Analysis of Understory Plant Community Assembly Differences in Moso Bamboo Forests in the Subtropical Evergreen Broad-Leaved Forest Region of Eastern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Design
2.2. Study Method
2.2.1. Geographical Distribution Analysis of Vascular Plant Families and Genera
2.2.2. Calculation of Phylogenetic Diversity Indices
2.2.3. Measurement of Species Diversity
2.2.4. Statistical Analysis
3. Results
3.1. Basic Characteristics of Moso Bamboo Forests and Geographical Floristic Analysis of Understory Vegetation
3.1.1. Basic Characteristics of Moso Bamboo Forests
3.1.2. Distribution Types of Dominant Genera in Understory Vegetation of Moso Bamboo Forests
3.2. Species and Phylogenetic Diversity Characteristics of Understory Vegetation in Moso Bamboo Forests
3.3. Environmental Influences on Understory Plant Diversity
3.3.1. Correlation and Redundancy Analysis of Environmental Factors and Understory Plant Diversity
3.3.2. Structural Equation Modeling of Environmental Factors and Understory Plant Diversity
4. Discussion
4.1. Understory Plant Diversity and Floristic Characteristics in Moso Bamboo Forests
4.2. Environmental Drivers of Understory Plant Diversity and Differences in Community Assembly Mechanisms
4.3. Biodiversity Conservation Potential of Moso Bamboo Forests
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Province | Plot Number | Dominate Tree Species | Altitude/m | Crown Density | Aspect | Longitude and Latitude |
---|---|---|---|---|---|---|
Zhejiang | MZ01 | Phyllostachys edulis | 137.5 | 0.6 | Southwest slope | E:120°34′10″ N:28°48′37″ |
MZ02 | 210 | 0.9 | Northeast slope | E:120°35′20″ N:28°37′32″ | ||
MZ03 | 180 | 0.85 | Northeast slope | E:120°35′12″ N:28°38′23″ | ||
MZ04 | 154 | 0.65 | West slope | E:119°27′10″ N:30°14′25″ | ||
MZ05 | 448 | 0.7 | East slope | E:119°26′27″ N:30°19′29″ | ||
MZ06 | 315 | 0.65 | East slope | E:119°26′32″ N:30°18′43″ | ||
MZ07 | 330 | 0.7 | Southeast slope | E:118°37′02″ N:28°43′56″ | ||
MZ08 | 356 | 0.65 | South slope | E:118°36′58″ N:28°43′51″ | ||
MZ09 | 378 | 0.7 | Northeast slope | E:118°36′47″ N:28°43′48″ | ||
MZ10 | 254 | 0.75 | Southeast slope | E:119°39′47″ N:27°55′31″ | ||
MZ11 | 230 | 0.7 | South slope | E:119°39′55″ N:27°55′28″ | ||
MZ12 | 210 | 0.6 | Southwest slope | E:119°39′18″ N:27°55′16″ | ||
MZ13 | 628 | 0.67 | Northwest slope | E:118°39′22″ N:28°29′33″ | ||
MZ14 | 750 | 0.75 | Southeast slope | E:118°42′26″ N:28°30′59″ | ||
MZ15 | 184 | 0.8 | North slop | E:118°33′37″ N:28°32′37″ | ||
Fujian | MZ16 | 291 | 0.6 | West slope | E:117°15′27″ N:24°30′56″ | |
MZ17 | 386 | 0.85 | North slope | E:117°16′08″ N:24°30′34″ | ||
MZ18 | 433 | 0.7 | Southwest slope | E:117°14′43″ N:24°31′27″ | ||
MZ19 | 931.2 | 0.65 | East slope | E:117°31′13″ N:25°57′06″ | ||
MZ20 | 1172.7 | 0.7 | Northeast slope | E:117°29′54″ N:25°57′51″ | ||
MZ21 | 710 | 0.65 | Southeast slope | E:117°33′14″ N:25°57′19″ | ||
MZ22 | 280 | 0.6 | Northwest slope | E:117°50′23″ N:27°38′56″ | ||
MZ23 | 178.6 | 0.6 | North slope | E:117°47′53″ N:27°37′19″ | ||
MZ24 | 278.5 | 0.7 | East slope | E:117°48′55″ N:27°38′17″ | ||
MZ25 | 662 | 0.75 | Northeast slope | E:118°46′47″ N:26°22′43″ | ||
MZ26 | 760 | 0.68 | North slope | E:118°49′34″ N:26°22′25″ | ||
MZ27 | 630 | 0.7 | Northwest slope | E:118°46′39″ N:26°22′44″ | ||
MZ28 | 446 | 0.6 | Southeast slope | E:117°51′47″ N:26°49′37″ | ||
MZ29 | 219 | 0.6 | Southwest slope | E:117°56′26″ N:26°51′24″ | ||
MZ30 | 231.5 | 0.6 | South slope | E:117°46′06″ N:26°45′09″ |
References
- Pisani, D.; Pazienza, P.; Perrino, E.V.; Caporale, D.; De Lucia, C. The Economic Valuation of Ecosystem Services of Biodiversity Components in Protected Areas: A Review for a Framework of Analysis for the Gargano National Park. Sustainability 2021, 13, 11726. [Google Scholar] [CrossRef]
- Qian, Z.; Gu, R.; Gao, K.; Li, D. High plant species diversity enhances lignin accumulation in a subtropical forest of southwest China. Sci. Total Environ. 2023, 865, 161113. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Du, H.; Gao, K.; Fang, Y.; Wang, K.; Zhu, T.; Zhu, J.; Cheng, Y.; Li, D. Plant species diversity enhances soil gross nitrogen transformations in a subtropical forest, southwest China. J. Appl. Ecol. 2023, 60, 1364–1375. [Google Scholar] [CrossRef]
- López-Pujol, J.; Zhang, F.-M.; Sun, H.-Q.; Ying, T.-S.; Ge, S. Centres of plant endemism in China: Places for survival or for speciation? J. Biogeogr. 2011, 38, 1267–1280. [Google Scholar] [CrossRef]
- Meng, H.; Zhang, C.; Song, Y.; Yu, X.; Cao, G.; Li, L.; Cai, C.; Xiao, J.; Zhou, S.; Tan, Y.; et al. Opening a door to the spatiotemporal history of plants from the tropical Indochina Peninsula to subtropical China. Mol. Phylogenet Evol. 2022, 171, 107458. [Google Scholar] [CrossRef]
- Qian, H.; Jin, Y.; Ricklefs, R.E. Phylogenetic diversity anomaly in angiosperms between eastern Asia and eastern North America. Proc. Natl. Acad. Sci. USA 2017, 114, 11452–11457. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Song, X.; Chang, S.X.; Peng, C.; Xiao, W.; Zhang, J.; Xiang, W.; Li, Y.; Wang, W. Nitrogen depositions increase soil respiration and decrease temperature sensitivity in a Moso bamboo forest. Agric. For. Meteorol. 2019, 268, 48–54. [Google Scholar] [CrossRef]
- Coote, L.; French, L.J.; Moore, K.M.; Mitchell, F.J.G.; Kelly, D.L. Can plantation forests support plant species and communities of semi-natural woodland? For. Ecol. Manag. 2012, 283, 86–95. [Google Scholar] [CrossRef]
- Song, X.; Zhou, G.; Jiang, H.; Yu, S.; Fu, J.; Li, W.; Wang, W.; Ma, Z.; Peng, C. Carbon sequestration by Chinese bamboo forests and their ecological benefits: Assessment of potential, problems, and future challenges. Environ. Rev. 2011, 19, 418–428. [Google Scholar] [CrossRef]
- Cai, X.; Lin, Z.; Penttinen, P.; Li, Y.; Li, Y.; Luo, Y.; Yue, T.; Jiang, P.; Fu, W. Effects of conversion from a natural evergreen broadleaf forest to a Moso bamboo plantation on the soil nutrient pools, microbial biomass and enzyme activities in a subtropical area. For. Ecol. Manag. 2018, 422, 161–171. [Google Scholar] [CrossRef]
- Deal, R.L.; Hennon, P.; O’Hanlon, R.; D’Amore, D. Lessons from native spruce forests in Alaska: Managing Sitka spruce plantations worldwide to benefit biodiversity and ecosystem services. Forestry 2014, 87, 193–208. [Google Scholar] [CrossRef]
- Gómez-González, S.; Paniw, M.; Blanco-Pastor, J.L.; García-Cervigón, A.I.; Godoy, O.; Herrera, J.M.; Lara, A.; Miranda, A.; Ojeda, F.; Ochoa-Hueso, R. Moving towards the ecological intensification of tree plantations. Trends Plant Sci. 2022, 27, 637–645. [Google Scholar] [CrossRef] [PubMed]
- Cagnoni, L.B.; Weidlich, E.W.A.; Guillemot, J.; Morselo, C.; Weih, M.; Adler, A.; Brancalion, P.H.S. Stakeholders’ Perspectives of Species Diversity in Tree Plantations: A Global Review. Curr. For. Rep. 2023, 9, 251–262. [Google Scholar] [CrossRef]
- Mahmoud, K.B.; Abdelkefi, F.; Mezzapesa, G.N.; Perrino, E.V. Nutritional value and functional properties of an underexploited Tunisian wild beet (Beta macrocarpa Guss.) in relation to soil characteristics. Euro-Mediterr. J. Environ. Integr. 2024, 9, 705–720. [Google Scholar] [CrossRef]
- Barsoum, N.; Coote, L.; Eycott, A.E.; Fuller, L.; Kiewitt, A.; Davies, R.G. Diversity, functional structure and functional redundancy of woodland plant communities: How do mixed tree species plantations compare with monocultures? For. Ecol. Manag. 2016, 382, 244–256. [Google Scholar] [CrossRef]
- Randriamananjara, M.A.; Fenton, N.J.; DesRochers, A. How does understory vegetation diversity and composition differ between monocultures and mixed plantations of hybrid poplar and spruce? For. Ecol. Manag. 2023, 549, 121434. [Google Scholar] [CrossRef]
- Ashton-Butt, A.; Aryawan, A.A.K.; Hood, A.S.C.; Naim, M.; Purnomo, D.; Suhardi; Wahyuningsih, R.; Willcock, S.; Poppy, G.M.; Caliman, J.-P.; et al. Understory vegetation in Oil Palm plantations benefits soil biodiversity and decomposition rates. Front. For. Glob. Chang. 2018, 1, 10. [Google Scholar] [CrossRef]
- Qin, M.; Zhang, N.; Dong, H.; Zhu, S.; Yue, C.; Huang, J.; Lu, Y. Genetic diversity and the origin of Taiwania cryptomerioides plantations in South China: Implications for conservation and restoration. Eur. J. Forest Res. 2024, 143, 1181–1197. [Google Scholar] [CrossRef]
- Waheed, M.; Haq, S.M.; Arshad, F.; Bussmann, R.W.; Hashem, A.; Abd_Allah, E.F. Plant distribution, ecological traits and diversity patterns of vegetation in subtropical managed forests as guidelines for forest management policy. Front. For. Glob. Chang. 2024, 7, 1406075. [Google Scholar] [CrossRef]
- Zhou, W.; Zhou, L.; Acevedo, M.A.; Wang, L.; Zuo, C.; Yang, Z.; Liu, Y.; Robinson, S.K. Plantation forestry of Alder-leaf Birch (Betula alnoides) affects composition but not interactions of mixed-species bird flocks in southwestern China. Biol. Conserv. 2024, 293, 110595. [Google Scholar] [CrossRef]
- Vu Ho, K.; Kröel-Dulay, G.; Tölgyesi, C.; Bátori, Z.; Tanács, E.; Kertész, M.; Török, P.; Erdős, L. Non-native tree plantations are weak substitutes for near-natural forests regarding plant diversity and ecological value. For. Ecol. Manag. 2023, 531, 120789. [Google Scholar] [CrossRef]
- Wrońska-Pilarek, D.; Rymszewicz, S.; Jagodziński, A.M.; Gawryś, R.; Dyderski, M.K. Temperate forest understory vegetation shifts after 40 years of conservation. Sci. Total Environ. 2023, 895, 165164. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.-J.; Burgess, K.S.; Ge, X.-J. Species pool size and rainfall account for the relationship between biodiversity and biomass production in natural forests of China. Ecol. Evol. 2022, 12, e8838. [Google Scholar] [CrossRef]
- Faith, D.P. Biodiversity and evolutionary history: Useful extensions of the PD phylogenetic diversity assessment framework. Ann. N. Y. Acad. Sci. 2013, 1289, 69–89. [Google Scholar] [CrossRef] [PubMed]
- Buerki, S.; Callmander, M.W.; Bachman, S.; Moat, J.; Labat, J.-N.; Forest, F. Incorporating evolutionary history into conservation planning in biodiversity hotspots. Philos. Trans. R. Soc. B 2015, 370, 20140014. [Google Scholar] [CrossRef]
- Li, R.; Kraft, N.J.B.; Yu, H.; Li, H. Seed plant phylogenetic diversity and species richness in conservation planning within a global biodiversity hotspot in eastern Asia. Conserv. Biol. 2015, 29, 1552–1562. [Google Scholar] [CrossRef] [PubMed]
- National Forestry and Grassland Administration, PRC China Forest Resouces Report; China Forestry Publishing House: Beijing, China, 2019; ISBN 978-7-5038-9982-9.
- Li, Q.; Ma, Q.; Gao, J.; Zhang, J.; Li, Y.; Shi, M.; Peng, C.; Song, X. Stumps increased soil respiration in a subtropical Moso bamboo (Phyllostachys edulis) plantation under nitrogen addition. Agric. For. Meteorol. 2022, 323, 109047. [Google Scholar] [CrossRef]
- Yang, C.; Ni, H.; Zhong, Z.; Zhang, X.; Bian, F. Changes in soil carbon pools and components induced by replacing secondary evergreen broadleaf forest with Moso bamboo plantations in subtropical China. Catena 2019, 180, 309–319. [Google Scholar] [CrossRef]
- Huang, J.; Lin, T.-C.; Xiong, D.; Yang, Z.; Liu, X.; Chen, G.; Xie, J.; Li, Y.; Yang, Y. Organic carbon mineralization in soils of a natural forest and a forest plantation of southeastern China. Geoderma 2019, 344, 119–126. [Google Scholar] [CrossRef]
- Nichol, J.E.; Abbas, S. Evaluating Plantation forest vs. Natural forest regeneration for biodiversity enhancement in Hong Kong. Forests 2021, 12, 593. [Google Scholar] [CrossRef]
- Ma, S.; Wang, Q.; Zhang, Y.; Yan, L.; Cui, D.; Xu, L. Effects of natural forest conversion and plantation tree species composition on soil macrofauna communities in Northeast China mountains. J. For. Res. 2023, 34, 1475–1489. [Google Scholar] [CrossRef]
- Xiao, Y.; Tian, Y.; Song, Q.; Deng, N. Characteristics and Driving Mechanisms of Understory Vegetation Diversity Patterns in Central and Southern China. Forests 2024, 15, 1056. [Google Scholar] [CrossRef]
- Shi, W.; Zeng, W.; Aritsara, A.N.A.; Yi, Y.; Zhu, S.; Cao, K. The Interaction between Climate and Soil Properties Influences Tree Species Richness in Tropical and Subtropical Forests of Southern China. Forests 2024, 15, 1441. [Google Scholar] [CrossRef]
- Huang, J.; Yu, R.; Ding, Y.; Xu, Y.; Yao, J.; Zang, R. The Relationship between Trait-Based Functional Niche Hypervolume and Community Phylogenetic Structures of Typical Forests across Different Climatic Zones in China. Forests 2024, 15, 954. [Google Scholar] [CrossRef]
- Rosindell, J.; Hubbell, S.P.; Etienne, R.S. The Unified Neutral Theory of Biodiversity and Biogeography at Age Ten. Trends Ecol. Evol. 2011, 26, 340–348. [Google Scholar] [CrossRef]
- Li, Y.; Du, H.; Mao, X.; Cui, L.; Han, N.; Xu, X. Information Extracting and Spatiotemporal Evolution of Bamboo Forest Based on Landsat Time Series Data in Zhejiang Province. Sci. Silv. Sin. 2019, 55, 88–96. [Google Scholar] [CrossRef]
- Chen, Y. Study on the Geographical Distribution Characteristics of Bamboo Forest in Fujian Province and Its Response to Climate Change. Master’s Thesis, Fujian Normal University, Fuzhou, China, 2022. [Google Scholar]
- Zang, D. A Preliminary Study on the Ferns Flora in China. Acta Bot. Boreal.-Occident. Sin. 1998, 18, 459–465. [Google Scholar]
- Wu, Z.; Sun, H.; Zhou, Z.; Li, D.; Peng, H. Floristics of Seed Plants From China; Science Press: Beijing, China, 2010; ISBN 978-7-03-022390-6. [Google Scholar]
- Li, D.; Chen, Z.; Wang, H.; Lu, A.; Luo, Y.; Yu, W. The Families and Genera of Chinese Vascular Plants; Science Press: Beijing, China, 2020; ISBN 978-7-03-058843-2. [Google Scholar]
- Athayde, E.A.; Cancian, L.F.; Verdade, L.M.; Morellato, L.P.C. Functional and phylogenetic diversity of scattered trees in an agricultural landscape: Implications for conservation. Agric. Ecosyst. Environ. 2015, 199, 272–281. [Google Scholar] [CrossRef]
- Costion, C.M.; Edwards, W.; Ford, A.J.; Metcalfe, D.J.; Cross, H.B.; Harrington, M.G.; Richardson, J.E.; Hilbert, D.W.; Lowe, A.J.; Crayn, D.M. Using phylogenetic diversity to identify ancient rain forest refugia and diversification zones in a biodiversity hotspot. Divers. Distrib. 2015, 21, 279–289. [Google Scholar] [CrossRef]
- Zhang, J.L.; Liu, B.; Liu, S.; Feng, Z.; Jiang, K. Plantlist: Looking up the Status of Plant Scientific Names Based on the Plant List Database, R Package Version 0.3.0. Available online: https://github.com/helixcn/plantlist (accessed on 1 September 2024).
- Qian, H.; Jin, Y. An Updated Megaphylogeny of Plants, a Tool for Generating Plant Phylogenies and an Analysis of Phylogenetic Community Structure. J. Plant Ecol. 2016, 9, 233–239. [Google Scholar] [CrossRef]
- Smith, S.A.; Brown, J.W. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 2018, 105, 302–314. [Google Scholar] [CrossRef]
- Faith, D.P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 1992, 61, 1–10. [Google Scholar] [CrossRef]
- Kembel, S.W.; Cowan, P.D.; Helmus, M.R.; Cornwell, W.K.; Morlon, H.; Ackerly, D.D.; Blomberg, S.P.; Webb, C.O. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 2010, 26, 1463–1464. [Google Scholar] [CrossRef] [PubMed]
- Letcher, S.G. Phylogenetic structure of angiosperm communities during tropical forest succession. Proc. Biol. Sci. 2010, 277, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Shui, W.; Feng, J.; Li, H.; Sun, X.; Liu, Y.; Zhang, Y.; Sun, X. Phylogeny and functional traits structure of plant communities with different slope aspects in the degraded karst tiankeng. Acta Ecol. Sin. 2022, 42, 8050–8060. [Google Scholar] [CrossRef]
- Qian, H.; Deng, T.; Jin, Y.; Mao, L.; Zhao, D.; Ricklefs, R.E. Phylogenetic dispersion and diversity in regional assemblages of seed plants in China. Proc. Natl. Acad. Sci. USA 2019, 116, 23192–23201. [Google Scholar] [CrossRef]
- Webb, C.O. Exploring the phylogenetic structure of ecological communities: An example for rain forest trees. Am. Nat. 2000, 156, 145–155. [Google Scholar] [CrossRef]
- Wang, M.; Li, J.; Kuang, S.; He, Y.; Chen, G.; Huang, Y.; Song, C.; Anderson, P.; Łowicki, D. Plant diversity along the urban–rural gradient and its relationship with urbanization degree in Shanghai, China. Forests 2020, 11, 171. [Google Scholar] [CrossRef]
- Oksanen, J.; Simpson, G.L.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.B.; Solymos, P.; Stevens, M.H.H.; Szoecs, E.; et al. Vegan: Community Ecology Package, R Package Version 2.6-2. Available online: https://CRAN.R-project.org/package=vegan (accessed on 1 September 2024).
- Revelle, W. Psych: Procedures for Psychological, Psychometric, and Personality Research, R package Version 2.0.7. Available online: https://CRAN.R-project.org/package=psych (accessed on 1 September 2024).
- Sanchez, G.; Trinchera, L.; Russolillo, G. plspm: Tools for Partial Least Squares Path Modeling (PLS-PM), R Package Version 0.4.9. Available online: https://github.com/gastonstat/plspm (accessed on 1 September 2024).
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. [Google Scholar]
- Bordewich, M.; Semple, C. Quantifying the difference between phylogenetic diversity and diversity indices. J. Math. Biol. 2024, 88, 40. [Google Scholar] [CrossRef]
- Lu, X.; Dong, Y.; Li, Y.; Mao, L. Community assembly mechanism for different planting ages of Chinese fir artificial forests in subtropical China. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2024, 48, 67–73. [Google Scholar]
- Tian, K.; Chai, P.; Wang, Y.; Chen, L.; Qian, H.; Chen, S.; Mi, X.; Ren, H.; Ma, K.; Chen, J. Species diversity pattern and its drivers of the understory herbaceous plants in a Chinese subtropical forest. Front. Ecol. Evol. 2023, 10, 1113742. [Google Scholar] [CrossRef]
- Landuyt, D.; De Lombaerde, E.; Perring, M.P.; Hertzog, L.R.; Ampoorter, E.; Maes, S.L.; De Frenne, P.; Ma, S.; Proesmans, W.; Blondeel, H.; et al. The functional role of temperate forest understorey vegetation in a changing world. Glob. Chang. Biol. 2019, 25, 3625–3641. [Google Scholar] [CrossRef]
- Xu, J. Analysis on Plant Species Diversity Pattern of Typical Evergreen Broad-Leaved Forest in China. Master’s Thesis, East China Normal University, Shanghai, China, 2009. [Google Scholar]
- Liu, J.; Fu, X.; Qin, M.; Wu, W.; Xie, W.; Liang, L.; Chen, X. Floristic Charicteristics of Vascular Plants in Linhai Hongshanlin Provincial Wetland Park in Zhejiang Province. Wetl. Sci. 2023, 21, 220–229. [Google Scholar] [CrossRef]
- Jablonski, D.; Roy, K.; Valentine, J.W. Out of the Tropics: Evolutionary Dynamics of the Latitudinal Diversity Gradient. Science 2006, 314, 102–106. [Google Scholar] [CrossRef]
- Morinière, J.; Van Dam, M.H.; Hawlitschek, O.; Bergsten, J.; Michat, M.C.; Hendrich, L.; Ribera, I.; Toussaint, E.F.A.; Balke, M. Phylogenetic niche conservatism explains an inverse latitudinal diversity gradient in freshwater arthropods. Sci. Rep. 2016, 6, 26340. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.W.; Boru, B.H.; Njogu, A.W.; Ochola, A.C.; Hu, G.W.; Zhou, Y.D.; Wang, Q.F. Floristic composition and endemism pattern of vascular plants in Ethiopia and Eritrea. J. Syst. Evol. 2020, 58, 33–42. [Google Scholar] [CrossRef]
- Liu, J.; Zheng, S.; Lin, Y.; Zhang, Y.; Rong, J.; He, T.; Zheng, J.; Chen, L.; Zheng, Y. Composition of Species and Spatial Patterns of Phyllostachys edulis Mixed Forests in a Succession after Enclosure. Forests 2023, 14, 2325. [Google Scholar] [CrossRef]
- Zhang, J. Effects of Various Canopy Densities on the Understory Vegetation Development and Decomposition of Pinus massoniana Foliar Litter in the Pinus massoniana Plantations. Ph.D. Thesis, Sichuan Agricultural University, Chengdu, China, 2020. [Google Scholar]
- Lu, H.; Xu, J.; Li, G.; Ma, N.; Su, G.; Zhang, Y. Soil physicochemical properties and dynamic changes of understory plant diversity at different growth and development stages of Eucalyptus urophylla × Eucalyptus grandis plantation. For. Res. 2024, 37, 82–91. [Google Scholar] [CrossRef]
- Zhou, Y.; Guan, F.; Li, Z.; Zheng, Y.; Zhou, X.; Zhang, X. Effects of tree species on Moso Bamboo (Phyllostachys edulis (Carriere) J. Houzeau) fine root morphology, biomass, and soil properties in bamboo–broadleaf mixed forests. Forests 2022, 13, 1834. [Google Scholar] [CrossRef]
- Garg, S.; Joshi, R.K.; Garkoti, S.C. Effect of tree canopy on herbaceous vegetation and soil characteristics in semi-arid forests of the Aravalli hills. Arid. Land. Res. Manag. 2022, 36, 224–242. [Google Scholar] [CrossRef]
- Spicer, M.E.; Radhamoni, H.V.N.; Duguid, M.C.; Queenborough, S.A.; Comita, L.S. Herbaceous plant diversity in forest ecosystems: Patterns, mechanisms, and threats. Plant. Ecol. 2022, 223, 117–129. [Google Scholar] [CrossRef]
- Zhang, R.; Yu, F.; Zhou, R.; Dong, H.; Wang, M.; Ye, X.; Hao, J. Effects of slope position and aspect on structure and species diversity of shrub community in the Jiajin Mountains, Sichuan Province, China. Chin. J. Appl. Ecol. 2020, 31, 2507–2514. [Google Scholar] [CrossRef]
- Hu, Y.; Lin, S.; Chen, B.; Zhao, X.; Zhang, C.; Kuang, W. Driving factors of understory species diversity in forest on the northeastern Qinghai Province of northwestern China. J. Beijing For. Univ. 2024, 46, 28–37. [Google Scholar] [CrossRef]
- Zhang, B.; Qin, J.; Ren, Z.; Chen, Z.; Yao, S.; Liu, Y.; Song, Y. Effects of slope aspect on understory plant diversity of Pinus massoniana pure forest and different coniferous and broad-leaved mixed forest types in north subtropical region. Ecol. Environ. Sci. 2022, 31, 1091–1100. [Google Scholar] [CrossRef]
- Ali, A.; Yan, E.-R. The forest strata-dependent relationship between biodiversity and aboveground biomass within a subtropical forest. For. Ecol. Manage. 2017, 401, 125–134. [Google Scholar] [CrossRef]
- Tucker, C.M.; Davies, T.J.; Cadotte, M.W.; Pearse, W.D. On the relationship between phylogenetic diversity and trait diversity. Ecology 2018, 99, 1473–1479. [Google Scholar] [CrossRef]
- Mouquet, N.; Devictor, V.; Meynard, C.N.; Munoz, F.; Bersier, L.-F.; Chave, J.; Couteron, P.; Dalecky, A.; Fontaine, C.; Gravel, D.; et al. Ecophylogenetics: Advances and perspectives. Biol. Rev. 2012, 87, 769–785. [Google Scholar] [CrossRef]
- Kraft, N.J.B.; Cornwell, W.K.; Webb, C.O.; Ackerly, D.D. Trait evolution, community assembly, and the phylogenetic structure of ecological communities. Am. Nat. 2007, 170, 271–283. [Google Scholar] [CrossRef]
- Qian, H.; Zhang, J.; Sandel, B.; Jin, Y. Phylogenetic structure of angiosperm trees in local forest communities along latitudinal and elevational gradients in eastern North America. Ecography 2020, 43, 419–430. [Google Scholar] [CrossRef]
- Cadotte, M.W.; Dinnage, R.; Tilman, D. Phylogenetic diversity promotes ecosystem stability. Ecology 2012, 93, S223–S233. [Google Scholar] [CrossRef]
- Okuno, S.; Yin, T.; Nanami, S.; Matsuyama, S.; Kamiya, K.; Tan, S.; Davies, S.J.; Mohamad, M.; Yamakura, T.; Itoh, A. Community phylogeny and spatial scale affect phylogenetic diversity metrics in a species-rich rainforest in Borneo. Ecol. Evol. 2022, 12, e9536. [Google Scholar] [CrossRef]
- Hubbell, S.P. The Unified Neutral Theory of Biodiversity and Biogeography; Princeton University Press: Princeton, NJ, USA, 2001; ISBN 978-1-4008-3752-6. [Google Scholar]
- Hubbell, S.P. Neutral Theory and the Evolution of Ecological Equivalence. Ecology 2006, 87, 1387–1398. [Google Scholar] [CrossRef]
- Chai, Y.; Yue, M. Research advances in plant community assembly mechanisms. Acta Ecol. Sin. 2016, 36, 4557–4572. [Google Scholar] [CrossRef]
- Liu, C.; Zheng, C.; Wang, L.; Zhang, J.; Wang, Q.; Shao, S.; Qin, H.; Xu, Q.; Liang, C.; Chen, J. Moso bamboo invasion changes the assembly process and interactive relationship of soil microbial communities in a subtropical broadleaf forest. For. Ecol. Manage. 2023, 536, 120901. [Google Scholar] [CrossRef]
- Chen, X.; Chen, X.; Huang, S.; Fang, D. Impacts of Moso bamboo (Phyllostachys pubescens) invasion on species diversity and aboveground biomass of secondary coniferous and broad-leaved mixed forest. Front. Plant Sci. 2022, 13, 1001785. [Google Scholar] [CrossRef]
- Ma, L.-L.; Seibold, S.; Cadotte, M.W.; Zou, J.-Y.; Song, J.; Mo, Z.-Q.; Tan, S.-L.; Ye, L.-J.; Zheng, W.; Burgess, K.S.; et al. Niche convergence and biogeographic history shape elevational tree community assembly in a subtropical mountain forest. Sci. Total Environ. 2024, 935, 173343. [Google Scholar] [CrossRef] [PubMed]
- Frishkoff, L.O.; Karp, D.S.; M’Gonigle, L.K.; Mendenhall, C.D.; Zook, J.; Kremen, C.; Hadly, E.A.; Daily, G.C. Loss of avian phylogenetic diversity in neotropical agricultural systems. Science 2014, 345, 1343–1346. [Google Scholar] [CrossRef]
- Wang, Z.; Miao, W.; Hu, R.; Gao, M.; Liu, L.; Li, Y.; Fu, Y.; Sa, R. Driving forces of herbaceous species diversity in natural forests in northern Greater Khingan Mountains based on structural equation model. J. Northwest For. Univ. 2024, 39, 13–20. [Google Scholar] [CrossRef]
- Shi, G.; Xu, N.; Niu, Z.; Sun, W.; Niu, H.; Shi, G.; Wang, L. Altitudinal differences of understory plant biodiversity in eastern Greater Xing’an Mountains, Inner Mongolia. Acta Ecol. Sin. 2024, 44, 3004–3015. [Google Scholar] [CrossRef]
- Meng, X.; Fan, S.; Dong, L.; Kong, X.; Wang, M.; Li, K.; Wang, W. Correlation between understory plant diversity and soil factors in Beijing urban forests. J. Northeast. For. Univ. 2023, 51, 102–114. [Google Scholar] [CrossRef]
- Norden, N.; Chazdon, R.L.; Chao, A.; Jiang, Y.-H.; Vílchez-Alvarado, B. Resilience of tropical rain forests: Tree community reassembly in secondary forests. Ecol. Lett. 2009, 12, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Fang, S.; Fang, X.; Jin, Y.; Kuang, Y.; Lin, F.; Liu, J.; Ma, J.; Nie, Y.; Ouyang, S.; et al. Forest understory vegetation study: Current status and future trends. For. Res. 2023, 3, 6. [Google Scholar] [CrossRef] [PubMed]
Shrub Layer | Herbaceous Layer | ||||
---|---|---|---|---|---|
Species Profile | Species | Important Value | Species Profile | Species | Important Value |
73 families, 148 genera, 268 species | Maesa japonica | 2.87 | 47 families, 85 genera, 110 species | Woodwardia japonica | 10.16 |
Rubus buergeri | 2.84 | Dicranopteris pedata | 9.00 | ||
Camellia sinensis | 2.27 | Lophatherum gracile | 8.97 | ||
Pternandra caerulescens | 2.24 | Selaginella moellendorffii | 4.47 | ||
Loropetalum chinense | 2.22 | Dryopteris fuscipes | 2.83 |
Serial Number | Genus | Number of Species in the Region | Number of Species in China | Percentage of China’s Total Species | Number of Species in the World | Percentage of World’s Total Species | Percentage of the Region’s Total Species | Distribution Type |
---|---|---|---|---|---|---|---|---|
1 | Rubus | 12 | 194 | 6.19 | 700 | 1.71 | 3.17 | Worldwide distribution |
2 | Ilex | 7 | 204 | 3.43 | 420 | 1.67 | 1.85 | Discontinuous distribution between tropical Asia and tropical America |
3 | Quercus | 7 | 51 | 13.73 | 300 | 2.33 | 1.85 | Discontinuous distribution between East Asia and North America |
4 | Ficus | 7 | 98 | 7.14 | 1000 | 0.70 | 1.85 | Pantropical distribution |
5 | Callicarpa | 6 | 46 | 13.04 | 190 | 3.16 | 1.59 | Pantropical distribution |
6 | Castanopsis | 5 | 63 | 7.94 | 120 | 4.17 | 1.32 | Discontinuous distribution between East Asia and North America |
7 | Actinidia | 5 | 52 | 9.62 | 55 | 9.09 | 1.32 | East Asia (eastern Himalayas—Japan) |
8 | Symplocos | 5 | 77 | 6.49 | 300 | 1.67 | 1.32 | Discontinuous distribution between tropical Asia, Oceania (to New Zealand), and Central to South America (or Mexico) |
9 | Eurya | 5 | 81 | 6.17 | 130 | 3.85 | 1.32 | Discontinuous distribution between tropical Asia and tropical America |
10 | Machilus | 5 | 68 | 7.35 | 100 | 5.00 | 1.32 | West Malaysia, Central Malaysia, East Malaysia |
Serial Number | Genus | Number of Species in the Region | Number of Species in China | Percentage of China’s Total Species | Number of Species in the World | Percentage of World’s Total Species | Percentage of the Region’s Total Species | Distribution Type |
---|---|---|---|---|---|---|---|---|
1 | Persicaria | 5 | 113 | 4.42 | 230 | 2.17 | 1.32 | Discontinuous distribution between East Asia and North America |
2 | Selaginella | 4 | 72 | 5.56 | 700 | 0.57 | 1.06 | Worldwide distribution |
3 | Dioscorea | 4 | 49 | 8.16 | 600 | 0.67 | 1.06 | East Asia (eastern Himalayas—Japan) |
4 | Cyclosorus | 3 | 127 | 2.36 | 250 | 1.20 | 0.79 | Pantropical distribution |
5 | Carex | 3 | 527 | 0.57 | 2000 | 0.15 | 0.79 | Worldwide distribution |
6 | Polygonatum | 3 | 31 | 9.68 | 40 | 7.50 | 0.79 | Northern temperate distribution |
Frequency of Occurrence (%) | Frequency of Occurrence (count) | Shrub Layer | Herbaceous Layer | |||
---|---|---|---|---|---|---|
Number | Percentage (%) | Number | Percentage (%) | |||
Genera | 3.33 | ≤1 | 91 | 61.49 | 70 | 82.35 |
6.67 | ≤2 | 123 | 83.11 | 79 | 92.94 | |
Species | 3.33 | ≤1 | 143 | 53.36 | 63 | 57.27 |
6.67 | ≤2 | 125 | 46.64 | 80 | 72.73 |
Index | Shrub Layer | Herbaceous Layer | |
---|---|---|---|
Species diversity index | SR | 22.93 ± 1.14 | 9.93 ± 0.77 |
H | 2.68 ± 0.07 | 1.77 ± 0.07 | |
D | 0.89 ± 0.01 | 0.76 ± 0.02 | |
J | 0.87 ± 0.02 | 0.80 ± 0.02 | |
Phylogenetic diversity index | PD | 2441.66 ± 95.99 | 1773.95 ± 88.84 |
MPD | 258.97 ± 6.06 | 533.53 ± 13.92 | |
MNTD | 150.07 ± 4.55 | 240.34 ± 14.21 | |
NTI | 1.32 ± 0.15 | −0.07 ± 0.20 | |
NRI | 1.25 ± 0.11 | −2.63 ± 0.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, Z.; Yu, T.; Tian, X.; Chen, X.; Yao, Y.; Mao, L. Analysis of Understory Plant Community Assembly Differences in Moso Bamboo Forests in the Subtropical Evergreen Broad-Leaved Forest Region of Eastern China. Forests 2025, 16, 478. https://doi.org/10.3390/f16030478
Ge Z, Yu T, Tian X, Chen X, Yao Y, Mao L. Analysis of Understory Plant Community Assembly Differences in Moso Bamboo Forests in the Subtropical Evergreen Broad-Leaved Forest Region of Eastern China. Forests. 2025; 16(3):478. https://doi.org/10.3390/f16030478
Chicago/Turabian StyleGe, Zhiwei, Tao Yu, Xuying Tian, Xiangxiang Chen, Yiwen Yao, and Lingfeng Mao. 2025. "Analysis of Understory Plant Community Assembly Differences in Moso Bamboo Forests in the Subtropical Evergreen Broad-Leaved Forest Region of Eastern China" Forests 16, no. 3: 478. https://doi.org/10.3390/f16030478
APA StyleGe, Z., Yu, T., Tian, X., Chen, X., Yao, Y., & Mao, L. (2025). Analysis of Understory Plant Community Assembly Differences in Moso Bamboo Forests in the Subtropical Evergreen Broad-Leaved Forest Region of Eastern China. Forests, 16(3), 478. https://doi.org/10.3390/f16030478