Differences in Leaf Functional Traits of Quercus rehderiana Hand.-Mazz. in Forests with Rocky and Non-Rocky Desertification in Southwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Sampling
2.3. Trait Measurements
2.4. Data Analyses
3. Results
4. Discussion
Trait | Forests with Rocky Desertification | Forests with Non-Rocky Desertification | Significance | Reference |
---|---|---|---|---|
LT | 17 | 19.75 | P < 0.01 | This study |
− | − | P < 0.05 | [35] | |
188 | 176 | P > 0.05 | [13] | |
SLA | 58.52 | 50.99 | P < 0.01 | This study |
− | − | P < 0.05 | [35] | |
157 | 158 | P > 0.05 | [13] | |
Aba | 11.8 | 9.49 | P < 0.01 | This study |
13.53 | 11.2 | P > 0.05 | [51] | |
ST | 62.35 | 52.58 | P < 0.01 | This study |
45.29 | 72.45 | P < 0.05 | [51] | |
P | 0.82 | 0.97 | P < 0.01 | This study |
1.74 | 1.12 | P < 0.05 | [13] | |
Ca | 9.29 | 6.61 | P < 0.05 | This study |
2.19 | 0.92 | P < 0.05 | [59] | |
Mg | 1.33 | 1.05 | P < 0.05 | This study |
0.33 | 0.2 | P < 0.05 | [59] |
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lu, L.M.; Mao, L.F.; Yang, T.; Ye, J.F.; Liu, B.; Li, H.L.; Sun, M.; Miller, J.T.; Mathews, S.; Hu, H.H.; et al. Evolutionary history of the angiosperm flora of China. Nature 2018, 554, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.F.; Duan, Y.X.; Jin, L.L.; Wang, C.Y.; Peng, M.C.; Li, Y.; Wang, X.H.; Ma, Y.F. Prediction of historical, present and future distribution of Quercus Sect. Heterobalanus based on the optimized MaxEnt model in China. Acta. Ecol. Sin. 2023, 43, 6590–6604. [Google Scholar]
- Yang, Y.; Yi, X. Partial acorn consumption by small rodents: Implication for regeneration of white oak, Quercus Mongolica. Plant Ecol. 2012, 213, 197–205. [Google Scholar] [CrossRef]
- Silaeva, T.; Andreychev, A.; Kiyaykina, O.; Balčiauskas, L. Taxonomic and ecological composition of forest stands inhabited by forest dormouse Dryomys nitedula (Rodentia: Gliridae) in the Middle Volga. Biologia 2021, 76, 1475–1482. [Google Scholar] [CrossRef]
- Rawat, B.; Rawat, J.M.; Purohit, S.; Singh, G.; Sharma, P.K.; Chandra, A.; Begum, J.P.S.; Venugopal, D.; Jaremko, M.; Qureshi, K.A. A comprehensive review of Quercus semecarpifolia Sm.: An ecologically and commercially important Himalayan tree. Front. Ecol. Evol. 2022, 10, 961345. [Google Scholar] [CrossRef]
- Zhao, C.Y.; Lu, S.F.; Li, R.L.; Yin, X.J.; Teng, J.; Gao, W.J.; Wang, Y. Geographical distribution of main subtropical evergreen Quercus trees in southwest China under climate change. J. Trop. Subtrop. Bot. 2024, 32, 357–366. [Google Scholar]
- Wang, G.Y.; Luo, J.; Xu, A.S. Spatial Pattern and Population Regulation of Quercus aquifolioides in the Sejila Mountains, Tibet, China. Chin. J. Appl. Environ. Biol. 2010, 16, 148–153. [Google Scholar] [CrossRef]
- Chai, Y.; Zhang, X.; Yue, M.; Liu, X.; Li, Q.; Shang, H.; Meng, Q.; Zhang, R. Leaf traits suggest different ecological strategies for two Quercus species along an altitudinal gradient in the Qinling Mountains. J. For. Res. 2015, 20, 501–513. [Google Scholar] [CrossRef]
- Li, H.B.; Chen, S.; Huang, Y.H.; Kang, D.X.; Wu, J.R.; Ma, H.C. Ecological stoichiometry and homeostasis of alpine Quercus semicarpifolia leaves in subalpine zone of Hengduan Mountains. Bull. Bot. Res. 2023, 43, 923–931. [Google Scholar]
- Chen, L.; Li, Y.L.; Ning, Z.Y.; Yang, H.L.; Zhan, J.; Yao, B. Response mechanisms of woody plant to drought stress: A review based on plant hydraulic traits. Acta. Ecol. Sin. 2024, 44, 2688–2705. [Google Scholar]
- Wright, I.J.; Reich, P.B.; Westoby, M.; Ackerly, D.D.; Baruch, Z.; Bongers, F.; Cavender-Bares, J.; Chapin, T.; Cornelissen, J.H.C.; Diemer, M.; et al. The worldwide leaf economics spectrum. Nature 2004, 428, 821–827. [Google Scholar] [CrossRef]
- Reich, P.B. The world-wide ‘fast–slow’plant economics spectrum: A traits manifesto. J. Ecol. 2014, 102, 275–301. [Google Scholar] [CrossRef]
- Fu, P.L.; Zhu, S.D.; Zhang, J.L.; Finnegan, P.M.; Jiang, Y.J.; Lin, H.; Fan, Z.X.; Cao, K.F. The contrasting leaf functional traits between a karst forest and a nearby non-karst forest in south-west China. Funct. Plant Biol. 2019, 46, 907–915. [Google Scholar] [CrossRef] [PubMed]
- Wan, C.Y.; Yu, J.R.; Zhu, S.D. Differences in leaf traits and trait correlation networks between karst and non-karst forest tree species. Chin. J. Plant Ecol. 2023, 47, 1386–1397. [Google Scholar] [CrossRef]
- Zhang, Y.B.; Zhou, C.Y.; Lv, W.Q.; Dai, L.H.; Tang, J.G.; Zhou, S.Q.; Huang, L.H.; Li, A.D.; Zhang, J.L. Comparative study of the stoichiometric characteristics of karst and non-karst forests in Guizhou, China. J. For. Res. 2019, 30, 799–806. [Google Scholar] [CrossRef]
- He, B.; Li, Q.; Chen, Q.; Li, W.; You, P. Altitudinal pattern of species diversity of Pseudotsuga sinensis community in northwestern Guizhou, China. Ecol. Environ. Sci. 2021, 30, 1111–1120. [Google Scholar]
- Wang, S.J. The most serious eco-geologically environmental problem in southwestern China-karst rocky desertification. Bull. Mineral. Petrol. Geochem. 2003, 22, 657–666. [Google Scholar]
- Liu, C.C.; Liu, Y.G.; Guo, K. Ecophysiological adaptations to drought stress of seedlings of four plant species with different growth forms in karst habitats. Chin. J. Plant Ecol. 2011, 35, 1070–1082. [Google Scholar]
- Niinemets, Ü.; Kull, K. Co-limitation of plant primary productivity by nitrogen and phosphorus in a species-rich wooded meadow on calcareous soils. Acta Oecol. 2005, 28, 345–356. [Google Scholar] [CrossRef]
- Li, Q.; Cao, J.; Yu, L. Biogeochemical effect of karst soil on the element concentrations in the leaves of two species of Flos Lonicerae. Plant Soil. Environ. 2008, 54, 486–492. [Google Scholar] [CrossRef]
- Li, R.L.; Wang, S.J.; Xiong, K.N.; Li, F.Q. A study on rocky desertification evaluation index system-a case study of Guizhou Province. Tro. Geo. 2004, 24, 145–149. [Google Scholar]
- Violle, C.; Navas, M.L.; Vile, D.; Kazakou, E.; Fortunel, C.; Hummel, I.; Garnier, E. Let the concept of trait be functional! Oikos 2007, 116, 882–892. [Google Scholar] [CrossRef]
- Laughlin, D.C.; Gremer, J.R.; Adler, P.B.; Mitchell, R.M.; Moore, M.M. The net effect of functional traits on fitness. Trends Ecol. Evol. 2020, 35, 1037–1047. [Google Scholar] [CrossRef] [PubMed]
- Reich, P.B.; Oleksyn, J. Global patterns of plant leaf N and P in relation to temperature and latitude. PNAS 2004, 101, 11001–11006. [Google Scholar] [CrossRef]
- Onoda, Y.; Westoby, M.; Adler, P.B.; Choong, A.M.F.; Clissold, F.J.; Cornelissen, J.H.C.; Díaz, S.; Dominy, N.J.; Elgart, A.; Enrico, L.; et al. Global patterns of leaf mechanical properties. Ecol. Lett. 2011, 14, 301–312. [Google Scholar] [CrossRef]
- Verheijen, L.M.; Aerts, R.; Bonisch, G.; Kattge, J.; van Bodegom, P.M. Variation in trait trade-offs allows differentiation among predefined plant functional types: Implications for predictive ecology. New Phytol. 2016, 209, 563–575. [Google Scholar] [CrossRef] [PubMed]
- Messier, J.; Lechowicz, M.J.; McGill, B.J.; Violle, C.; Enquist, B.J. Interspecific integration of trait dimensions at local scales: The plant phenotype as an integrated network. J. Ecol. 2017, 105, 1775–1790. [Google Scholar] [CrossRef]
- Cornelissen, J.H.; Lavorel, S.; Garnier, E.; Díaz, S.; Buchmann, N.; Gurvich, D.E.; Reich, P.B.; Ht, S.; Morgan, H.D.; van der Heijden, M.G.A.; et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 2003, 51, 335–380. [Google Scholar] [CrossRef]
- Perez-Harguindeguy, N.; Diaz, S.; Garnier, E.; Lavorel, S.; Poorter, H.; Jaureguiberry, P.; Bret-Harte, M.S.; Cornwell, W.K.; Craine, J.M.; Gurvich, D.E.; et al. Corrigendum to: New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 2016, 64, 715–716. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E. Plant Physiology, 5th ed.; Sinauer Associates: Sunderland, MA, USA, 2010. [Google Scholar]
- Zhu, S.D.; Cao, K.F. Contrasting cost–benefit strategy between lianas and trees in a tropical seasonal rain forest in southwestern China. Oecologia 2010, 163, 591–599. [Google Scholar] [CrossRef]
- Zhang, K.Y.; Yang, D.; Zhang, Y.B.; Ellsworth, D.S.; Xu, K.; Zhang, Y.P.; Chen, Y.J.; He, F.; Zhang, J.L. Differentiation in stem and leaf traits among sympatric lianas, scandent shrubs and trees in a subalpine cold temperate forest. Tree Physiol. 2021, 41, 1992–2003. [Google Scholar] [CrossRef]
- Ågren, G.I. The C: N: P stoichiometry of autotrophs–theory and observations. Ecol. Lett. 2004, 7, 185–191. [Google Scholar] [CrossRef]
- Koerselman, W.; Meuleman, A.F. The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation. J. Appl. Ecol. 1996, 33, 1441–1450. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, Y.; Xiong, K.; Yu, Y.; Min, X. Changes of leaf functional traits in karst rocky desertification ecological environment and the driving factors. Global. Ecol. Conserv. 2020, 24, e01381. [Google Scholar] [CrossRef]
- Tang, S.B.; Liu, J.F.; Lambers, H.; Zhang, L.L.; Liu, Z.F.; Lin, Y.T.; Kuang, Y.W. Increase in leaf organic acids to enhance adaptability of dominant plant species in karst habitats. Ecol. Evol. 2021, 11, 10277–10289. [Google Scholar] [CrossRef]
- Wang, C.; Lu, J.; Zhou, C.; Yao, H.; Jianyang, L.; La, B. Altitude distribution of leaf functional traits of Quercus aquifolioides in southeastern Tibet. J. For. Environ. 2021, 41, 366–372. [Google Scholar]
- Guo, W.; Zhuo, M.; He, Z.; Ren, Y.; Qu, X.; Fang, J. Anatomical characteristics and environmental adaptability of Quercus aquifolioides leaf in Sejila mountain, Southeastern Tibet. J. Southwest. For. Univ. 2022, 42, 33–38. [Google Scholar]
- Li, L.; Hu, J.; Yu, Q.; Yang, X.; Li, T.; Liu, Q. Stoichiometric characteristics of carbon, nitrogen and phosphorus in Quercus Sect. Heterobalanus shrubs in the Hengduan Mountain, China. Mt. Res. 2018, 36, 878–888. [Google Scholar]
- Cai, G.J.; Suo, P.C.; Zhang, L.M.; Fu, Y.H.; Li, A.D. C, N, P stoichiometric characteristics in different organs of three constructive plants in Karst peak-cluster depressions in southern Guizhou, Southwest China. J. Guizhou Norm. Univ. 2021, 39, 36–44. [Google Scholar]
- Liu, Q.L.; Xu, X.M.; Liu, X.L.; Wen, Z.Y.; Liu, S.R. Characteristics of macronutrient variation in leaves of Quercus aquifolioides along with the altitudinal gradients on the Balangshan Mountain in Wolong Nature Reserve, China. J. Sichuan For. Sci. and Technol. 2012, 33, 1–6. [Google Scholar]
- Witkowski, E.T.F.; Lamont, B.B. Leaf specific mass confounds leaf density and thickness. Oecologia 1991, 88, 486–493. [Google Scholar] [CrossRef] [PubMed]
- Garnier, E.; Navas, M.L.; Grigulis, K. Plant Functional Diversity: Organism Traits, Community Structure, and Ecosystem Properties. Oxford University Press: New York, NY, USA, 2016. [Google Scholar]
- Wu, T.H.; Long, C.L.; Xiong, L.; Liu, Q. Variation and adaptation of functional leaf traits of different plant types in karst forests. Chin. J. Appl. Environ. Biol. 2023, 29, 1043–1049. [Google Scholar]
- Liu, J.H.; Zeng, D.H.; Lee, D.K. Leaf traits and their interrelationships of main plant species in southeast Horqin sandy land. Chin. J. Ecol. 2006, 15, 921–925. [Google Scholar]
- Deng, Y.; Ke, J.; Wu, S.; Jiang, G.H.; Jiang, Z.C.; Zhu, A.J. Responses of plant water uptake to groundwater depth in limestone outcrops. J. Hydrol. 2020, 590, 125377. [Google Scholar] [CrossRef]
- Ding, Y.L.; Nie, Y.P.; Chen, H.S.; Wang, K.L.; Querejeta, J.I. Water uptake depth is coordinated with leaf water potential, water-use efficiency and drought vulnerability in karst vegetation. New Phytol. 2021, 229, 1339–1353. [Google Scholar] [CrossRef] [PubMed]
- Lambers, H.; Chapin, F.S.; Pons, T.L. Plant Physiological Ecology; Springer: New York, NY, USA, 1998. [Google Scholar]
- Poorter, H.; Niinemets, U.; Poorter, L.; Wright, I.J.; Villar, R. Causes and consequences of variation in leaf mass per area (LMA): A meta-analysis. New Phytol. 2009, 182, 565–588. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Q.L.; Liu, L.B.; Xu, X.; Yang, Y.; Guo, Y.M.; Xu, H.Y.; Cai, X.L.; Ni, J. Variations of plant functional traits and adaptive strategy of woody species in a karst forest of central Guizhou Province, southwestern China. J. Plant Ecol. 2018, 42, 562–572. [Google Scholar]
- Ge, Y.; Wang, S. A study on the relationship between anatomical structures of plant leaves and δ13C values with different backgrounds in a karst catchment basin. Earth Environ. 2008, 36, 36–46. [Google Scholar]
- Rong, L.; Wang, S.; Liu, N.; Yang, L. Leaf anatomical characters and its ecological adaptation of the pioneer species in the karst mountain area-with a special reference to the Huajiang canyon of Guizhou. J. MT. Sci. 2005, 23, 35–42. [Google Scholar]
- Milla, R.; Reich, P.B. The scaling of leaf area and mass: The cost of light interception increases with leaf size. Proc. R. Soc. London Ser. B 2007, 274, 2109–2115. [Google Scholar] [CrossRef]
- Yin, Q.; Tian, T.; Han, X.; Xu, J.; Chai, Y.; Mo, J.; Lei, M.L.; Wang, L.; Wang, L. The relationships between biomass allocation and plant functional trait. Ecol. Indic. 2019, 102, 302–308. [Google Scholar] [CrossRef]
- Guimarães, Z.T.M.; Dos Santos, V.A.H.F.; Nogueira, W.L.P.; de Almeida Martins, N.O.; Ferreira, M.J. Leaf traits explaining the growth of tree species planted in a Central Amazonian disturbed area. For. Ecol. Manag. 2018, 430, 618–628. [Google Scholar] [CrossRef]
- Roelfsema, M.R.G.; Hedrich, R. In the light of stomatal opening: New insights into ‘the Watergate’. New Phytol. 2005, 167, 665–691. [Google Scholar] [CrossRef] [PubMed]
- Kirkby, E.A. Introduction, definition, and classification of nutrients. In Marschner’s Mineral Nutrition of Plants; Academic Press: Cambridge, MA, USA, 2023; pp. 3–9. [Google Scholar]
- Wu, P.; Cui, Y.C.; Zhao, W.J.; Hou, Y.J.; Zhu, J.; Ding, F.J.; Yang, W.B. Leaf stoichiometric characteristics of 68 typical plant species in Maolan National Nature Reserve, Guizhou, China. Acta Ecol. Sinca. 2020, 40, 5063–5080. [Google Scholar]
- Liu, Q.; Wang, Z. Nutrient characteristics of typical plant leaves in karst and non-karst regions of southwest China. Hunan Shengtai Kexue Xuebao 2024, 11, 10–17. [Google Scholar]
- Ji, F.T.; Li, N.; Deng, X. Calcium contents and high calcium adaptation of plants in karst areas of China. Chin. J. Plant Ecol. 2009, 33, 926–935. [Google Scholar]
- Aerts, R.; Chapin, F.S., III. The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns. Adv. Ecol. Res. 1999, 30, 1–67. [Google Scholar]
- Güsewell, S. N:P ratios in terrestrial plants: Variation and functional significance. New Phytol. 2004, 164, 243–266. [Google Scholar] [CrossRef]
- Westoby, M.; Wright, I.J. Land-plant ecology on the basis of functional traits. Trends Ecol. Evol. 2006, 21, 261–268. [Google Scholar] [CrossRef]
- Cheng, W.; Yu, Y.H.; Xiong, K.N.; Zhang, Y.; Xu, M.; Tan, D.J. Leaf functional traits of dominant species in karst plateau-canyon areas. Guihaia 2019, 39, 1039–1049. [Google Scholar]
- Long, Q.Z.; Du, H.; Su, L.; Zeng, F.P.; Lian, Z.W.; Peng, W.X.; Liu, K.P.; Tan, W.N. Variation of plant functional traits and adaptive strategies in karst evergreen deciduous broad-leaved forest. Acta. Ecol. Sin. 2023, 43, 8875–8883. [Google Scholar]
- Reich, P.B.; Walters, M.B.; Ellsworth, D.S.; Vose, J.M.; Gresham, C.; Bowman, W.D. Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: A test across biomes and functional group. Oecologia 1998, 114, 471–482. [Google Scholar] [CrossRef]
- Niinemets, Ü. Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shurbs. Ecology 2001, 82, 453–469. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, H. The physiological and molecular mechanisms of calcium uptake, transport, and metabolism in plants. Chin. Bull. Bot. 2007, 24, 762–778. [Google Scholar]
- Fu, R.; Meng, X.X.; Chai, S.F. Research progresses on the relationship between plants and calcium environment. North. Hortic. 2019, 3, 161–166. [Google Scholar]
- Yang, Y.; Xu, X.; Xu, Y.; Ni, J. Adaptation strategies of three dominant plants in the trough-valley karst region of northern Guizhou province, southwestern China, evidence from associated plant functional traits and ecostoichiometry. Earth Environ. 2020, 48, 413–423. [Google Scholar]
- Zhao, P.; Tan, J.F.; Jie, X.L.; Yue, C.P.; Zhao, Y.P.; Han, Y.L.; Zhen, Y. The relationship between potassium and calium/magnesium in tobacco when potash is applied. Acta Tab. Sin. 2000, 6, 23–26. [Google Scholar]
- Zhou, T. Stoichiometric characteristics and adaptation mechanisms of typical karst forest plants in microhabitats. Master’s Thesis, Guizhou University, Guiyang, China, 2022. [Google Scholar]
Species | LA | LT | SLA | LDMC | Ada | Aba | PT | ST | Reference |
---|---|---|---|---|---|---|---|---|---|
RD—Quercus rehderiana | 17.00 | 150.70 | 58.52 | 0.56 | 5.34 | 11.80 | 15.19 | 62.35 | This study |
NRD—Quercus rehderiana | 19.75 | 127.77 | 50.99 | 0.58 | 5.10 | 9.49 | 14.77 | 52.58 | This study |
Quercus aquifolioides | 10.2 | 70.74 | 0.45 | [37] | |||||
Quercus aquifolioides | 419–777 | 151–325 | 151–351 | [38] |
Species | C | N | P | K | Ca | Mg | C:N | N:P | Reference |
---|---|---|---|---|---|---|---|---|---|
RD—Quercus rehderiana | 498.00 | 15.01 | 0.82 | 3.67 | 9.29 | 1.33 | 33.24 | 18.47 | This study |
NRD—Quercus rehderiana | 494.80 | 15.34 | 0.97 | 6.15 | 6.61 | 1.05 | 32.45 | 16.04 | This study |
Quercus aquifolioides | 14.5 | 1.7 | 7.5 | 4.9 | 1.3 | 36.87 | 8.53 | [41] | |
Quercus semicarpifolia | 453.24 | 26.79 | 2.89 | 16.98 | 25.03 | [9] | |||
Quercus sect. Heterobalanus | 477.88 | 13.83 | 1.26 | 36.5 | 11.69 | [39] | |||
Quercus fabrei | 21.96 | 25.26 | [40] | ||||||
Quercus variabilis | 27.08 | 19.22 | [40] |
y~x | Forests with Rocky Desertification | Forests with Non-Rocky Desertification | Reference | ||
---|---|---|---|---|---|
R | P | R | P | ||
SLA~LDMC | −0.67 | <0.01 | −0.12 | >0.05 | This study |
−0.42 | <0.01 | [64] | |||
−0.36 | <0.01 | [44] | |||
−0.92 | <0.001 | [37] | |||
LA~LT | 0.55 | <0.05 | This study | ||
0.37 | <0.001 | [65] | |||
0.65 | <0.01 | [50] | |||
LT~Aba | 0.52 | <0.05 | This study | ||
0.74 | <0.01 | [38] | |||
LT~ST | 0.89 | <0.01 | 0.97 | <0.01 | This study |
0.95 | <0.01 | [38] | |||
C~Ca | −0.93 | <0.01 | This study | ||
−0.4 | <0.01 | [65] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, X.-L.; Feng, T.; Zou, S.; He, B.; Chen, Y.; Li, W.-J. Differences in Leaf Functional Traits of Quercus rehderiana Hand.-Mazz. in Forests with Rocky and Non-Rocky Desertification in Southwest China. Forests 2024, 15, 1439. https://doi.org/10.3390/f15081439
Bai X-L, Feng T, Zou S, He B, Chen Y, Li W-J. Differences in Leaf Functional Traits of Quercus rehderiana Hand.-Mazz. in Forests with Rocky and Non-Rocky Desertification in Southwest China. Forests. 2024; 15(8):1439. https://doi.org/10.3390/f15081439
Chicago/Turabian StyleBai, Xiao-Long, Tu Feng, Shun Zou, Bin He, Yang Chen, and Wang-Jun Li. 2024. "Differences in Leaf Functional Traits of Quercus rehderiana Hand.-Mazz. in Forests with Rocky and Non-Rocky Desertification in Southwest China" Forests 15, no. 8: 1439. https://doi.org/10.3390/f15081439
APA StyleBai, X.-L., Feng, T., Zou, S., He, B., Chen, Y., & Li, W.-J. (2024). Differences in Leaf Functional Traits of Quercus rehderiana Hand.-Mazz. in Forests with Rocky and Non-Rocky Desertification in Southwest China. Forests, 15(8), 1439. https://doi.org/10.3390/f15081439