Global Warming as Revealed Through Thirty Years of Analysis on Breeding of Mediterranean Tits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Bird Monitoring
2.3. Prey Survey
2.4. Meteorological Data Collecting
2.5. Statistical Analysis
3. Results
3.1. Analysis Between Meteorological Data and Laying Date
3.2. Breeding Parameters of Tits Through 30 Years
3.3. Breeding Success
3.4. Prey Delivered to Nestlings
4. Discussion
4.1. Advancement of Egg-Laying Date in the Three Habitats
4.2. Matching Breeding Parameters of Blue and Great Tits in the Three Habitats
4.3. Importance of Caterpillars in the Oakwood
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; 184p. [Google Scholar] [CrossRef]
- Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. 2006, 37, 637–669. [Google Scholar] [CrossRef]
- Bale, J.S.; Masters, G.J.; Hodkinson, I.D.; Awmack, C.; Bezemer, T.M.; Brown, V.; Butterfield, J.; Buse, A.; Coulson, J.C.; Farrar, J.; et al. Herbivory in global climate change research: Direct effects of rising temperature on insect herbivores. Glob. Chang. Biol. 2002, 8, 1–16. [Google Scholar] [CrossRef]
- Ryttman, H. The influence of climate change on brood size and breeding time in three tit species in Sweden, 1962–2019. Ornis Svec. 2024, 34, 19–24. [Google Scholar] [CrossRef]
- Cheviron, Z.A.; Brumfield, R.T. Genomic insights into adaptation to high-altitude environments. Heredity 2012, 108, 354–361. [Google Scholar] [CrossRef] [PubMed]
- Khaliq, I.; Hof, C.; Prinzinger, R.; Böhning-Gaese, K.; Pfenninger, M. Global variation in thermal tolerances and vulnerability of endotherms to climate change. Proc. R. Soc. B Biol. Sci. 2014, 281, 20141097. [Google Scholar] [CrossRef] [PubMed]
- Andreychev, A.V.; Lapshin, A.S.; Kuznetsov, V.A. Breeding success of the Eurasian eagle owl (Bubo bubo) and rodent population dynamics. Biol. Bull. 2016, 43, 851–861. [Google Scholar] [CrossRef]
- Lambrechts, M.M.; Deeming, D.C. Nest Design and Breeding Success: Replicability of Methodologies and Research Findings in Secondary Hole Nesting Passerines. Birds 2024, 5, 278–307. [Google Scholar] [CrossRef]
- McKechnie, A.E.; Wolf, B.O. Climate change increases the likelihood of catastrophic avian mortality events during extreme heat waves. Biol. Lett. 2010, 6, 253–256. [Google Scholar] [CrossRef] [PubMed]
- du Plessis, K.L.; Martin, R.O.; Hockey, P.A.R.; Cunningham, S.J.; Ridley, A.R. The costs of keeping cool in a warming world: Implications of high temperatures for foraging, thermoregulation and body condition on an arid-zone bird. Glob. Chang. Biol. 2012, 18, 3063–3070. [Google Scholar] [CrossRef]
- Bourne, A.R.; Cunningham, S.J.; Spottiswoode, C.N.; Ridley, A.R. High temperatures drive offspring mortality in a cooperatively breeding bird. Proc. R. Soc. B 2020, 287, 20201140. [Google Scholar] [CrossRef]
- Bourne, A.R.; Cunningham, S.J.; Spottiswoode, C.N.; Ridley, A.R. Hot droughts compromise interannual survival across all group sizes in a cooperatively breeding bird. Ecol. Lett. 2020, 23, 1776–1788. [Google Scholar] [CrossRef]
- Berg, M.P.; Kiers, E.T.; Driessen, G.; van der Heijden, M.; Kooi, B.W.; Kuenen, F.; Liefting, M.; Verhoef, H.A.; Ellers, J. Adapt or disperse: Understanding species persistence in a changing world. Glob. Chang. Biol. 2010, 16, 587–598. [Google Scholar] [CrossRef]
- Bellard, C.; Bertelsmeier, C.; Leadley, P.; Thuiller, W.; Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 2012, 15, 365–377. [Google Scholar] [CrossRef] [PubMed]
- Lack, D. A long term study of the great tit (Parus major). J. Anim. Ecol. 1964, 33, 159–173. [Google Scholar] [CrossRef]
- Cole, E.F.; Regan, C.E.; Sheldon, B.C. Spatial variation in avian phenological response to climate change linked to tree health. Nat. Clim. Chang. 2021, 11, 872–878. [Google Scholar] [CrossRef]
- van Balen, J.H. A comparative study of the breeding ecology of the great tit Parus major in different habitats. Ardea 1973, 55, 1–93. [Google Scholar] [CrossRef]
- Ryttman, H.; Hall-Karlsson, K.S.S. Brood size of four titmice (Paridae) during 1962–2001. Ornis Svec. 2010, 20, 57–62. [Google Scholar] [CrossRef]
- Schölin, K.G.; Källander, H.A. Blue Tit Cyanistes caeruleus population: Its recent increase and breeding data. Ornis Svec. 2012, 22, 19–24. [Google Scholar] [CrossRef]
- Schölin, K.G.; Källander, H. The breeding biology of the Coal Tit Periparus ater in South Central Sweden. Ornis Svec. 2013, 23, 151–158. [Google Scholar] [CrossRef]
- Blondel, J.; Thomas, D.W.; Charmantier, A.; Perret, P.; Burgault, P.; Lambrechts, M.M. A Thirty-Year Study of Phenotypic and Genetic Variation of Blue Tits in Mediterranean Habitat Mosaics. BioScience 2006, 56, 661–673. [Google Scholar] [CrossRef]
- Laczi, M.; Garamszegi, L.Z.; Hegyi, G.; Herényi, M.; Ilyés, G.; Könczey, R.; Nagy, G.; Pongrácz, R.; Rosivall, B.; Szöllősi, E.; et al. Teleconnections and local weather orchestrate the reproduction of tit species in the Carpathian Basin. J. Avian Biol. 2019, 50, e02179. [Google Scholar] [CrossRef]
- Gosler, A. The Great Tit; Hamlyn Ltd.: London, UK, 1993. [Google Scholar]
- Gosler, A.; Clement, P.; Christie, D.A. Great Tit (Parus major), Version 1.0. In Birds of the World; Billerman, S.M., Keeney, B.K., Rodewald, P.G., Schulenberg, T.S., Eds.; Cornell Laboratory of Ornithology: Ithaca, NY, USA, 2020; Available online: https://birdsoftheworld.org/bow/home (accessed on 9 October 2024).
- Stenning, M. The Blue Tit; T. & A.D. Poyser: London, UK; New York, NY, USA, 2018. [Google Scholar]
- Visser, M.E.; van Noordwijk, A.J.; Tinbergen, J.M.; Lessells, C.M. Warmer springs lead to mistimed reproduction in great tits (Parus major). Proc. R. Soc. B Biol. Sci. 1998, 265, 1867–1870. [Google Scholar] [CrossRef]
- Visser, M.E.; Adriaensen, F.; van Balen, J.H.; Blondel, J.; Dhondt, A.A.; van Dongen, S.; du Feu, C.; Ivankina, E.V.; Kerimov, A.B.; de Laet, J.; et al. Variable responses to large-scale climate change in European Parus populations. Proc. R. Soc. Lond. B 2003, 270, 367–372. [Google Scholar] [CrossRef]
- Visser, M.E.; Lindner, M.; Gienapp, P.; Long, M.C.; Jenouvrier, S. Recent natural variability in global warming weakened phenological mismatch and selection on seasonal timing in great tits (Parus major). Proc. R. Soc. B Biol. Sci. 2021, 288, 20211337. [Google Scholar] [CrossRef] [PubMed]
- Charmantier, A.; McCleery, R.H.; Cole, L.R.; Perrins, C.; Kruuk, L.E.B.; Sheldon, B.C. Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science 2008, 320, 800–803. [Google Scholar] [CrossRef]
- Both, C.; van Asch, M.; Bijlsma, R.G.; van den Burg, A.B.; Visser, M.E. Climate change and unequal phenological changes across four trophic levels: Constraints or adaptations? J. Anim. Ecol. 2009, 78, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Massa, B.; Cusimano, C.A.; Margagliotta, B.; Galici, R. Reproductive characteristics and differential response to seasonal temperatures of blue and great tits (Cyanistes caeruleus & Parus major) in three neighbouring mediterranean habitats. Rev. Écologie 2011, 66, 157–172. [Google Scholar]
- Källander, H.; Hasselquist, D.; Hedenström, A.; Nord, A.; Smith, H.G.; Nilsson, J.-Å. Variation in laying date in relation to spring temperature in three species of tits (Paridae) and pied flycatchers Ficedula hypoleuca in southernmost Sweden. J. Anim. Ecol. 2017, 48, 83–90. [Google Scholar] [CrossRef]
- Teplitsky, C.; Charmantier, A. Evolutionary Consequences of Climate Change in Birds. In Effects of Climate Change on Birds, Oxford Academic 2nd ed.; Dunn, P.O., Møller, A.P., Eds.; Oxford University Press: Oxford, UK, 2019. [Google Scholar] [CrossRef]
- Andreasson, F.; Nord, A.; Nilsson, J.-A. Variation in breeding phenology in response to climate change in two passerine species. Oecologia 2023, 201, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Perrins, C.M. The timing of birds’ breeding seasons. Ibis 1970, 112, 242–255. [Google Scholar] [CrossRef]
- Van Noordwijk, A.J.; McCleery, R.H.; Perrins, C.M. Selection for the timing of great tit breeding in relation to caterpillar growth and temperature. J. Anim. Ecol. 1995, 64, 451–458. [Google Scholar] [CrossRef]
- Hinks, A.E.; Cole, E.F.; Daniels, K.J.; Wilkin, T.A.; Nakagawa, S.; Sheldon, B.C. Scale-dependent phenological synchrony between songbirds and their caterpillar food source. Am. Nat. 2015, 186, 84–97. [Google Scholar] [CrossRef]
- Burgess, M.D.; Smith, K.W.; Evans, K.L.; Leech, D.; Pearce-Higgins, J.W.; Branston, C.J.; Briggs, K.; Clark, J.R.; Du Feu, C.R.; Lewthwaite, K.; et al. Tritrophic phenological match-mismatch in space and time. Nat. Ecol. Evol. 2018, 2, 970–975. [Google Scholar] [CrossRef] [PubMed]
- Blondel, J. Biogéographie Évolutive; Masson: Paris, France, 1986. [Google Scholar]
- Massa, B.; Lo Valvo, F.; Margagliotta, B.; Lo Valvo, M. Adaptive plasticity of blue tits (Parus caeruleus) and great tits (Parus major) breeding in natural and semi-natural insular habitats. Ital. J. Zool. 2004, 71, 209–217. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 10 March 2023).
- Kvist, L.; Ruokonen, M.; Lumme, J.; Orell, M. The colonization history and present-day population structure of the European great tit (Parus major major). Heredity 1999, 82, 495–502. [Google Scholar] [CrossRef]
- Lemoine, M.; Lucek, K.; Perrier, C.; Saladin, V.; Adriaensen, F.; Barba, E.; Belda, E.J.; Charmantier, A.; Cichoń, M.; Eeva, T.; et al. Low but contrasting neutral genetic differentiation shaped by winter temperature in European great tits. Biol. J. Linn. Soc. 2016, 118, 668–685. [Google Scholar] [CrossRef]
- Glądalski, M.; Bańbura, M.; Kaliński, A.; Markowski, M.; Skwarska, J.; Wawrzyniak, J.; Zieliński, P.; Bańbura, J. Effects of extreme thermal conditions on plasticity in breeding phenology and double-broodedness of Great Tits and Blue Tits in central Poland in 2013 and 2014. Int. J. Biometeorol. 2016, 60, 1795–1800. [Google Scholar] [CrossRef] [PubMed]
- Stonehouse, J.C.; Spurgin, L.G.; Laine, V.N.; Bosse, V.; The Great Tit HapMap Consortium; Groenen, M.A.M.; van Oers, K.; Sheldon, B.C.; Visser, M.E.; Slate, J. The genomics of adaptation to climate in European great tit (Parus major) populations. Evol. Lett. 2024, 8, 18–28. [Google Scholar] [CrossRef]
- Marrot, P.; Charmantier, A.; Blondel, J.; Garant, D. Current spring warming as a driver of selection on reproductive timing in a wild passerine. Anim. Ecol. 2018, 87, 754–764. [Google Scholar] [CrossRef] [PubMed]
- Vedder, O.; Bouwhuis, S.; Sheldon, B.C. Quantitative assessment of the importance of phenotypic plasticity in adaptation to climate change in wild bird populations. PLoS Biol. 2013, 11, e1001605. [Google Scholar] [CrossRef]
- Reed, T.E.; Grøtan, V.; Jenouvrier, S.; Sæther, B.E.; Visser, M.E. Population growth in a wild bird is buffered against phenological mismatch. Science 2013, 340, 488–491. [Google Scholar] [CrossRef]
- Nilsson, J.F.; Nilsson, J.Å. Fluctuating selection on basal metabolic rate. Ecol. Evol. 2016, 6, 1197–1202. [Google Scholar] [CrossRef] [PubMed]
- Cucco, M.; Malacarne, G.; Orecchia, G.; Boano, G. Influence of weather conditions on pallid swift Apus pallidus breeding success. Ecography 1992, 15, 184–189. [Google Scholar] [CrossRef]
- Simmonds, E.G.; Sheldon, B.C.; Coulson, T.; Cole, E.F. Incubation behavior adjustments, driven by ambient temperature variation, improve synchrony between hatch dates and caterpillar peak in a wild bird population. Ecol. Evol. 2017, 7, 9415–9425. [Google Scholar] [CrossRef]
- Solis, I.; Alvarez, E.; Barba, E. Global warming modifies the seasonal distribution of clutches on a Mediterranean great tit population. Int. J. Biometeorol. 2023, 67, 367–376. [Google Scholar] [CrossRef] [PubMed]
- Glądalski, M.; Bańbura, M.; Kaliński, A.; Markowski, M.; Skwarska, J.; Wawrzyniak, J.; Zieliński, P.; Bańbura, J. Extreme weather event in spring 2013 delayed breeding time of Great Tit and Blue Tit. Int. J. Biometeorol. 2014, 58, 2169–2173. [Google Scholar] [CrossRef] [PubMed]
- Glądalski, M.; Mainwaring, M.C.; Bańbura, M.; Kaliński, A.; Markowski, M.; Skwarska, J.; Wawrzyniak, J.; Bańbura, J.; Hartley, I.R. Consequences of hatching deviations for breeding success: A long-term study on blue tits Cyanistes caeruleus. Eur. Zool. J. 2020, 87, 385–394. [Google Scholar] [CrossRef]
- Wawrzyniak, J.; Kaliński, A.; Glądalski, M.; Bańbura, M.; Markowski, M.; Skwarska, J.; Zieliński, P.; Cyżewska, I.; Bańbura, J. Long-term variation in laying date and clutch size of the Great Tit Parus major in central Poland: A comparison between urban parkland and deciduous forest. Ardeola 2015, 62, 311–322. [Google Scholar] [CrossRef]
- Barba Campos, E. Ecología de Reproducción del Carbonero Común Parus major en el Naranjal Valenciano. Ph.D. Thesis, Universidad de Valencia, Valencia, Spain, 1991. [Google Scholar]
- Mainwaring, M.C.; Hartley, I.R.; Bearhop, S.; Brulez, K.; du Feu, C.R.; Murphy, G.; Plummer, K.E.; Webber, S.L.; Reynolds, S.J.; Deeming, D.C. Latitudinal variation in blue tit and great tit nest characteristics indicates environmental adjustment. J. Biogeogr. 2012, 39, 1669–1677. [Google Scholar] [CrossRef]
- Deeming, D.C.; Mainwaring, M.C.; Hartley, I.R.; Reynolds, J. Local temperature and not latitude determines the design of Blue Tit and Great Tit nests. Avian Biol. Res. 2012, 5, 203–208. [Google Scholar] [CrossRef]
- Silverin, B.; Wingfield, J.; Stokkan, K.-A.; Massa, R.; Järvinen, A.; Andersson, N.-Å.; Lambrechts, M.; Sorace, A.; Blomqvist, D. Ambient temperature effects on photo induced gonadal cycles and hormonal secretion patterns in Great Tits from three different breeding latitudes. Horm. Behav. 2008, 54, 60–68. [Google Scholar] [CrossRef]
- Møller, A.P.; Balbontín, J.; Dhondt, A.A.; Adriansen, F.; Artemiev, A.; Banbura, J.; Barba, E.; Biard, C.; Blondel, J.; Bouvier, G.-C.; et al. Interaction of climate change with effects of conspecific and heterospecific density on reproduction. Oikos 2020, 129, 1807–1819. [Google Scholar] [CrossRef]
- Møller, A.P.; Balbontín, J.; Dhondt, A.A.; Remeš, V.; Adriaensen, F.; Biard, C.; Camprodon, J.; Cichoń, M.; Doligez, B.; Dubiec, A.; et al. Effects of interspecific coexistence on laying date and clutch size in two closely related species of hole-nesting birds. J. Anim. Ecol. 2018, 87, 1738–1748. [Google Scholar] [CrossRef]
- Andreu, J.; Barba, E. Breeding dispersal of Great Tits Parus major in a homogeneous habitat: Effects of sex, age, and mating status. Ardea 2006, 94, 45–58. [Google Scholar]
- Lo Valvo, F.; Massa, B. Breeding performance of Parus caeruleus ultramarinus on Pantelleria island (Sicilian Channel). Riv. Ital. Ornitol. 1995, 65, 129–135. [Google Scholar]
- Adamou, A.E.; Banbura, M.; Banbura, J. Subtle differences in breeding performance between Great Tits Parus major and Afrocanarian Blue Tits Cyanistes teneriffae in the peripheral zone of the species geographic ranges in NE Algeria. Eur. Zool. J. 2020, 87, 263–271. [Google Scholar] [CrossRef]
- Ceia, R.S.; Machado, R.A.; Ramos, J.A. Nestling food of three hole-nesting passerine species and experimental increase in their densities in Mediterranean oak woodlands. Eur. J. For. Res. 2016, 135, 839–847. [Google Scholar] [CrossRef]
- Garrido-Bautista, J.; Hernández-Ruiz, C.; Ros-Santaella, J.L.; Pintus, E.; Bernardo, N.; Comas, M.; Moreno-Rueda, G. Habitat-dependent breeding biology of the Blue Tit (Cyanistes caeruleus) across a continuous and heterogeneous Mediterranean woodland. Avian Res. 2023, 14, 100109. [Google Scholar] [CrossRef]
- Shiao, M.-T.; Chuang, M.-C.; Wu, S.; Yuan, H.-W.; Wang, Y. Differential larval phenology affects nestling condition of Green-backed Tit (Parus monticolus) in broadleaf and coniferous habitats, subtropical Taiwan. J. Ornithol. 2019, 160, 1003–1014. [Google Scholar] [CrossRef]
- Massa, B. Long-term trend of Italian breeding forest birds and comparison with the other Mediterranean peninsulas. Biogeographia 2024, 39, a034. [Google Scholar] [CrossRef]
- Huang, Y.; Wu, C.; Huang, W.; Liu, Y.; Qi, M.; Bai, J.; Dong, Y.; Gascoigne, S.J.L.; Ciais, P.; Peñuelas, J.; et al. Climate change has desynchronized insect and vegetation phenologies across Europe. bioRxiv 2023. Preprint. [Google Scholar] [CrossRef]
- Blondel, J.; Dias, P.C.; Perret, P.; Maistre, P.; Lambrechts, M.M. Selection-based biodiversity at a small spatial scale in a small low-dispersal insular bird. Science 1999, 285, 1399–1402. [Google Scholar] [CrossRef]
- Fuller, W.J.; Fuller, Ö.Ö. Breeding parameters of a Great Tit (Parus major) population on the island of Cyprus compared to other Mediterranean populations. Zool. Middle East 2024, 70, 93–103. [Google Scholar] [CrossRef]
- Pagani-Núñez, E.; Valls, M.; Senar, J.C. Diet specialization in a generalist population: The case of breeding great tits Parus major in the Mediterranean area. Oecologia 2015, 179, 629–640. [Google Scholar] [CrossRef] [PubMed]
Mean Temperature | Habitat | Parus major | Cyanistes caeruleus | ||
---|---|---|---|---|---|
February | Estimate | p | Estimate | p | |
Laying date | Pine Wood | −0.764 | 0.05 * | −0.825 | 0.005 ** |
Oak Wood | −1.113 | 3 × 10−7 *** | −1.811 | 2 × 10−16 *** | |
Mixed Wood | 0.707 | 0.0704 | −0.725 | 0.008 ** | |
Breeding success | Pine Wood | 0.052 | 0.359 | −0.018 | 0.64935 |
Oak Wood | −0.032 | 0.341 | −0.017 | 0.529 | |
Mixed Wood | 0.04 | 0.3916 | 0.009 | 0.84663 |
Species | Habitat | Laying Date | Clutch Size | N° of Fledglings | Breeding Success (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean | s.d. | n. | Mean | s.d | n. | Mean | s.d | n. | |||
C. caeruleus | Pine wood | 63.6 | 6.5 | 228 | 6.5 | 1.3 | 228 | 3.4 | 2.3 | 171 | 52.8 |
Oak wood | 49.1 | 6.8 | 682 | 8.5 | 1.6 | 682 | 6.1 | 3.1 | 560 | 71.4 | |
Mixed wood | 58.7 | 1.9 | 212 | 7.7 | 0.6 | 211 | 5.0 | 1.1 | 145 | 64.7 | |
P. major | Pine wood | 62.0 | 5.4 | 168 | 6.3 | 1.4 | 157 | 3.6 | 2.4 | 109 | 56.6 |
Oak wood | 49.4 | 5.8 | 422 | 8.2 | 1.5 | 421 | 5.9 | 2.9 | 354 | 72.2 | |
Mixed wood | 58.3 | 3.5 | 151 | 6.8 | 0.9 | 151 | 4.5 | 1.1 | 109 | 65.8 |
Species | Great Tit Parus major | Blue Tit Cyanistes caeruleus |
---|---|---|
Laying anticipation in oakwood (days/30 years) | 10.5 | 8.7 |
Laying anticipation in pine reforestation (days/30 years) | 19.8 | 14.4 |
Laying anticipation in mixed woodland (days/26 years) | 13.0 | 13.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cusimano, C.A.; Chiarello, S.; Massa, B. Global Warming as Revealed Through Thirty Years of Analysis on Breeding of Mediterranean Tits. Forests 2025, 16, 226. https://doi.org/10.3390/f16020226
Cusimano CA, Chiarello S, Massa B. Global Warming as Revealed Through Thirty Years of Analysis on Breeding of Mediterranean Tits. Forests. 2025; 16(2):226. https://doi.org/10.3390/f16020226
Chicago/Turabian StyleCusimano, Camillo A., Sara Chiarello, and Bruno Massa. 2025. "Global Warming as Revealed Through Thirty Years of Analysis on Breeding of Mediterranean Tits" Forests 16, no. 2: 226. https://doi.org/10.3390/f16020226
APA StyleCusimano, C. A., Chiarello, S., & Massa, B. (2025). Global Warming as Revealed Through Thirty Years of Analysis on Breeding of Mediterranean Tits. Forests, 16(2), 226. https://doi.org/10.3390/f16020226