Risk Modeling for the Emergence of the Primary Outbreak Area of the Siberian Moth Dendrolimus sibiricus Tschetv. in Coniferous Forests of Central Siberia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Species Background
2.3. Obtaining and Preparing Forest Inventory, Forest Cover and Orographic Data
2.4. Detecting Damaged Stands Using Remote Sensing Data
2.5. Application of Machine Learning Algorithms
3. Results
3.1. Best Models
3.2. Importance of Predictors
3.3. Distributions of Predictor Values According to the Predicted Classes
4. Discussion
4.1. Results of Machine Learning Procedure
4.2. Food Availability Variables as Predictors
4.3. Possible Role of Historical Circumstances for Risk Assessment
4.4. Relief- and Soil-Based Variables as Risk Factor
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Prozorov, S.S. Small Engrailed Moth Boarmia Bistortata Goeze as a Mass Pest of Siberian Fir; Siberian Forest Engineering Institute: Krasnoyarsk, Russia, 1955; Collection XI; Issue III, pp. 55–136. [Google Scholar]
- Cedervind, J.; Långström, B. Tree Mortality, Foliage Recovery and Top-kill in Stands of Scots Pine (Pinus sylvestris) Subsequent to Defoliation by the Pine Looper (Bupalus piniaria). Scand. J. For. Res. 2003, 18, 505–513. [Google Scholar] [CrossRef]
- Ierusalimov, E.N. Zoogenic Defoliation and Forest Community; KMK Publishing House: Moscow, Russia, 2004. [Google Scholar]
- Iqbal, J.; MacLean, D.A.; Kershaw, J.A., Jr. Balsam fir sawfly defoliation effects on survival and growth quantified from permantnt plots and dendrochronology. Forestry 2011, 84, 349–362. [Google Scholar] [CrossRef]
- Moulinier, J.; Lorenzetti, F.; Bergeron, Y. Gap dynamics in aspen stands of the clay belt of northwestern Quebec following a forest tent caterpillar outbreak. Can. J. For. Res. 2011, 41, 1606–1617. [Google Scholar] [CrossRef]
- Chen, C.; Weiskittel, A.; Bataineh, M.; MacLean, D.A. Evaluating the influence of varying levels of spruce budworm defoliation on annualized individual tree growth and mortality in Maine, USA and New Brunswick, Canada. For. Ecol. Manag. 2017, 396, 184–194. [Google Scholar] [CrossRef]
- Florov, D.N. Pest of Siberian Forests (Siberian Moth); OGIZ Irkutsk Book Publishing House: Irkutsk, Russia, 1948. [Google Scholar]
- Rozhkov, A.S. Siberian Silk Moth Outbreaks and Their Control; Nauka: Moskow, Russia, 1965. [Google Scholar]
- Prozorov, S.S. Siberian Moth Dendrolimus sibiricus Tshtv in the Fir Forests of Siberia; Siberian Forest Engineering Institute: Krasnoyarsk, Russia, 1953; Collection VII; Issue III, pp. 93–132. [Google Scholar]
- Kondakov, Y.P. Regularities of the Siberian moth outbreaks. In Ecology of Forest Animal Populations in Siberia; Nauka: Novosibirsk, Russia, 1974; pp. 206–265. [Google Scholar]
- Grodnitsky, D.L.; Raznobarsky, V.G.; Soldatov, V.V.; Remarchuk, N.P. Degradation of taiga forests disturbed by the Siberian silkmoth. Contemp. Probl. Ecol. 2002, 1, 3–12. [Google Scholar]
- Kharuk, V.I.; Im, S.T.; Soldatov, V.V. Siberian silkmoth outbreaks surpassed geoclimatic barrier in Siberian Mountains. J. Mt. Sci. 2020, 17, 1891–1900. [Google Scholar] [CrossRef]
- Alexeyev, V.A.; Svyazeva, O.A. Woody Plants of Russian Forests. A List of Species and the State Account of Biodiversity of Forest Resources; SB RAS, Sukachev Institute of Forest: Krasnoyarsk, Russia, 2009; ISBN 978-5-94668-063-9. [Google Scholar]
- Federal State Statistics Service. Transport. Available online: https://rosstat.gov.ru/statistics/transport (accessed on 3 September 2024).
- Mason, R.R.; Wickman, B.E. Integrated pest management of the Douglas-fir tussock moth. For. Ecol. Manag. 1991, 39, 119–130. [Google Scholar] [CrossRef]
- Weseloh, R.M. Developing and Validating a Model for Predicting Gypsy Moth (Lepidoptera: Lymantriidae) Defoliation in Connecticut. J. Econ. Entomol. 1996, 89, 1546–1555. [Google Scholar] [CrossRef]
- Isaev, A.S.; Khlebopros, R.G.; Nedorezov, L.V.; Kondakov, Y.P.; Kiselev, V.V.; Sukhovolsky, V.G. Population Dynamics of Forest Insects; Nauka: Moscow, Russia, 2001. [Google Scholar]
- Sultson, S.M.; Goroshko, A.A.; Verkhovets, S.V.; Mikhaylov, P.V.; Ivanov, V.A.; Demidko, D.A.; Kulakov, S.S. Orographic Factors as a Predictor of the Spread of the Siberian Silk Moth Outbreak in the Mountainous Southern Taiga Forests of Siberia. Land 2021, 10, 115. [Google Scholar] [CrossRef]
- Cooke, B.J.; Nealis, V.G.; Régnière, J. Insect defoliators as periodic disturbances in northern forest ecosystems. In Plant Disturbance Ecology; Academic Press: Cambridge, MA, USA, 2021; pp. 423–461. [Google Scholar]
- Williams, C.B.; Wenz, J.M.; Dahlsten, D.L.; Norick, N.X. Relation of Forest Site and Stand Characteristics to Douglas-Fir Tussock Moth (Lep. Lymantriidae) Outbreaks in California. Mitt. Schweiz. Entomol. Ges. 1979, 52, 297–307. [Google Scholar]
- Stoszek, K.J.; Mika, P.G.; Moore, J.A.; Osborne, H.L. Relationships of Douglas-Fir Tussock Moth Defoliation to Site and Stand Characteristics in Northern Idaho. For. Sci. 1981, 27, 431–442. [Google Scholar]
- Zhang, B.; MacLean, D.; Johns, R.; Eveleigh, E. Effects of Hardwood Content on Balsam Fir Defoliation during the Building Phase of a Spruce Budworm Outbreak. Forests 2018, 9, 530. [Google Scholar] [CrossRef]
- Kostin, I.A. On the Siberian Moth Outbreak in the Mountain Forests of Eastern Kazakhstan; Institute of Zoology of the Academy of Sciences of the Kazakh SSR: Alma Ata, Kazakhstan, 1958; Volume VIII, pp. 122–126. [Google Scholar]
- Galkin, G.I. Some issues of the formation of reservations and primary outbreak spots of the Siberian silkmoth in Krasnoyarsk Krai forests. In The Problem of Siberian Silk Moth (Workshop Reports); USSR Academy of Science; USSR Academy of Science Publishing House: Novosibirsk, Russia, 1960; pp. 21–33. [Google Scholar]
- Kondakov, Y.P. The Siberian moth outbreaks in the forests of Krasnoyarsk Krai. In Entomological Researches in Siberia; KF RES: Krasnoyarsk, Russia, 2002; Volume 2, pp. 25–74. [Google Scholar]
- Isaev, A.S.; Ryapolov, V.Y. Analysis of landscape-ecological confinement of the Siberian moth outbreak areas using aerospace photography. In Study of Taiga Landscapes by Remote Methods; Nauka: Novosibirsk, Russia, 1979; pp. 152–167. [Google Scholar]
- Kharuk, V.I.; Demidko, D.A.; Fedotova, E.V.; Dvinskaya, M.L.; Budnik, U.A. Spatial and Temporal Dynamics of Siberian Silk Moth Large-Scale Outbreak in Dark-Needle Coniferous Tree Stands in Altai. Contemp. Probl. Ecol. 2016, 9, 711–720. [Google Scholar] [CrossRef]
- Demidko, D.A.; Goroshko, A.A.; Slinkina, O.A.; Mikhaylov, P.V.; Sultson, S.M. The Role of Forest Stands Characteristics on Formation of Exterior Migratory Outbreak Spots by the Siberian Silk Moth Dendrolimus sibiricus (Tschetv.) during Population Collapse. Forests 2023, 14, 1078. [Google Scholar] [CrossRef]
- Braun-Blanquet, J. Plant Sociology; the Study of Plant Communities, 1st ed.; McGraw-Hill Book Company: New York, NY, USA; London, UK, 1932. [Google Scholar]
- Sukachev, V.N. Fundamentals of Forest Typology and Forest Biogeocenology; Selected Works; Nauka Publ.: Leningrad, Russia, 1972. [Google Scholar]
- Fernández-Carrillo, Á.; Franco-Nieto, A.; Yagüe-Ballester, M.J.; Gómez-Giménez, M. Predictive Model for Bark Beetle Outbreaks in European Forests. Forests 2024, 15, 1114. [Google Scholar] [CrossRef]
- Munro, H.M.; Montes, C.R.; Gandhi, K.J.K. A new approach to evaluate the risk of bark beetle outbreaks using multi-step machine learning methods. For. Ecol. Manag. 2022, 520, 120347. [Google Scholar] [CrossRef]
- Rammer, W.; Seidl, R. Harnessing Deep Learning in Ecology: An Example Predicting Bark Beetle Outbreaks. Front. Plant Sci. 2019, 10, 1327. [Google Scholar] [CrossRef]
- Atlas of Krasnoyarsk Krai and the Republic of Khakassia; Isaev, A.S., Ed.; Roskartografiya: Moscow, Russia, 1994. [Google Scholar]
- Gorbatenko, V.P.; Ippolitov, I.I.; Kabanov, M.V.; Loginov, S.V.; Podnebesnych, N.V.; Kharyutkina, E.V. Effect of atmospheric circulation on temperature variations in Siberia. Atmos. Ocean. Opt. 2011, 24, 15–21. [Google Scholar]
- Ippolitov, I.I.; Kabanov, M.V.; Loginov, S.V.; Podnebesnykh, N.V.; Kharyutkina, E.V.; Gorbatenko, V.P. Influence of atmospheric circulation on the temperature regime of Siberia. Opt. Atmos. Ocean 2011, 24, 15–21. [Google Scholar]
- Kamanin, L.G.; Likhanov, B.N. (Eds.) Central Siberia; Nauka: Moscow, Russia, 1964. [Google Scholar]
- Forests of the Urals, Siberia and the Russian Far East. In Forests of the USSR; Zhukov, A.B., Ed.; Nauka: Moscow, Russia, 1969; Volume 4. [Google Scholar]
- Pavlov, I.N.; Litovka, Y.A.; Golubev, D.V.; Astapenko, S.A.; Khromogin, P.V. New outbreak of Dendrolimus sibiricus Tschetv. in Siberia (2012–2017): Patterns of development and prospects for biological control. Cont. Probl. Ecol. 2018, 4, 462–478. [Google Scholar]
- Kononov, A.; Ustyantsev, K.; Wang, B.; Mastro, V.C.; Fet, V.; Blinov, A.; Baranchikov, Y. Genetic Diversity among Eight Dendrolimus Species in Eurasia (Lepidoptera: Lasiocampidae) Inferred from Mitochondrial COI and COII, and Nuclear ITS2 Markers. BMC Genet. 2016, 17, 157. [Google Scholar] [CrossRef] [PubMed]
- Rozhkov, A.S. Siberian Silk Moth; Nauka: Moskow, Russia, 1963. [Google Scholar]
- Kharuk, V.I.; Im, S.T.; Ranson, K.J.; Yagunov, M.N. Climate-Induced Northerly Expansion of Siberian Silkmoth Range. Forests 2017, 8, 301. [Google Scholar] [CrossRef]
- Kirichenko, N.I.; Baranchikov, Y.N. Feeding norms for the Siberian moth caterpillars on coniferous tree species in Siberia. Contemp. Probl. Ecol. 2008, 5, 709–716. [Google Scholar]
- Okunev, P.P. Geographical position and hazardous areas of the Siberian moth. In Geographical Collection. V. Geographical Issues of Forestry; USSR Academy of Science Publishing House: Moskow/Leningrad, Russia, 1955; pp. 210–222. [Google Scholar]
- Konikov, A.S.; Platonova-Chernysheva, L.V.; Kondakov, Y.P.; Zaitseva, A.I. Adaptation of the Siberian moth to environmental conditions. To the characteristics of the factors determining the number of the Siberian moth. In Scientific Notes of the Krasnoyarsk Pedagogical Institute; Krasnoyarsk State Pedagogical Institute: Krasnoyarsk, Russia, 1959; Volume XV, pp. 145–175. [Google Scholar]
- Rysin, L.P. Five-Needle Pines Forests of Russia; KMK Publishing House: Moscow, Russia, 2011; ISBN 978-5-87317-771-4. [Google Scholar]
- Rysin, L.P.; Savel’eva, L.I. Scots Pine-Dominated Forests of Russia; KMK Publishing House: Moscow, Russia, 2008; ISBN 978-5-87317-512-3. [Google Scholar]
- 14688-1:2017; Geotechnical Investigation and Testing—Identification and Classification of Soil—Part 1: Identification and Description. ISO: Geneva, Switzerland, 2017.
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- RStudio Team. RStudio: Integrated Development Environment for R; RStudio, PBC: Boston, MA, USA, 2022. [Google Scholar]
- Wickham, H.; François, R.; Henry, L.; Müller, K. Dplyr: A Grammar of Data Manipulation. Available online: https://dplyr.tidyverse.org (accessed on 5 March 2022).
- Pebesma, E. Simple Features for R: Standardized Support for Spatial Vector Data. R J. 2018, 10, 439–446. [Google Scholar] [CrossRef]
- Zhao, Q.; Yu, L.; Li, X.; Peng, D.; Zhang, Y.; Gong, P. Progress and trends in the application of Google Earth and Google Earth Engine. Remote Sens. 2021, 13, 3778. [Google Scholar] [CrossRef]
- Theobald, D.M.; Harrison-Atlas, D.; Monahan, W.B.; Albano, C.M. Ecologically-Relevant Maps of Landforms and Physiographic Diversity for Climate Adaptation Planning. PLoS ONE 2015, 10, e0143619. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Bartalev, S.A.; Egorov, V.A.; Zharko, V.O.; Lupyan, E.A.; Plotnikov, D.E.; Khvostikov, S.A.; Shabanov, N.V. Satellite Mapping of the Vegetation Cover of Russia; ISR RAS: Moscow, Russia, 2016. [Google Scholar]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef]
- Hijmans, R.J. Terra: Spatial Data Analysis. Available online: https://rspatial.github.io/terra/ (accessed on 10 March 2022).
- Didan, K.; Munoz, A.B.; Solano, R.; Huete, A. MODIS Vegetation Index User’s Guide (MOD13 Series); Version 3.0; University of Arizona: Tucson, AZ, USA, 2015. [Google Scholar]
- Giglio, L.; Boschetti, L.; Roy, D.P.; Humber, M.L.; Justice, C.O. The Collection 6 MODIS burned area mapping algorithm and product. Remote Sens. Environ. 2018, 217, 72–85. [Google Scholar] [CrossRef]
- United States Geological Survey. Available online: https://earthexplorer.usgs.gov/ (accessed on 11 October 2022).
- Lang, M.; Binder, M.; Richter, J.; Schratz, P.; Pfisterer, F.; Coors, S.; Au, Q.; Casalicchio, G.; Kotthoff, L.; Bischl, B. Mlr3: A Modern Object-Oriented Machine Learning Framework in R. J. Open Source Softw. 2019, 4, 1903. [Google Scholar] [CrossRef]
- Biecek, P. DALEX: Explainers for Complex Predictive Models in R. J. Mach. Learn. Res. 2018, 19, 1–5. [Google Scholar]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. [Google Scholar]
- Talukdar, S.; Singha, P.; Mahato, S.; Shahfahad; Pal, S.; Liou, Y.-A.; Rahman, A. Land-Use Land-Cover Classification by Machine Learning Classifiers for Satellite Observations—A Review. Remote Sens. 2020, 12, 1135. [Google Scholar] [CrossRef]
- Thiele, C.; Hirschfeld, G. cutpointr: Improved Estimation and Validation of Optimal Cutpoints in R. J. Stat. Softw. 2021, 98, 1–27. [Google Scholar] [CrossRef]
- Biecek, P.; Burzykowski, T. Explanatory Model Analysis: Explore, Explain, and Examine Predictive Models; Chapman & Hall/CRC: New York, NY, USA, 2021; ISBN 978-0367135591. [Google Scholar]
- Lemaire, J.; Vennetier, M.; Prévosto, B.; Cailleret, M. Interactive effects of abiotic factors and biotic agents on Scots pine dieback: A multivariate modeling approach in southeast France. For. Ecol. Manag. 2022, 526, 120543. [Google Scholar] [CrossRef]
- Nicholson, A.J. An outline of the dynamics of animal populations. Aust. J. Zool. 1954, 2, 9–65. [Google Scholar] [CrossRef]
- Robert, L.-E.; Sturtevant, B.R.; Cooke, B.J.; James, P.M.A.; Fortin, M.-J.; Townsend, P.A.; Wolter, P.T.; Kneeshaw, D. Landscape host abundance and configuration regulate periodic outbreak behavior in spruce budworm Choristoneura fumiferana. Ecography 2018, 41, 1556–1571. [Google Scholar] [CrossRef]
- Ellis, T.M.; Flower, A. A multicentury dendrochronological reconstruction of western spruce budworm outbreaks in the Okanogan Highlands, northeastern Washington. Can. J. For. Res. 2017, 47, 1266–1277. [Google Scholar] [CrossRef]
- Coops, N.C.; Gillanders, S.N.; Wulder, M.A.; Gergel, S.E.; Nelson, T.; Goodwin, N.R. Assessing changes in forest fragmentation following infestation using time series Landsat imagery. For. Ecol. Manag. 2010, 259, 2355–2365. [Google Scholar] [CrossRef]
- Pologova, N.N.; Chernova, N.A.; Klimova, N.W.; Duykarev, A.G. Diversity of Siberian pine forests related to their habitat. Russ. J. For. Sci. 2013, 4, 32–42. [Google Scholar]
- Demidko, D.A.; Goroshko, A.A.; Sultson, S.M.; Kulakova, N.N.; Mikhaylov, P.V. Weather Data-Based Prediction of the Siberian Moth Dendrolimus sibiricus Tschetv.: A Case Study. Contemp. Probl. Ecol. 2024, 17, 379–392. [Google Scholar] [CrossRef]
Characteristic | What Does Characteristic Specify | Unit of Measurement | Scale of Measurement |
---|---|---|---|
forest compartment area | The area of forest compartments | ha | ratio |
age | Average age of dominant tree species | year | ratio |
relative stocking | Ratio of the basal area of a stand to the basal area of a ‘normal’ stand | ratio | |
site quality | Index of potential site productivity expressed by average height of dominant tree species compared with ‘normal’ stand | ordinal | |
soil moisture | Index of long-term moisture conditions | ordinal | |
group of forest types | Dominance of some ecological group of understory plant species | nominal | |
share of tree species | Share of the tree species (fir, spruce, Siberian pine, Scots pine, larch (Larix sibirica Ledeb.), birch, aspen (Populus tremula L.) or willow (Salix ssp.)) in the stand’s growing stock | ‘unit’; each unit ≈ 10% of the total growing stock | ratio |
Group of Forest Types | Plants Dominated in Unederstory Layers | Soil Fertility | Most Typical Soil Humidification Regime and Grain Size |
---|---|---|---|
feather moss | Hylocomiaceae | poor | moderately wet, coarse or medium slit |
tallgrass | some tall grasses, like species of Heracleum, Aconitum, Veratrum and others | very rich | moderately wet, medium slit |
shrub | Vaccínium ssp. | poor | moderately wet, from sand to medium slit |
lichen | Cladonia and Cetraria species | extremely poor | dry, sand |
sedge | Carex macroura Meinsh. | rich | moderately wet, coarse or medium slit |
mixed grass | a variety of typical mesophilic forest herbs without explicit dominants | very rich | moderately wet, coarse or medium slit |
sphagnum | Sphagnum ssp. | extremely poor | extremely stagnant wet, from medium slit to fine slit |
grass-swamp | a variety of typical hydrophilic herbs without explicit dominants | extremely poor | extremely flowing wet, from medium slit to clay |
Data | Year | Damage | All Data | Train Set | Test Set |
---|---|---|---|---|---|
ground data | 2015 | 0 | 116,545 | 5340 | 23,309 |
ground data | 2015 | 1 | 668 | 2670 | 134 |
ground data | 2016 | 0 | 113,615 | 28,780 | 22,723 |
ground data | 2016 | 1 | 3598 | 14,390 | 720 |
RS data | 2015 | 0 | 304,535 | 47,780 | 60,907 |
RS data | 2015 | 1 | 5972 | 23,890 | 1194 |
RS data | 2016 | 0 | 289,326 | 169,450 | 57,865 |
RS data | 2016 | 1 | 21,181 | 84,725 | 4236 |
Hyperparameter | What Does Hyperparameter Specify | DT | SVM | XGB |
---|---|---|---|---|
Cp form | The measure of minimal increasing of prediction accuracy after splitting | 0.001–1 | ||
Maxdepth, max_depth | The maximum depth of the tree | 3–10 | 3–10 | |
Minbucket | Smallest number of observations in a terminal node | 1–100 | ||
Minsplit | Smallest number of observations in the parent node | 1–100 | ||
Kernel | Specific algorithm of pattern analysis | radial, sigmoid, polinomial (degree 1 to 4) | ||
Cost | The measure of classification hardness | 10−5–105 (log-scaled) | ||
Gamma | The measure of sample point influence on classification | 10−5–105 (log-scaled) | ||
Nrounds | The number of trees | 10–600 | ||
Min_child_weight | The minimum sum of weights of observations in a child node | 1–10 | ||
Subsample | The fraction of observations sampled for each tree | 0.5–0.8 | ||
Colsample_bytree | The subsample ratio of columns when constructing each tree | 0.5–0.9 | ||
Eta | Degree of feature’s weight shrinkage to prevent overfitting | 0.1–0.6 |
Hyperparameter | 2015, Ground Data | 2015, RS Data | 2016, Ground Data | 2016, RS Data |
---|---|---|---|---|
Max_depth | 10 | 10 | 8 | 10 |
Nrounds | 50 | 200 | 60 | 300 |
Min_child_weight | 1.712 | 6.953 | 1.252 | 3.363 |
Subsample | 0.6603 | 0.6782 | 0.6053 | 0.748 |
Colsample_bytree | 0.6254 | 0.8419 | 0.8426 | 0.8021 |
Eta | 0.1453 | 0.1513 | 0.1463 | 0.1063 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goroshko, A.A.; Sultson, S.M.; Ponomarev, E.I.; Demidko, D.A.; Slinkina, O.A.; Mikhaylov, P.V.; Tatarintsev, A.I.; Kulakova, N.N.; Khizhniak, N.P. Risk Modeling for the Emergence of the Primary Outbreak Area of the Siberian Moth Dendrolimus sibiricus Tschetv. in Coniferous Forests of Central Siberia. Forests 2025, 16, 160. https://doi.org/10.3390/f16010160
Goroshko AA, Sultson SM, Ponomarev EI, Demidko DA, Slinkina OA, Mikhaylov PV, Tatarintsev AI, Kulakova NN, Khizhniak NP. Risk Modeling for the Emergence of the Primary Outbreak Area of the Siberian Moth Dendrolimus sibiricus Tschetv. in Coniferous Forests of Central Siberia. Forests. 2025; 16(1):160. https://doi.org/10.3390/f16010160
Chicago/Turabian StyleGoroshko, Andrey A., Svetlana M. Sultson, Evgenii I. Ponomarev, Denis A. Demidko, Olga A. Slinkina, Pavel V. Mikhaylov, Andrey I. Tatarintsev, Nadezhda N. Kulakova, and Natalia P. Khizhniak. 2025. "Risk Modeling for the Emergence of the Primary Outbreak Area of the Siberian Moth Dendrolimus sibiricus Tschetv. in Coniferous Forests of Central Siberia" Forests 16, no. 1: 160. https://doi.org/10.3390/f16010160
APA StyleGoroshko, A. A., Sultson, S. M., Ponomarev, E. I., Demidko, D. A., Slinkina, O. A., Mikhaylov, P. V., Tatarintsev, A. I., Kulakova, N. N., & Khizhniak, N. P. (2025). Risk Modeling for the Emergence of the Primary Outbreak Area of the Siberian Moth Dendrolimus sibiricus Tschetv. in Coniferous Forests of Central Siberia. Forests, 16(1), 160. https://doi.org/10.3390/f16010160