Evaluation of the Effects of Different Cultivars of Falcataria falcata on Soil Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection Locations and Strategies
2.2. Measurement and Comprehensive Evaluation of Physiological and Growth Index
2.3. Determination of Soil Physicochemical Properties and Enzyme Activity
2.4. Amplicon Sequencing and Soil Microbial Community Analysis
2.5. Analysis of Microbial Community Complexity and Stability
2.6. Construction of Minimum Dataset and Soil Quality Assessment
3. Results
3.1. Physiological and Growth Characteristics and Comprehensive Evaluation, of Different Cultivars
3.2. Physicochemical Properties and Enzyme Activity of Bulk Soil in Different Cultivars
3.3. Microbial Diversity and Species Composition in Bulk Soils of Different Cultivars
3.4. Complexity and Stability of Bulk Soil Microbial Communities in Different Cultivars
3.5. Specific Microbes and Functional Characteristics of Bulk Soil in Different Cultivars
3.6. Soil Quality Assessment
4. Discussion
4.1. Different Cultivars of F. falcata Can Promote Soil Fertility by Recruiting Specific Functional Microorganisms During the Early Stages of Cultivation
4.2. The Stability of the Soil Microbial Community Is the Key Biological and Ecological Index for the Evaluation of Quality in Bulk Soil Associated with F. falcata
4.3. Selection Strategies for F. falcata Cultivars in Forestry Cultivation Practices
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lim, G.H.; Park, S.Y.; Jeon, D.S.; Yoon, J.H.; Lee, D.B.; Oh, J.S.; Kim, K.H. Quality assessment of the soils used for urban agriculture in Seoul and its vicinity. Korean J. Soil Sci. Fertil. 2016, 49, 572–576. [Google Scholar] [CrossRef]
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; De Deyn, G.; de Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P.; et al. Soil quality–a critical review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Stavi, I.; Xu, C.; Argaman, E. Climate-smart forestry in the world’s drylands: Areview of challenges and opportunities. Anthr. Rev. 2023, 11, 67–90. [Google Scholar] [CrossRef]
- Chen, H.; Fleskens, L.; Moolenaar, S.W.; Ritsema, C.J.; Wang, F. Stakeholders’ perceptions towards land restoration and its impacts on ecosystem services: A case study in the Chinese Loess Plateau. Land 2022, 11, 2076. [Google Scholar] [CrossRef]
- United Nations. United Nations Decade on Ecosystem Restoration (2021–2030); United Nations: New York City, NY, USA, 2019. [Google Scholar]
- Deng, L.; Liu, G.B.; Shangguan, Z.P. Land-use conversion and changing soil carbon stocks in China’s ’Grain-for-Green’ Program: A synthesis. Glob. Change Biol. 2014, 20, 3544–3556. [Google Scholar] [CrossRef]
- Doran, J.W.; Zeiss, M.R. Soil health and sustainability: Managing the biotic component of soil quality. Appl. Soil Ecol. 2000, 15, 3–11. [Google Scholar] [CrossRef]
- Zhu, Y.; Peng, J.; Wei, Z.; Shen, Q.; Zhang, F. Linking the soil microbiome to soil health. Sci. Sin. Vitae 2021, 51, 1–11. (In Chinese) [Google Scholar]
- Zhu, Y.; Shen, R.; He, J.; Wang, Y.; Han, X.; Jia, Z. China soil microbiome intiative: Progress and perspective. Bull. Chin. Acad. Sci. 2017, 32, 554–565. (In Chinese) [Google Scholar]
- Frąc, M.; Hannula, S.E.; Belka, M.; Jedryczka, M. Fungal biodiversity and their role in soil health. Front. Microbiol. 2018, 9, 707. [Google Scholar] [CrossRef]
- Li, J.; Zhu, T.; Singh, B.K.; Pendall, E.; Li, B.; Fang, C.; Nie, M. Key microorganisms mediate soil carbon-climate feedbacks in forest ecosystems. Sci. Bull. 2021, 66, 2036–2044. [Google Scholar] [CrossRef]
- Yokobe, T.; Tokuchi, N.; Hyodo, F.; Tateno, R.; Hiura, T. Response of microorganisms to a 5-year large-scale nitrogen loading in immature volcanic ash soil in an oak-dominated forest. Appl. Soil Ecol. 2022, 177, 104537. [Google Scholar] [CrossRef]
- Chaparro, J.M.; Sheflin, A.M.; Manter, D.K.; Vivanco, J.M. Manipulating the soil microbiome to increase soil health and plant fertility. Biol. Fertil. Soils 2012, 48, 489–499. [Google Scholar] [CrossRef]
- Deng, Y.; Jiang, Y.H.; Yang, Y.; He, Z.; Luo, F.; Zhou, J. Molecular ecological network analyses. BMC Bioinform. 2012, 13, 113. [Google Scholar] [CrossRef] [PubMed]
- Thebault, E.; Fontaine, C. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 2010, 329, 853–856. [Google Scholar] [CrossRef]
- Lu, L.H.; Yin, S.X.; Liu, X.; Zhang, W.M.; Gu, T.Y.; Shen, Q.R.; Qiu, H.Z. Fungal networks in yield-invigorating and -debilitating soils induced by prolonged potato monoculture. Soil Biol. Biochem. 2013, 65, 186–194. [Google Scholar] [CrossRef]
- Layeghifard, M.; Hwang, D.M.; Guttman, D.S. Disentangling interactions in the microbiome: Network perspective. Trends Microbiol. 2017, 25, 217–228. [Google Scholar] [CrossRef]
- Pham, T.G.; Nguyen, H.T.; Kappas, M. Assessment of soil quality indicators under different agricultural land uses and topographic aspects in Central Vietnam. Int. Soil Water Conserv. Res. 2018, 6, 280–288. [Google Scholar] [CrossRef]
- Abdu, A.; Laekemariam, F.; Gidago, G.; Getaneh, L.; Lisetskii, F. Explaining the soil quality using different assessment techniques. Appl. Environ. Soil Sci. 2023, 2023, 1–15. [Google Scholar] [CrossRef]
- Rametsteiner, E.; Simula, M. Forest certification—An instrument to promote sustainable forest management? J. Environ. Manag. 2003, 67, 87–98. [Google Scholar] [CrossRef]
- Li, W.Q.; Chen, J.H.; Zhang, Z.M. Forest quality-based assessment of the returning farmland to forest program at the community level in SW China. For. Ecol. Manag. 2020, 461, 117938. [Google Scholar] [CrossRef]
- de Ridder-Duine, A.S.; Kowalchuk, G.A.; Klein Gunnewiek, P.J.A.; Smant, W.; van Veen, J.A.; de Boer, W. Rhizosphere bacterial community composition in natural stands of Carex arenaria (sand sedge) is determined by bulk soil community composition. Soil Biol. Biochem. 2005, 37, 349–357. [Google Scholar] [CrossRef]
- Aira, M.; Gómez-Brandón, M.; Lazcano, C.; Bååth, E.; Domínguez, J. Plant genotype strongly modifies the structure and growth of maize rhizosphere microbial communities. Soil Biol. Biochem. 2010, 42, 2276–2281. [Google Scholar] [CrossRef]
- Micallef, S.A.; Channer, S.; Shiaris, M.P.; Colón-Carmona, A. Plant age and genotype impact the progression of bacterial community succession in the Arabidopsis rhizosphere. Plant Signal. Behav. 2014, 4, 777–780. [Google Scholar] [CrossRef]
- Meier, I.C.; Finzi, A.C.; Phillips, R.P. Root exudates increase N availability by stimulating microbial turnover of fast-cycling N pools. Soil Biol. Biochem. 2017, 106, 119–128. [Google Scholar] [CrossRef]
- Liu, Y.; Evans, S.E.; Friesen, M.L.; Tiemann, L.K. Root exudates shift how N mineralization and N fixation contribute to the plant-available N supply in low fertility soils. Soil Biol. Biochem. 2022, 165, 108541. [Google Scholar] [CrossRef]
- Zhou, J.C.; Zhang, L.; Feng, G.; George, T.S. Arbuscular mycorrhizal fungi have a greater role than root hairs of maize for priming the rhizosphere microbial community and enhancing rhizosphere organic P mineralization. Soil Biol. Biochem. 2022, 171, 108713. [Google Scholar] [CrossRef]
- Lynch, J.M.; Whipps, J.M. Substrate flow in the rhizosphere. Plant Soil 1990, 129, 1–10. [Google Scholar] [CrossRef]
- Larsen, P.B.; Degenhardt, J.; Tai, C.Y.; Stenzler, L.M.; Howell, S.H.; Kochian, L.V. Aluminum-resistant Arabidopsis mutants that exhibit altered patterns of aluminum accumulation and organic acid release from roots. Plant Physiol. 1998, 117, 9–18. [Google Scholar] [CrossRef]
- Kamilova, F.; Kravchenko, L.V.; Shaposhnikov, A.I.; Makarova, N.; Lugtenberg, B. Effects of the tomato pathogen Fusarium oxysporum f. sp. radicis-lycopersici and of the biocontrol bacterium Pseudomonas fluorescens WCS365 on the composition of organic acids and sugars in tomato root exudate. Mol. Plant-Microbe Interact. 2006, 19, 1121–1126. [Google Scholar]
- Fujikake, I. Selection of tree species for plantations in Japan. For. Policy Econ. 2007, 9, 811–821. [Google Scholar] [CrossRef]
- Rollan, C.D.; Li, R.; San Juan, J.L.; Dizon, L.; Ong, K.B. A planning tool for tree species selection and planting schedule in forestation projects considering environmental and socio-economic benefits. J. Environ. Manag. 2018, 206, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Quijas, S.; Schmid, B.; Balvanera, P. Plant diversity enhances provision of ecosystem services: A new synthesis. Basic Appl. Ecol. 2010, 11, 582–593. [Google Scholar] [CrossRef]
- Li, L.; Tilman, D.; Lambers, H.; Zhang, F.S. Plant diversity and overyielding: Insights from belowground facilitation of intercropping in agriculture. New Phytol. 2014, 203, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Hines, J.; Eisenhauer, N.; Isbell, F.; van der Plas, F.; Hobbie, S.E.; Kazanski, C.E.; Lehmann, A.; Liu, M.; Lochner, A.; Rillig, M.C.; et al. Plant diversity maintains multiple soil functions in future environments. eLife 2018, 7, e41228. [Google Scholar]
- Binkley, D.; Giardina, C.; Bashkin, M.A. Soil phosphorus pools and supply under the influence of Eucalyptus saligna and nitrogen-fixing Albizia facaltaria. For. Ecol. Manag. 2000, 128, 241–247. [Google Scholar] [CrossRef]
- Xiang, S.; Yan, S.; Lin, Q.; Huang, R.; Wang, R.; Wei, R.; Wu, G.; Zheng, H. Characterization of the Root Nodule Microbiome of the Exotic Tree Falcataria falcata (Fabaceae) in Guangdong, Southern China. Diversity 2023, 15, 1092. [Google Scholar] [CrossRef]
- Riniarti, M.; Hidayat, W.; Prasetia, H.; Niswati, A.; Hasanudin, U.; Banuwa, I.S.; Yoo, J.; Kim, S.; Lee, S. Using two dosages of biochar from Shorea to improve the growth of Paraserianthes falcataria seedlings. In IOP Conference Series: Earth and Environmental Science, Proceedings of the International Conference of Biomass and Bioenergy, Bogor, Indonesia, 10–11 August 2020; IOP Publishing: Bristol, UK, 2020. [Google Scholar]
- Yan, S.; Hu, D.; Wei, R.; Wang, R.; Zheng, H.; Lei, S.; Zeng, J. A Preliminary Study on Density and Fertilization Test by Uniform Design of Paraseriantes falcataria. Sci. Silvae Sin. 2015, 51, 153–158. [Google Scholar]
- Zhong, J.; Zhang, B.; Tan, J.; Lou, B.; Zhou, M. Structure characteristics of latored soil in slope land of Xiacun Farm in Boluo County and their meanings. Trop. Subtrop. Soil Sci. 1993, 2, 203–210. [Google Scholar]
- Malavolta, E.; Arzolla, J.; Haag, H. Sôbre a determinação do nitrogênio, do fósforo e do potássio no mesmo extrato. An. Esc. Sup. Agric. Luiz Queiroz 1958, 14, 13–19. [Google Scholar] [CrossRef]
- Lu, Z.; Li, J.; Yuan, C.; Xi, B.; Yang, B.; Meng, X.; Guo, T.; Yue, Y.; Gao, Y.; Liu, J.; et al. Evaluation of mutton quality characteristics of Dongxiang tribute sheep based on membership function and gas chromatography and ion mobility spectrometry. Front. Nutr. 2022, 9, 852399. [Google Scholar] [CrossRef]
- Zou, Z.; Guo, B.; Guo, Y.; Ma, X.; Luo, S.; Feng, L.; Pan, Z.; Deng, L.; Pan, S.; Wei, J.; et al. A comprehensive “quality-quantity-activity” approach based on portable near-infrared spectrometer and membership function analysis to systematically evaluate spice quality: Cinnamomum cassia as an example. Food Chem. 2024, 439, 138142. [Google Scholar] [CrossRef]
- Sumner, M.E.; Miller, W.P. Cation exchange capacity and exchange coefficients. In Methods of Soil Analysis: Part 3. Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; Soil Science Society of America: Madison, WI, USA, 1996; pp. 1201–1229. [Google Scholar]
- Sun, F.; Pan, K.; Olatunji, O.A.; Li, Z.; Chen, W.; Zhang, A.; Song, D.; Sun, X.; Huang, D.; Tan, X. Specific legumes allay drought effects on soil microbial food web activities of the focal species in agroecosystem. Plant Soil 2019, 437, 455–471. [Google Scholar] [CrossRef]
- Cui, W.; Li, R.; Fan, Z.; Wu, L.; Zhao, X.; Wei, G.; Shu, D. Weak environmental adaptation of rare phylotypes sustaining soil multi-element cycles in response to decades-long fertilization. Sci. Total Environ. 2023, 871, 162063. [Google Scholar] [CrossRef] [PubMed]
- Bremner, J.M. Nitrogen-Total. In Methods of Soil Analysis: Part 3. Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; Soil Science Society of America: Madison, WI, USA, 1996; pp. 1085–1121. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis: Part 3. Chemical Methods, 2nd ed.; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; Soil Science Society of America: Madison, WI, USA, 1996; pp. 961–1010. [Google Scholar]
- Weisburg, W.G.S.; Barns, S.M.; Pelletier, D.A.; Lane, D.J. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 1991, 173, 697–703. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.J.; Wong, J.; Heiner, C.; Oh, S.; Theriot, C.M.; Gulati, A.S.; McGill, S.K.; Dougherty, M.K. High-throughput amplicon sequencing of the full-length 16SrRNA gene with single-nucleotide resolution. Nucleic Acids Res. 2019, 47, e103. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glockner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef]
- Liu, C.; Li, X.; Mansoldo, F.R.P.; An, J.; Kou, Y.; Zhang, X.; Wang, J.; Zeng, J.; Vermelho, A.B.; Yao, M. Microbial habitat specificity largely affects microbial co-occurrence patterns and functional profiles in wetland soils. Geoderma 2022, 418, 115866. [Google Scholar] [CrossRef]
- Louca, S.; Parfrey, L.W.; Doebeli, M. Decoupling function and taxonomy in the global ocean microbiome. Science 2016, 353, 1272–1277. [Google Scholar] [CrossRef]
- Douglas, G.M.; Maffei, V.J.; Zaneveld, J.R.; Yurgel, S.N.; Brown, J.R.; Taylor, C.M.; Huttenhower, C.; Langille, M.G.I. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 2020, 38, 685–688. [Google Scholar] [CrossRef]
- Liu, C.; Li, C.; Jiang, Y.; Zeng, R.J.; Yao, M.; Li, X. A guide for comparing microbial co-occurrence networks. iMeta 2023, 2, e71. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Lei, S.; Wu, H.; Liao, L.; Wang, X.; Zhang, L.; Liu, G.; Wang, G.; Fang, L.; Song, Z. Simplified microbial network reduced microbial structure stability and soil functionality in alpine grassland along a natural aridity gradient. Soil Biol. Biochem. 2024, 191, 109366. [Google Scholar] [CrossRef]
- Herren, C.M.; McMahon, K.D. Cohesion: A method for quantifying the connectivity of microbial communities. ISME J. 2017, 11, 2426–2438. [Google Scholar] [CrossRef] [PubMed]
- Montesinos-Navarro, A.; Hiraldo, F.; Tella, J.L.; Blanco, G. Network structure embracing mutualism-antagonism continuums increases community robustness. Nat. Ecol. Evol. 2017, 1, 1661–1669. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Shi, D.; Jin, H.; Lou, Y.; He, W.; Xia, J. Soil quality evaluation of slope cultivated land based on soil management evaluation framework in Yunnan province. Trans. Chin. Soc. Agric. 2019, 35, 256–267. (In Chinese) [Google Scholar]
- Qiu, X.; Cao, G.; Cao, S.; Zhao, Q.; He, Q.; Zhao, M.; Diao, E. Investigating soil quality in cold highland agricultural fields with different soil types. Arch. Agron. Soil Sci. 2024, 70, 1–16. [Google Scholar] [CrossRef]
- Hardarson, G.; Atkins, C. Optimising biological N2 fixation by legumes in farming systems. Plant Soil 2003, 252, 41–54. [Google Scholar] [CrossRef]
- Saha, B.; Saha, S.; Das, A.; Bhattacharyya, P.K.; Basak, N.; Sinha, A.K.; Poddar, P. Biological nitrogen fixation for sustainable agriculture. In Agriculturally Important Microbes for Sustainable Agriculture; Meena, V., Mishra, P., Bisht, J., Pattanayak, A., Eds.; Springer: Singapore, 2017; pp. 81–128. [Google Scholar]
- Moura, E.G.; Moura, N.G.; Marques, E.S.; Pinheiro, K.M.; Sobrinho, J.R.S.C.; Aguiar, A.C.F. Evaluating chemical and physical quality indicators for a structurally fragile tropical soil. Soil Use Manag. 2009, 25, 368–375. [Google Scholar] [CrossRef]
- Collier, L.S.; Arruda, E.M.; Campos, L.F.C.; Nunes, J.N.V. Soil chemical attributes and corn productivity grown on legume stubble in agroforestry systems. Rev. Caatinga 2018, 31, 279–289. [Google Scholar] [CrossRef]
- Fageria, N.K.; Baligar, V.C.; Bailey, B.A. Role of cover crops in improving soil and row crop productivity. Commun. Soil Sci. Plant Anal. 2005, 36, 2733–2757. [Google Scholar] [CrossRef]
- Li, Y.; Gao, Z.; Tang, L. Soil-plant characteristics in an age sequence of Coronilla varia L. plantations along embankments. J. Soil Sci. Plant Nutr. 2016, 16, 187–199. [Google Scholar] [CrossRef]
- Tian, G.; Kang, B.T. Effects of soil fertility and fertilizer application on biomass and chemical compositions of leguminous cover crops. Nutr. Cycl. Agroecosyst. 1998, 51, 231–238. [Google Scholar] [CrossRef]
- Koutika, L.S.; Nolte, C.; Yemefack, M.; Ndango, R.; Folefoc, D.; Weise, S. Leguminous fallows improve soil quality in south-central Cameroon as evidenced by the particulate organic matter status. Geoderma 2005, 125, 343–354. [Google Scholar] [CrossRef]
- Dinesh, R.; Suryanarayana, M.A.; Chaudhuri, S.G.; Sheeja, T.E.; Shiva, K.N. Long-term effects of leguminous cover crops on biochemical and biological properties in the organic and mineral layers of soils of a coconut plantation. Eur. J. Soil Biol. 2006, 42, 147–157. [Google Scholar] [CrossRef]
- Xiang, H.; Zhang, Y.; Wei, H.; Zhang, J.E.; Zhao, B. Soil properties and carbon and nitrogen pools in a young hillside longan orchard after the introduction of leguminous plants and residues. PeerJ 2018, 6, e5536. [Google Scholar] [CrossRef]
- Zhang, Y.; Hou, L.; Li, Z.; Zhao, D.; Song, L.; Shao, G.; Ai, J.; Sun, Q. Leguminous supplementation increases the resilience of soil microbial community and nutrients in Chinese fir plantations. Sci. Total Environ. 2020, 703, 134917. [Google Scholar] [CrossRef]
- Arif, M.; Ikramullah; Jan, T.; Riaz, M.; Akhtar, K.; Ali, S.; Shah, S.; Jalal, F.; Mian, I.A.; Dawar, K.M.; et al. Biochar and leguminous cover crops as an alternative to summer fallowing for soil organic carbon and nutrient management in the wheat-maize-wheat cropping system under semiarid climate. J. Soils Sediments 2021, 21, 1395–1407. [Google Scholar] [CrossRef]
- Kang, B.T.; Salako, F.K.; Akobundu, I.O.; Pleysier, J.L.; Chianu, J.N. Amelioration of a degraded Oxic Paleustalf by leguminous and natural fallows. Soil Use Manag. 1997, 13, 130–135. [Google Scholar] [CrossRef]
- Moreira, F.M.D.; de Carvalho, T.S.; Siqueira, J.O. Effect of fertilizers, lime, and inoculation with rhizobia and mycorrhizal fungi on the growth of four leguminous tree species in a low-fertility soil. Biol. Fertil. Soils 2010, 46, 771–779. [Google Scholar] [CrossRef]
- de Vries, F.T.; Shade, A. Controls on soil microbial community stability under climate change. Front. Microbiol. 2013, 4, 265. [Google Scholar] [CrossRef]
- Papatheodorou, E.M. Interventions change soil functions and the mechanisms controlling the structure of soil microbial communities. Microorganisms 2023, 11, 1502. [Google Scholar] [CrossRef]
- Omidi, H.; Tahmasebi, Z.; Torabi, H.; Miransari, M. Soil enzymatic activities and available P and Zn as affected by tillage practices, canola (Brassica napus L.) cultivars and planting dates. Eur. J. Soil Biol. 2008, 44, 443–450. [Google Scholar] [CrossRef]
- Leisso, R.; Rudell, D.; Mazzola, M. Metabolic composition of apple rootstock rhizodeposits differs in a genotype-specific manner and affects growth of subsequent plantings. Soil Biol. Biochem. 2017, 113, 201–214. [Google Scholar] [CrossRef]
- Zhalnina, K.; Louie, K.B.; Hao, Z.; Mansoori, N.; da Rocha, U.N.; Shi, S.; Cho, H.; Karaoz, U.; Loque, D.; Bowen, B.P.; et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat. Microbiol. 2018, 3, 470–480. [Google Scholar] [CrossRef] [PubMed]
- Larkin, R.P. Characterization of soil microbial communities under different potato cropping systems by microbial population dynamics, substrate utilization, and fatty acid profiles. Soil Biol. Biochem. 2003, 35, 1451–1466. [Google Scholar] [CrossRef]
- Wang, X.B.; Hsu, C.M.; Dubeux, J.C.B.; Mackowiak, C., Jr.; Blount, A.; Han, X.G.; Liao, H.L. Effects of rhizoma peanut cultivars (Arachis glabrata Benth.) on the soil bacterial diversity and predicted function in nitrogen fixation. Ecol. Evol. 2019, 9, 12676–12687. [Google Scholar] [CrossRef]
- Wang, L.; Ye, X.; Shen, Z.; Zhang, Y.; Lin, J. Identifying the effects of cropping with different pear cultivars on microbial community composition and networks in orchard soils. Environ. Sci. Pollut. Res. 2023, 30, 66157–66169. [Google Scholar] [CrossRef]
- Lu, B.; Kang, W.; Shi, S.; Guan, J.; Nan, P.; Ma, R. Nitrogen fixation system of legume-rhizobia and its carbon-nitrogen interaction. Chin. J. Grassl. 2023, 45, 119–135. [Google Scholar]
- Chang, Y.; Lin, L.; Shen, J.; Lin, Z.; Deng, X.; Sun, W.; Xu, Z. Enhanced nitrogen fixation and Cd passivation in rhizosphere soil by biochar-loaded nitrogen-fixing bacteria: Chemisorption and microbial mechanism. J. Hazard. Mater. 2025, 481, 136588. [Google Scholar] [CrossRef]
- Bhattacharyya, S.S.; Ros, G.H.; Furtak, K.; Iqbal, H.M.; Parra-Saldívar, R. Soil carbon sequestration–An interplay between soil microbial community and soil organic matter dynamics. Sci. Total Environ. 2022, 815, 152928. [Google Scholar] [CrossRef]
- Osburn, E.D.; McBride, S.G.; Bahram, M.; Strickland, M.S. Global patterns in the growth potential of soil bacterial communities. Nat. Commun. 2024, 15, 6881. [Google Scholar] [CrossRef] [PubMed]
- Moorhead, D.L.; Sinsabaugh, R.L. A theoretical model of litter decay and microbial interaction. Ecol. Monogr. 2006, 76, 151–174. [Google Scholar] [CrossRef]
- Walker, T.S.; Bais, H.P.; Grotewold, E.; Vivanco, J.M. Root exudation and rhizosphere biology. Plant Physiol. 2003, 132, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Badri, D.V.; Vivanco, J.M. Regulation and function of root exudates. Plant Cell Environ. 2009, 32, 666–681. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Z.; Yu, Z.; Shen, G.; Cheng, H.; Tao, S. Composition and diversity of soil microbial communities in the alpine wetland and alpine forest ecosystems on the Tibetan Plateau. Sci. Total Environ. 2020, 747, 141358. [Google Scholar] [CrossRef]
- Yang, Y.; Lee, S.; Jang, I.; Kang, H. Soil bacterial community structures across biomes in artificial ecosystems. Ecol. Eng. 2020, 158, 106067. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Qiang, F.F.; Liu, G.Q.; Liu, C.H.; Ai, N. Distribution characteristics of soil microbial communities and their responses to environmental factors in the sea buckthorn forest in the water-wind erosion crisscross region. Front. Microbiol. 2023, 13, 1098952. [Google Scholar] [CrossRef]
- Torsvik, V.; Øvreås, L. Microbial diversity and function in soil: From genes to ecosystems. Curr. Opin. Microbiol. 2002, 5, 240–245. [Google Scholar] [CrossRef]
- Chen, Q.L.; Cui, H.L.; Su, J.Q.; Penuelas, J.; Zhu, Y.G. Antibiotic resistomes in plant microbiomes. Trends Plant Sci. 2019, 24, 530–541. [Google Scholar] [CrossRef]
- Jat, S.L.; Suby, S.B.; Parihar, C.M.; Gambhir, G.; Kumar, N.; Rakshit, S. Microbiome for sustainable agriculture: A review with special reference to the corn production system. Arch. Microbiol. 2021, 203, 2771–2793. [Google Scholar] [CrossRef]
- Chen, Q.L.; Ding, J.; Li, C.Y.; Yan, Z.Z.; He, J.Z.; Hu, H.W. Microbial functional attributes, rather than taxonomic attributes, drive top soil respiration, nitrification and denitrification processes. Sci. Total Environ. 2020, 734, 139479. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Ren, C.; Jiang, H.; Zhang, W.; Chen, N.; Zhao, X.; Wei, G.; Shu, D. Land abandonment transforms soil microbiome stability and functional profiles in apple orchards of the Chinese Losses Plateau. Sci. Total Environ. 2024, 906, 167556. [Google Scholar] [CrossRef]
- Bennett, L.T.; Mele, P.M.; Annett, S.; Kasel, S. Examining links between soil management, soil health, and public benefits in agricultural landscapes: An Australian perspective. Agric. Ecosyst. Environ. 2010, 139, 1–12. [Google Scholar] [CrossRef]
- Chen, Q.L.; Ding, J.; Zhu, Y.G.; He, J.Z.; Hu, H.W. Soil bacterial taxonomic diversity is critical to maintaining the plant productivity. Environ. Int. 2020, 140, 105766. [Google Scholar] [CrossRef] [PubMed]
- Newman, M.E. Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA 2006, 103, 8577–8582. [Google Scholar] [CrossRef] [PubMed]
- Wagg, C.; Schlaeppi, K.; Banerjee, S.; Kuramae, E.E.; van der Heijden, M.G.A. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nat. Commun. 2019, 10, 4841. [Google Scholar] [CrossRef]
- Araujo, R. Advances in soil engineering: Sustainable strategies for rhizosphereand bulk soil microbiome enrichment. Front. Biosci. 2022, 27, 195. [Google Scholar] [CrossRef]
- Bhattacharyya, S.S.; Furtak, K. Soil–plant–microbe Interactions determine soil biological fertility by altering rhizospheric nutrient cycling and biocrust formation. Sustainability 2022, 15, 625. [Google Scholar] [CrossRef]
- Yadav, A.N.; Kour, D.; Kaur, T.; Devi, R.; Yadav, A.; Dikilitas, M.; Abdel-Azeem, A.M.; Ahluwalia, A.S.; Saxena, A.K. Biodiversity, and biotechnological contribution of beneficial soil microbiomes for nutrient cycling, plant growth improvement and nutrient uptake. Biocatal. Agric. Biotechnol. 2021, 33, 102009. [Google Scholar] [CrossRef]
- Lazcano, C.; Boyd, E.; Holmes, G.; Hewavitharana, S.; Pasulka, A.; Ivors, K. The rhizosphere microbiome plays a role in the resistance to soil-borne pathogens and nutrient uptake of strawberry cultivars under field conditions. Sci. Rep. 2021, 11, 3188. [Google Scholar] [CrossRef]
- Philippot, L.; Raaijmakers, J.M.; Lemanceau, P.; Van, d.P.; Wim, H. Going back to the roots: The microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 2013, 11, 789–799. [Google Scholar] [CrossRef]
- Evdokimova, E.; Ivanova, E.; Gladkov, G.; Zverev, A.; Kimeklis, A.; Serikova, E.; Pinaev, A.; Kichko, A.; Aksenova, T.; Andronov, E.; et al. Structural Shifts in the Soil Prokaryotic Communities Marking the Podzol-Forming Process on Sand Dumps. Soil Syst. 2024, 8, 9. [Google Scholar] [CrossRef]
- Li, Y.B.; Tao, F.L.; Hao, Y.F.; Tong, J.Y.; Xiao, Y.G.; He, Z.H.; Reynolds, M. Variations in phenological, physiological, plant architectural and yield-related traits, their associations with grain yield and genetic basis. Ann. Bot. 2023, 131, 503–519. [Google Scholar] [CrossRef] [PubMed]
- He, T.; Fowler, W.M.; Causley, C.L. High nutrient-use efficiency during early seedling growth in diverse Grevillea species (Proteaceae). Sci. Rep. 2015, 5, 17132. [Google Scholar] [CrossRef] [PubMed]
- Ni, G.Y.; Zhao, P.; Ye, Y.H.; Zhu, L.W.; Hou, Y.P.; Huang, Q.Q.; Wu, W.; Ouyang, L. High photosynthetic capacity and energy-use efficiency benefit both growth and chemical defense in invasive plants. Chemoecology 2020, 30, 69–78. [Google Scholar] [CrossRef]
- Keller, B.; Zimmermann, L.; Rascher, U.; Matsubara, S.; Steier, A.; Muller, O. Toward predicting photosynthetic efficiency and biomass gain in crop genotypes over a field season. Plant Physiol. 2022, 188, 301–317. [Google Scholar] [CrossRef]
Group | PC | Node | Edge | EC | AD | ACC | APL | C | Q | Complexity | Stability |
---|---|---|---|---|---|---|---|---|---|---|---|
CK | 0.894 | 1282 | 43239 | 0.291 | 67.456 | 0.972 | 1.049 | 0.053 | 0.848 | 0.845 | 4.300 |
Cv. 3 | 0.804 | 1007 | 21451 | 0.097 | 42.604 | 0.956 | 1.094 | 0.042 | 0.761 | 0.526 | 4.480 |
Cv. 4 | 0.789 | 824 | 9106 | 0.080 | 22.102 | 0.956 | 1.038 | 0.027 | 0.804 | 0.360 | 0.360 |
Cv. 5 | 0.898 | 951 | 19575 | 0.134 | 34.858 | 0.944 | 1.273 | 0.037 | 0.815 | 0.571 | 1.530 |
Cv. 6 | 0.858 | 629 | 9430 | 0.014 | 29.984 | 0.976 | 1.007 | 0.048 | 0.534 | 0.342 | 5.180 |
Cv. 8 | 0.514 | 1456 | 17431 | 0.218 | 23.944 | 0.891 | 1.369 | 0.016 | 0.928 | 0.492 | 0.020 |
Cv. 16 | 0.382 | 1363 | 11339 | 0.012 | 16.638 | 0.944 | 1.052 | 0.012 | 0.950 | 0.300 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ran, Q.; Yang, H.-Y.; Luo, Y.-Y.; Lu, G.-H.; Lin, Q.-X.; Yan, S.; Wang, Y.-Q. Evaluation of the Effects of Different Cultivars of Falcataria falcata on Soil Quality. Forests 2025, 16, 404. https://doi.org/10.3390/f16030404
Ran Q, Yang H-Y, Luo Y-Y, Lu G-H, Lin Q-X, Yan S, Wang Y-Q. Evaluation of the Effects of Different Cultivars of Falcataria falcata on Soil Quality. Forests. 2025; 16(3):404. https://doi.org/10.3390/f16030404
Chicago/Turabian StyleRan, Qiang, Han-Yan Yang, Yan-Yu Luo, Guo-Hui Lu, Qian-Xi Lin, Shu Yan, and Ying-Qiang Wang. 2025. "Evaluation of the Effects of Different Cultivars of Falcataria falcata on Soil Quality" Forests 16, no. 3: 404. https://doi.org/10.3390/f16030404
APA StyleRan, Q., Yang, H.-Y., Luo, Y.-Y., Lu, G.-H., Lin, Q.-X., Yan, S., & Wang, Y.-Q. (2025). Evaluation of the Effects of Different Cultivars of Falcataria falcata on Soil Quality. Forests, 16(3), 404. https://doi.org/10.3390/f16030404