Ecological Restoration Increases the Diversity of Understory Vegetation in Secondary Forests: An Evidence from 90 Years of Forest Closures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Design
2.3. Field Measurements
2.4. Data Analysis
3. Results
3.1. Effects of Years of Ecological Restoration on Understory Plant Diversity in Natural Secondary Forests
3.2. Effects of Years of Ecological Restoration on the Composition of Understory Plant Communities in Natural Secondary Forests
3.3. Effects of Years of Ecological Restoration on the Environmental Factors in Natural Secondary Forests
3.4. Multiple Relationships between Plant-Microbe-Environmental Resource Availability and Heterogeneity in Ecological Restoration Processes
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mori, A.; Lertzman, K.; Gustafsson, L. Biodiversity and ecosystem services in forest ecosystems: A research agenda for applied forest ecology. J. Appl. Ecol. 2017, 54, 12–27. [Google Scholar] [CrossRef]
- Su, X.; Li, S.; Wan, X.; Huang, Z.; Liu, B.; Fu, S.; Kumar, P.; Chen, H.Y.H. Understory vegetation dynamics of Chinese fir plantations and natural secondary forests in subtropical China. For. Ecol. Manag. 2021, 483, 118750. [Google Scholar] [CrossRef]
- Ma, Y.; Wei, J.; Wang, W.; Huang, C.; Feng, C.; Xu, D.; Haider, F.U.; Li, X. Monitoring changes in composition and diversity of forest vegetation layers after the cessation of management for renaturalization. Forests 2024, 15, 907. [Google Scholar] [CrossRef]
- Mestre, L.; Toro-Manríquez, M.; Soler, R.; Huertas-Herrera, A.; Martínez-Pastur, G.; Vanessa, L. The influence of canopy-layer composition on understory plant diversity in southern temperate forests. For. Ecosyst. 2017, 4, 6–17. [Google Scholar] [CrossRef]
- Huang, C.; Fu, S.; Tong, Y.; Ma, X.; Yuan, F.; Ma, Y.; Feng, C.; Liu, H. Impacts of forest management on the biodiversity and sustainability of Carya dabieshanensis forests. Forests 2023, 14, 1331. [Google Scholar] [CrossRef]
- Evy, A.; Federico, S.; Harald, A.; Lander, B.; Sigrid, B.; Elisa, C.; Andrea, C.; Mariangela, F.; Kalliopi, R.; Nuri, S.N.; et al. Driving mechanisms of overstorey-understorey diversity relationships in European forests. Perspect. Plant. Ecol. 2016, 19, 21–29. [Google Scholar] [CrossRef]
- Shen, G.; Tan, S.; Sun, X.; Chen, Y.; Li, B. Experimental evidence for the importance of light on understory grass communities in a subtropical forest. Front. Plant Sci. 2020, 11, 1051–1062. [Google Scholar] [CrossRef]
- Rodríguez-Calcerrada, J.; Cano, F.; Valbuena-Caraba, M.; Gil, L.; Aranda, I. Functional performance of oak seedlings naturally regenerated across microhabitats of distinct overstorey canopy closure. New For. 2010, 39, 245–259. [Google Scholar] [CrossRef]
- Li, D.; Wei, J.; Wu, J.; Zhong, Y.; Chen, Z.; He, J.; Zhang, S.; Yu, L. The expansion of moso bamboo (Phyllostachys edulis) forests into diverse types of forests in China from 2010 to 2020. Forests 2024, 15, 1418. [Google Scholar] [CrossRef]
- Chen, H.Y.H.; Biswas, S.R.; Sobey, T.M.; Brassard, B.W.; Bartels, S.F. Reclamation strategies for mined forest soils and overstorey drive understorey vegetation. J. Appl. Ecol. 2018, 55, 926–936. [Google Scholar] [CrossRef]
- Li, X.; Aguila, L.C.R.; Luo, J.C.; Liu, Y.; Wu, T.; Lie, Z.Y.; Liu, X.J.; Cheng, Y.; Jiang, F.; Liu, J.X. Carbon storage capacity of Castanopsis hystrix plantations at different stand-ages in South China. Sci. Total Environ. 2023, 894, 164974. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wu, T.; Wu, G.; Aguila, L.C.R.; Liu, X.; Liu, Y.; Cheng, Y.; Jiang, F.; Lie, Z.; Liu, J.X. Increasing stand age increases N deficiency but alleviates relative P limitations in Castanopsis hystrix plantations in Southern China. Land Degrad. Dev. 2024, 35, 2173–2183. [Google Scholar] [CrossRef]
- Kumar, P.; Chen, H.Y.H.; Thomas, S.C.; Shahi, S. Linking resource availability and heterogeneity to understorey species diversity through succession in boreal forest of Canada. J. Ecol. 2018, 106, 1266–1276. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, H.Y.H.; Taylor, A. Positive species diversity and above-ground biomass relationships are ubiquitous across forest strata despite interference from overstorey trees. Funct. Ecol. 2017, 31, 419–426. [Google Scholar] [CrossRef]
- Koorem, K.; Manag, M. Positive association between understory species richness and a dominant shrub species (Corylus avellana) in a boreonemoral spruce forest. For. Ecol. Manag. 2010, 260, 1407–1413. [Google Scholar] [CrossRef]
- Lemessa, D.; Mewded, B.; Legesse, A.; Atinfau, H.; Alemu, S.; Maryo, M.; Tilahun, H. Do Eucalyptus plantation forests support biodiversity conservation? For. Ecol. Manag. 2022, 523, 120492. [Google Scholar] [CrossRef]
- Yin, R.; Deng, H.; Wang, H.; Zhang, B. Vegetation type affects soil enzyme activities and microbial functional diversity following re-vegetation of a severely eroded red soil in sub-tropical China. Catena 2014, 115, 96–103. [Google Scholar] [CrossRef]
- Tedersoo, L.; Bahram, M.; Cajthaml, T.; Põlme, S.; Hiiesalu, I.; Anslan, S.; Harend, H.; Buegger, F.; Pritsch, K.; Koricheva, J.; et al. Tree diversity and species identity effects on soil fungi, protists and animals are context dependent. ISME J. 2016, 10, 346–362. [Google Scholar] [CrossRef] [PubMed]
- Hiiesalu, I.; Bahram, M.; Tedersoo, L. Plant species richness and productivity determine the diversity of soil fungal guilds in temperate coniferous forest and bog habitats. Mol. Ecol. 2017, 26, 4846–4858. [Google Scholar] [CrossRef]
- He, L.; Mazza, R.J.L.; Soudzilovskaia, N.A.; Barceló, M.; Axel, P.O.; Song, C.; Tedersoo, L.; Yuan, F.; Yuan, F.; David, A.L.; et al. Global biogeography of fungal and bacterial biomass carbon in topsoil. Soil Biol. Biochem. 2020, 151, 108024. [Google Scholar] [CrossRef]
- Wurst, S.; Wagenaar, R.; Biere, A.; van der Putten, W.M. Microorganisms and nematodes increase levels of secondary metabolites in roots and root exudates of Plantago lanceolata. Plant Soil 2009, 329, 117–126. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.; Wu, G.P.; Lie, Z.Y.; Sheng, H.; Aguila, L.C.R.; Sadiq, M.K.; Liu, X.J.; Zhou, S.Y.D.; Wu, T.; et al. Mixed plantations do not necessarily provide higher ecosystem multifunctionality than monoculture plantations. Sci. Total Environ. 2024, 914, 170156. [Google Scholar] [CrossRef]
- Ma, Y.; Feng, C.; Wang, Z.; Huang, C.; Huang, X.; Wang, W.; Yang, S.; Fu, S.; Chen, H.Y.H. Restoration in degraded subtropical broadleaved forests induces changes in soil bacterial communities. Glob. Ecol. Conserv. 2021, 30, e01775. [Google Scholar] [CrossRef]
- Zhou, S.; Lie, Z.; Liu, X.; Zhu, Y.; Josep, P.; Roy, N.; Su, X.; Liu, Z.; Chu, G.; Meng, Z.; et al. Distinct patterns of soil bacterial and fungal community assemblages in subtropical forest ecosystems under warming. Global Chang. Biol. 2023, 29, 1501–1513. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Xia, J.; Wang, Y.; Ahlström, A.; Chen, J.; Cook, R.B.; Cui, E.; Fang, Y.; Fisher, J.B.; Huntzinger, D.N. Enhanced peak growth of global vegetation and its key mechanisms. Nat. Ecol. Evol. 2018, 2, 1897–1905. [Google Scholar] [CrossRef]
- Qianwen, G.; Arif, M.; Zhongxun, Y.; Jie, Z.; Xinrui, H.; Dongdong, D.; Fan, Y.; Changxiao, L. Plant species composition and diversity along successional gradients in arid and semi-arid regions of China. For. Ecol. Manag. 2022, 524, 120542. [Google Scholar] [CrossRef]
- Su, X.; Zheng, G.; Chen, H.Y.H. Understory diversity are driven by resource availability rather than resource heterogeneity in subtropical forests. For. Ecol. Manag. 2022, 503, 119781. [Google Scholar] [CrossRef]
- Parhizkar, M.; Shabanpour, M.; Miralles, I.; Zema, D.A.; Lucas-Borja, M.E. Effects of plant species on soil quality in natural and planted areas of a forest park in northern Iran. Sci. Total Environ. 2021, 778, 146310. [Google Scholar] [CrossRef]
- Liu, K.L.; Chen, B.Y.; Zhang, B.; Wang, R.H.; Wang, C.S. Understory vegetation diversity, soil properties and microbial community response to different thinning intensities in Cryptomeria japonica var. sinensis plantations. Front. Microbiol. 2023, 14, 1117384. [Google Scholar] [CrossRef]
- Ou, Z.; Pang, S.; He, Q.; Peng, Y.; Huang, X.; Shen, W. Effects of vegetation restoration and environmental factors on understory vascular plants in a typical karst ecosystem in southern China. Sci. Rep. 2020, 10, 12011. [Google Scholar] [CrossRef]
- Feng, C.; Ma, Y.; Fu, S.L.; Chen, H.Y.H. Soil carbon and nutrient dynamics following cessation of anthropogenic disturbances in degraded subtropical forests. Land Degrad. Dev. 2017, 28, 2457–2467. [Google Scholar] [CrossRef]
- Huang, C.; Zhou, Z.; Peng, C.; Teng, M.; Wang, P. How is biodiversity changing in response to ecological restoration in terrestrial ecosystems? A meta-analysis in China. Sci. Total Environ. 2019, 650, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Feng, Y.Y.; Zhao, R.; Lv, T.; Wang, N.J.; Li, Y.; Zheng, X.; Chen, S.F.; Ding, H.; Fang, Y.M. Positive relationships between species diversity and genetic diversity on a local scale at Mt. Wu Yi, China. Biodivers. Conserv. 2023, 32, 4295–4311. [Google Scholar] [CrossRef]
- Valladares, F.; Laanisto, L.; Niinemets, Ü.; Zavala, M.A. Shedding light on shade: Ecological perspectives of understorey plant life. Plant Ecol. Divers. 2016, 9, 237–251. [Google Scholar] [CrossRef]
- Chelli, S.; Tsakalos, J.L.; Zhu, Z.; Maria De Benedictis, L.L.; Bartha, S.; Canullo, R.; Borsukevych, L.; Cervellini, M.; Campetella, G. The diversity of within-community plant species combinations: A new tool for assessing changes in forests and guiding protection actions. Ecol. Indic. 2024, 163, 112089. [Google Scholar] [CrossRef]
- van der Heijden, M.G.; Bardgett, R.D.; van Straalen, N.M. The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 2008, 11, 296–310. [Google Scholar] [CrossRef]
- Józefowska, A.; Woś, B.; Pietrzykowski, M. Tree species and soil substrate effects on soil biota during early soil forming stages at afforested mine sites. Appl. Soil Ecol. 2016, 102, 70–79. [Google Scholar] [CrossRef]
- Hu, Y.; Veresoglou, S.D.; Tedersoo, L.; Xu, T.; Ge, T.; Liu, L.; Chen, Y.; Hao, Z.; Su, Y.; Matthias, C.R.; et al. Contrasting latitudinal diversity and co-occurrence patterns of soil fungi and plants in forest ecosystems. Soil Biol. Biochem. 2019, 131, 100–110. [Google Scholar] [CrossRef]
- Rineau, F.; Shah, F.; Smits, M.M.; Persson, P.; Johansson, T.; Carleer, R.; Troein, C.; Tunlid, A. Carbon availability triggers the decomposition of plant litter and assimilation of nitrogen by an ectomycorrhizal fungus. ISME J. 2013, 7, 2010–2022. [Google Scholar] [CrossRef]
Time Since Closing (Years) | Longitude | Latitude | Altitude | Canopy Density | Shrubs Layer (%) | Herbs Layer (%) | Direction |
---|---|---|---|---|---|---|---|
0 | 118°00′35″ | 32°20′14″ | 132.0–145.5 | 0.13 ± 0.02 ab | 19.09 ± 11.33 b | 21.77 ± 2.68 a | South |
10 | 118°00′26″ | 32°20′33″ | 171.7–187.4 | 0.07 ± 0.07 bc | 34.02 ± 7.02 ab | 19.84 ± 6.71 a | South |
30 | 118°00′29″ | 32°20′39″ | 134.5–182.8 | 0.06 ± 0.02 c | 40.76 ± 20.66 ab | 20.23 ± 4.27 a | South |
60 | 118°00′36″ | 32°20′06″ | 123.0–135.1 | 0.14 ± 0.02 a | 59.00 ± 30.67 a | 16.31 ± 3.80 a | South |
90 | 117°59′45″ | 32°19′56″ | 268.3–293.0 | 0.05 ± 0.02 c | 60.04 ± 8.78 a | 15.61 ± 3.11 a | South |
Time Since Closing (Years) | Indicator Species | Life Forms | Specificity | Sensitivity | Indicator Value | p |
---|---|---|---|---|---|---|
Shrub layer | ||||||
30 | Alangium chinense | Shrub | 0.8588 | 1 | 0.972 | 0.023 |
Persicaria filiformis | Herb | 0.7143 | 1 | 0.845 | 0.040 | |
60 | Lindera glauca | Shrub | 0.5789 | 1 | 0.761 | 0.014 |
90 | Maclura tricuspidata | Shrub | 0.8462 | 1 | 0.920 | 0.022 |
Rubus idaeus | Shrub | 0.6048 | 1 | 0.778 | 0.013 | |
Herb layer | ||||||
0 | Zelkova serrata | Tree | 0.9391 | 1 | 0.969 | 0.009 |
Oplismenus undulatifolius | Herb | 0.4408 | 1 | 0.664 | 0.018 | |
Trachelospermum jasminoides | Vine | 0.3659 | 1 | 0.605 | 0.030 | |
10 | Stephania japonica | Vine | 1.0000 | 1 | 1.000 | 0.017 |
Trachelospermum jasminoides | Herb | 1.0000 | 1 | 1.000 | 0.017 | |
Agrimonia pilosa | Herb | 1.0000 | 1 | 1.000 | 0.017 | |
30 | Cyrtomium fortunei | Herb | 0.6455 | 1 | 0.803 | 0.048 |
60 | Commelina communis | Herb | 0.8909 | 1 | 0.944 | 0.011 |
Certataricum subsp. ginnala | Shrub | 0.8458 | 1 | 0.920 | 0.020 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Xu, F.; Wei, J.; Wang, W.; Wu, Z.; Xu, D.; Haider, F.U.; Li, X.; Dong, Y. Ecological Restoration Increases the Diversity of Understory Vegetation in Secondary Forests: An Evidence from 90 Years of Forest Closures. Forests 2024, 15, 1642. https://doi.org/10.3390/f15091642
Ma Y, Xu F, Wei J, Wang W, Wu Z, Xu D, Haider FU, Li X, Dong Y. Ecological Restoration Increases the Diversity of Understory Vegetation in Secondary Forests: An Evidence from 90 Years of Forest Closures. Forests. 2024; 15(9):1642. https://doi.org/10.3390/f15091642
Chicago/Turabian StyleMa, Yuhua, Fengyu Xu, Jingya Wei, Wei Wang, Zhen Wu, Duanyang Xu, Fasih Ullah Haider, Xu Li, and Yan Dong. 2024. "Ecological Restoration Increases the Diversity of Understory Vegetation in Secondary Forests: An Evidence from 90 Years of Forest Closures" Forests 15, no. 9: 1642. https://doi.org/10.3390/f15091642
APA StyleMa, Y., Xu, F., Wei, J., Wang, W., Wu, Z., Xu, D., Haider, F. U., Li, X., & Dong, Y. (2024). Ecological Restoration Increases the Diversity of Understory Vegetation in Secondary Forests: An Evidence from 90 Years of Forest Closures. Forests, 15(9), 1642. https://doi.org/10.3390/f15091642