi-Fard, E.; Rastegar, M. Status and prediction of ozone as an air pollutant in Ahvaz City, Iran. Casp. J. Environ. Sci. 2011, 12, 215–224. [Google Scholar]
- Grylls, T.; van Reeuwijk, M. How trees affect urban air quality: It depends on the source. Atmos. Environ. 2022, 290, 119275. [Google Scholar] [CrossRef]
- Yang, J.; Chang, Y.; Yan, P. Ranking the suitability of common urban tree species for controlling PM2.5 pollution. Atmos. Pollut. Res. 2015, 6, 267–277. [Google Scholar] [CrossRef]
- Duan, X.; Gu, H.; Lam, S.S.; Sonne, C.; Lu, W.; Li, H.; Chen, X.; Peng, W. Recent progress on phytoremediation of urban air pollution. Chemosphere 2024, 349, 140821. [Google Scholar] [CrossRef]
- Jiang, Y.; Huang, R.; Yan, X.; Jia, C.; Jiang, S.; Long, T. Mulberry for environmental protection. Pak. J. Bot. 2017, 49, 781–788. [Google Scholar]
- Dadkhah-Aghdash, H.; Rasouli, M.; Rasouli, K.; Salimi, A. Detection of urban trees sensitivity to air pollution using physiological and biochemical leaf traits in Tehran, Iran. Sci. Rep. 2022, 12, 15398. [Google Scholar] [CrossRef]
- Khosropour, E.; Attarod, P.; Shirvany, A.; Pypker, T.G.; Bayramzadeh, V.; Hakimi, L.; Moeinaddini, M. Response of platanus orientalis leaves to urban pollution by heavy metals. J. For. Res. 2019, 30, 1437–1445. [Google Scholar] [CrossRef]
- Prigioniero, A.; Zuzolo, D.; Niinemets, Ü.; Postiglione, A.; Mercurio, M.; Izzo, F.; Trifuoggi, M.; Toscanesi, M.; Scarano, P.; Tartaglia, M.; et al. Particulate matter and polycyclic aromatic hydrocarbon uptake in relation to leaf surface functional traits in Mediterranean evergreens: Potentials for air phytoremediation. J. Hazard. Mater. 2022, 435, 129029. [Google Scholar] [CrossRef] [PubMed]
- Baraldi, R.; Chieco, C.; Neri, L.; Facini, O.; Rapparini, F.; Morrone, L.; Rotondi, A.; Carriero, G. An integrated study on air mitigation potential of urban vegetation: From a multi-trait approach to modeling. Urban For. Urban Green. 2019, 41, 127–138. [Google Scholar] [CrossRef]
- Neves de Lima, D.V.; Lima Filho, C.M.; Furlanetto Pacheco, A.B.; de Oliveira e Azevedo, S.M.F. Seasonal variation in the phytoremediation by Pontederia crassipes (Mart) Solms (water hyacinth) and its associated microbiota. Ecol. Eng. 2022, 183, 106744. [Google Scholar] [CrossRef]
Source of Variations | Mean of Squares | ||||||
---|---|---|---|---|---|---|---|
df | CO2 | O2 | SO2 | CO | NO2 | O3 | |
Replication | 2 | 0.001 ns | 9.138 ns | 0.0001 ns | 0.000007 ns | 0.007 ns | 0.00001 ns |
Park | 2 | 0.031 ** | 9.013 ns | 0.0004 ns | 0.00005 ** | 0.002 ns | 0.00001 ns |
Tree | 3 | 0.035 ** | 9.142 ns | 0.0008 ** | 0.00045 ** | 0.015 ** | 0.00028 ** |
Park × Tree | 6 | 0.0004 * | 8.929 ns | 0.0003 ** | 0.00003 ** | 0.001 ** | 0.00006 ** |
Error | 22 | 0.0007 | 9.382 | 0.0001 | 0.00001 | 0.002 | 0.00001 |
CV (%) | - | 32.4 | 15.1 | 15.1 | 6.1 | 45.9 | 7.3 |
Tree | O3 | NO2 | CO | SO2 | O2 | CO2 |
---|---|---|---|---|---|---|
Morus alba | 0.039 b ± 0.0069 | 0.081 b ± 0.013 | 0.049 b ± 0.0040 | 0.079 b ± 0.0092 | 20.79 a ± 5.76 | 0.041 b ± 0.001 |
Platanus orientalis | 0.035 c ± 0.001 | 0.083 b ± 0.0011 | 0.044 c ± 0.0052 | 0.078 b ± 0.0018 | 20.80 a ± 4.53 | 0.044 b ± 0.0043 |
Fraxinus excelsior | 0.040 b ± 0.002 | 0.087 b ± 0.0001 | 0.048 b ± 0.0077 | 0.076 b ± 0.0049 | 18.72 a ± 4.2 | 0.063 b ± 0.0039 |
Pinus eldarica | 0.048 a ± 0.008 | 0.167 a ± 0.0001 | 0.061 a ± 0.0034 | 0.097 a ± 0.0160 | 20.56 a ± 3.18 | 0.174 a ± 0.0066 |
Park | O3 | NO2 | CO | SO2 | O2 | CO2 |
---|---|---|---|---|---|---|
Laleh | 0.041 a ± 0.005 | 0.121 a ± 0.018 | 0.052 a ± 0.000 | 0.081 a ± 0.010 | 19.22 a ± 2.34 | 0.063 b ± 0.0011 |
Lavizan | 0.042 a ± 0.004 | 0.103 a ± 0.007 | 0.051 a ± 0.006 | 0.077 a ± 0.004 | 20.70 a ± 1.45 | 0.138 a ± 0.0016 |
Mellat | 0.039 a ± 0.006 | 0.093 a ± 0.008 | 0.048 b ± 0.003 | 0.089 a ± 0.005 | 20.74 a ± 3.69 | 0.040 c ± 0.0024 |
Park | Tree | O3 | NO2 | CO | SO2 | O2 | CO2 |
---|---|---|---|---|---|---|---|
Laleh | Morus alba | 0.036 ce ± 0.0092 | 0.09 b ± 0.006 | 0.05 b ± 0.0041 | 0.08 b ± 0.0113 | 20.75 a ± 3.78 | 0.02 de ± 0.008 |
Platanus orientalis | 0.034 e ± 0.0015 | 0.082 b ± 0.00811 | 0.045 de ± 0.0033 | 0.075 b ± 0.0056 | 20.81 a ± 2.64 | 0.023 de ± 0.008 | |
Fraxinus excelsior | 0.040 cd ± 0.0051 | 0.091 b ± 0.01087 | 0.054 b ± 0.0063 | 0.083 b ± 0.0820 | 14.72 a ± 2.80 | 0.053 d ± 0.008 | |
Pinus eldarica | 0.052 a ± 0.0062 | 0.219 a ± 0.015 | 0.06 a ± 0.0055 | 0.089 ab ± 0.0072 | 20.63 a ± 5.88 | 0.156 b ± 0.006 | |
Lavizan | Morus alba | 0.046 b ± 0.0045 | 0.071 b ± 0.019 | 0.052 bc ± 0.0068 | 0.082 b ± 0.0026 | 20.76 a ± 3.06 | 0.103 c ± 0.006 |
Platanus orientalis | 0.038 ce ± 0.0097 | 0.087 b ± 0.0263 | 0.047 cd ± 0.0094 | 0.077 b ± 0.0102 | 20.8 a ± 2.25 | 0.11 bc ± 0.014 | |
Fraxinus excelsior | 0.042 bc ± 0.0043 | 0.086 b ± 0.0118 | 0.046 de ± 0.0071 | 0.092 ab ± 0.0096 | 20.74 a ± 3.63 | 0.10 c ± 0.019 | |
Pinus eldarica | 0.042 bc ± 0.0110 | 0.156 ab ± 0.0093 | 0.06 a ± 0.0051 | 0.097 ab ± 0.0120 | 20.41 a ± 2.88 | 0.24 a ± 0.021 | |
Mellat | Morus alba | 0.036 de ± 0.0104 | 0.083 b ± 0.013 | 0.045 de ± 0.0064 | 0.077 b ± 0.0130 | 20.85 a ± 4.07 | 0.000 e ± 0.000 |
Platanus orientalis | 0.033 e ± 0.0011 | 0.079 b ± 0.0021 | 0.041 e ± 0.0091 | 0.081 b ± 0.0149 | 20.79 a ± 1.51 | 0.000 e ± 0.000 | |
Fraxinus excelsior | 0.037 ce ± 0.0064 | 0.085 b ± 0.014 | 0.044 de ± 0.016 | 0.053 c ± 0.0043 | 20.71 a ± 3.87 | 0.036 de ± 0.001 | |
Pinus eldarica | 0.052 a ± 0.0076 | 0.125 b ± 0.00703 | 0.062 a ± 0.0018 | 0.106 a ± 0.0183 | 20.60 a ± 4.46 | 0.126 bc ± 0.011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rabiee, M.; Kaviani, B.; Kulus, D.; Eslami, A. Phytoremediation Potential of Urban Trees in Mitigating Air Pollution in Tehran. Forests 2024, 15, 1436. https://doi.org/10.3390/f15081436
Rabiee M, Kaviani B, Kulus D, Eslami A. Phytoremediation Potential of Urban Trees in Mitigating Air Pollution in Tehran. Forests. 2024; 15(8):1436. https://doi.org/10.3390/f15081436
Chicago/Turabian StyleRabiee, Marziyeh, Behzad Kaviani, Dariusz Kulus, and Alireza Eslami. 2024. "Phytoremediation Potential of Urban Trees in Mitigating Air Pollution in Tehran" Forests 15, no. 8: 1436. https://doi.org/10.3390/f15081436
APA StyleRabiee, M., Kaviani, B., Kulus, D., & Eslami, A. (2024). Phytoremediation Potential of Urban Trees in Mitigating Air Pollution in Tehran. Forests, 15(8), 1436. https://doi.org/10.3390/f15081436