Estimation of Gross Primary Productivity Using Performance-Optimized Machine Learning Methods for the Forest Ecosystems in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Preprocessing
2.2.1. Flux Data from ChinaFLUX
2.2.2. Remote Sensing Data
2.2.3. Remote Sensing-Based GPP Products
2.3. Methods
2.3.1. Machine Learning Methods
- (1)
- RF: RF is an ensemble ML method that generates multiple decision trees from random samples [36,37]. During the construction of decision trees, the sample distribution is considered, and the bootstrap process is used for resampling. A bagging (bootstrap aggregating) process creates the final solution by averaging the results of the bootstrap trees [38]. This process improves the model’s performance and robustness by mitigating overfitting and enhancing generalization. In this study, the RF algorithm is implemented using the Scikit-learn library in Python 3.11, with hyperparameters such as n_estimators, max_depth, min_samples_split, and min_samples_leaf adjusted accordingly.
- (2)
- ANN: ANNs simulate biological neural systems and typically consist of an input layer for explanatory variables, multiple hidden layers for nonlinear computation, and an output layer for producing results [39]. The weights and biases in the neural network are optimized by minimizing the cost function between actual labels and predicted values, allowing the network to learn and adapt to various data patterns for improved prediction accuracy. In this study, the ANN structure was modified from an initial two-layer neural network to a two-layer neural network with Dropout layers (rate = 0.5) inserted between hidden layers [40] to prevent overfitting and enhance generalization.
- (3)
- XGB: Introduced by Chen and Guestrin, XGB is a highly efficient algorithm within the gradient boosting framework [41]. It supports parallel tree boosting Chen et al. and reduces overfitting through L1 and L2 regularization [42]. XGB’s innovative features, such as randomized parameter selection, leaf node proportion adjustment, and a unique tree penalty mechanism, offer superior performance for various data science tasks [43,44]. In this study, XGB is implemented using the xgboost library in Python 3.12, with hyperparameters like n_estimators, learning_rate, max_depth, subsample, colsample_bytree, min_child_weight, lambda, and alpha optimized to enhance model accuracy and efficiency.
2.3.2. Random Grid Search Algorithm (RGSA)
- (1)
- Initialize the upper limit (), lower limit () and coarse step size () for the parameters to be adjusted.
- (2)
- Use random search within the upper and lower limits for , and calculate the average accuracy of each point using ten-fold cross-validation.
- (3)
- Determine the coarse optimal point () and obtain the range .
- (4)
- Use grid search within the to determine .
- (5)
- Evaluate the model’s stability using the index (Equation (1)). If , the model is considered stable; otherwise, return to step 1 and reinitialize the parameters.
2.3.3. Comparison Map Profile Method (CMP)
2.3.4. Model Accuracy Evaluation Methods
2.3.5. Variance Inflation Factor (VIF) Analysis
2.3.6. Enhanced GPP Estimation Model
3. Results
3.1. Model Evaluation
3.1.1. Assessing the GPP Estimation Capability of Different Models
3.1.2. Seasonal GPP Simulation Results
3.2. Comparison of Estimation Capabilities with Different Variable Combinations
3.3. Comparison of Optimized Model Results with Other Products
3.3.1. Comparison of GPP Estimation Results Based on Site Data
3.3.2. Comparison of Spatial Consistency in GPP Estimates
4. Discussion
4.1. Evaluation of Model Performance
4.2. Key Influencing Factors of Forest GPP
4.3. Comparison with Existing Product Data
4.4. Limitations and Prospects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GPP | Gross primary productivity |
ML | Machine learning |
RS | Remote Sensing |
RGSA | Random Grid Search Algorithm |
RF | Random Forest |
XGB | eXtreme Gradient Boosting |
LAI | Leaf Area Index |
Temp | Temperature |
NR | Net Radiation |
VPD | Vapor Pressure Deficit |
NDVI | Normalized Difference Vegetation Index |
LUE | Light Use Efficiency |
EC | Eddy Covariance |
SVM | Support Vector Machines |
ANN | Artificial Neural Network |
SR | Solar Radiation |
PAR | Photosynthetically Active Radiation |
NEE | Net Ecosystem Exchange |
RE | Ecosystem Respiration |
EVI | Enhanced Vegetation Index |
GOSIF | Global Solar-Induced chlorophyll Fluorescence |
CMP | Comparison Map Profile Method |
VIF | Variance inflation factor |
OCO-2 | Orbiting Carbon Observatory-2 |
References
- Bloomfield, K.J.; Stocker, B.D.; Keenan, T.F.; Prentice, I.C. Environmental controls on the light use efficiency of terrestrial gross primary production. Glob. Change Biol. 2023, 29, 1037–1053. [Google Scholar] [CrossRef] [PubMed]
- Stat, F. Statistical Database of the Food and Agriculture Organization of the United Nations; FAO: Egypt, Cairo, 2014. [Google Scholar]
- Beer, C.; Reichstein, M.; Tomelleri, E.; Ciais, P.; Jung, M.; Carvalhais, N.; Rödenbeck, C.; Arain, M.A.; Baldocchi, D.; Bonan, G.B. Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate. Science 2010, 329, 834–838. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, B.; Xu, G.; Yan, J.; Che, M.; Chen, J.; Fang, S.; Lin, X.; Sun, S. Comparing simulated atmospheric carbon dioxide concentration with GOSAT retrievals. Sci. Bull. 2015, 60, 380–386. [Google Scholar] [CrossRef]
- Jung, M.; Reichstein, M.; Margolis, H.A.; Cescatti, A.; Richardson, A.D.; Arain, M.A.; Arneth, A.; Bernhofer, C.; Bonal, D.; Chen, J. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J. Geophys. Res. Biogeosciences 2011, 116. [Google Scholar] [CrossRef]
- Xiao, J.; Ollinger, S.V.; Frolking, S.; Hurtt, G.C.; Hollinger, D.Y.; Davis, K.J.; Pan, Y.; Zhang, X.; Deng, F.; Chen, J. Data-driven diagnostics of terrestrial carbon dynamics over North America. Agric. For. Meteorol. 2014, 197, 142–157. [Google Scholar] [CrossRef]
- Zhu, X.-J.; Yu, G.-R.; Chen, Z.; Zhang, W.-K.; Han, L.; Wang, Q.-F.; Chen, S.-P.; Liu, S.-M.; Wang, H.-M.; Yan, J.-H. Mapping Chinese annual gross primary productivity with eddy covariance measurements and machine learning. Sci. Total Environ. 2023, 857, 159390. [Google Scholar] [CrossRef]
- Pei, Y.; Dong, J.; Zhang, Y.; Yuan, W.; Doughty, R.; Yang, J.; Zhou, D.; Zhang, L.; Xiao, X. Evolution of light use efficiency models: Improvement, uncertainties, and implications. Agric. For. Meteorol. 2022, 317, 108905. [Google Scholar] [CrossRef]
- Lin, S.; Hu, Z.; Wang, Y.; Chen, X.; He, B.; Song, Z.; Sun, S.; Wu, C.; Zheng, Y.; Xia, X. Underestimated interannual variability of terrestrial vegetation production by terrestrial ecosystem models. Glob. Biogeochem. Cycles 2023, 37, e2023GB007696. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Y.; Ju, W.; Qiu, B.; Zhang, Z. Tracking the seasonal and inter-annual variations of global gross primary production during last four decades using satellite near-infrared reflectance data. Sci. Total Environ. 2021, 755, 142569. [Google Scholar] [CrossRef]
- Zhang, Z.; Xin, Q.; Li, W. Machine learning-based modeling of vegetation leaf area index and gross primary productivity across North America and comparison with a process-based model. J. Adv. Model. Earth Syst. 2021, 13, e2021MS002802. [Google Scholar] [CrossRef]
- Guo, H.; Zhou, X.; Dong, Y.; Wang, Y.; Li, S. On the use of machine learning methods to improve the estimation of gross primary productivity of maize field with drip irrigation. Ecol. Model. 2023, 476, 110250. [Google Scholar] [CrossRef]
- Wolanin, A.; Camps-Valls, G.; Gómez-Chova, L.; Mateo-García, G.; Van Der Tol, C.; Zhang, Y.; Guanter, L. Estimating crop primary productivity with Sentinel-2 and Landsat 8 using machine learning methods trained with radiative transfer simulations. Remote Sens. Environ. 2019, 225, 441–457. [Google Scholar] [CrossRef]
- Bai, J.; Zhang, H.; Sun, R.; Li, X.; Xiao, J.; Wang, Y. Estimation of global GPP from GOME-2 and OCO-2 SIF by considering the dynamic variations of GPP-SIF relationship. Agric. For. Meteorol. 2022, 326, 109180. [Google Scholar] [CrossRef]
- Killeen, P.; Kiringa, I.; Yeap, T.; Branco, P. Corn Grain Yield Prediction Using UAV-Based High Spatiotemporal Resolution Imagery, Machine Learning, and Spatial Cross-Validation. Remote Sens. 2024, 16, 683. [Google Scholar] [CrossRef]
- Liu, Q.; Gui, D.; Zhang, L.; Niu, J.; Dai, H.; Wei, G.; Hu, B.X. Simulation of regional groundwater levels in arid regions using interpretable machine learning models. Sci. Total Environ. 2022, 831, 154902. [Google Scholar] [CrossRef]
- Yu, R.; Yao, Y.; Tang, Q.; Shao, C.; Fisher, J.B.; Chen, J.; Jia, K.; Zhang, X.; Li, Y.; Shang, K. Coupling a light use efficiency model with a machine learning-based water constraint for predicting grassland gross primary production. Agric. For. Meteorol. 2023, 341, 109634. [Google Scholar] [CrossRef]
- Schratz, P.; Muenchow, J.; Iturritxa, E.; Cortés, J.; Bischl, B.; Brenning, A. Monitoring forest health using hyperspectral imagery: Does feature selection improve the performance of machine-learning techniques? Remote Sens. 2021, 13, 4832. [Google Scholar] [CrossRef]
- Jin, J.; Hou, W.; Ma, X.; Wang, H.; Xie, Q.; Wang, W.; Zhu, Q.; Fang, X.; Zhou, F.; Liu, Y. Improved estimation of gross primary production with NIRvP by incorporating a phenophase scheme for temperate deciduous forest ecosystems. For. Ecol. Manag. 2024, 556, 121742. [Google Scholar] [CrossRef]
- Winship, C.; Western, B. Multicollinearity and model misspecification. Sociol. Sci. 2016, 3, 627–649. [Google Scholar] [CrossRef]
- Yu, T.; Pang, Y.; Sun, R.; Niu, X. Spatial downscaling of vegetation productivity in the forest from deep learning. IEEE Access 2022, 10, 104449–104460. [Google Scholar] [CrossRef]
- Gaber, M.; Kang, Y.; Schurgers, G.; Keenan, T. Using automated machine learning for the upscaling of gross primary productivity. Biogeosciences 2024, 21, 2447–2472. [Google Scholar] [CrossRef]
- Tian, Z.; Fu, Y.; Zhou, T.; Yi, C.; Kutter, E.; Zhang, Q.; Krakauer, N.Y. Estimating Forest Gross Primary Production Using Machine Learning, Light Use Efficiency Model, and Global Eddy Covariance Data. Forests 2024, 15, 1615. [Google Scholar] [CrossRef]
- Xu, W.; Zhang, B.; Xu, Q.; Gao, D.; Zuo, H.; Ren, R.; Diao, K.; Chen, Z. Enhanced Carbon Storage in Mixed Coniferous and Broadleaf Forest Compared to Pure Forest in the North Subtropical–Warm Temperate Transition Zone of China. Forests 2024, 15, 1520. [Google Scholar] [CrossRef]
- Zhang, D.; Zuo, X.; Zang, C. Assessment of future potential carbon sequestration and water consumption in the construction area of the Three-North Shelterbelt Programme in China. Agric. For. Meteorol. 2021, 303, 108377. [Google Scholar] [CrossRef]
- Yu, G.-R.; Wen, X.-F.; Sun, X.-M.; Tanner, B.D.; Lee, X.; Chen, J.-Y. Overview of ChinaFLUX and evaluation of its eddy covariance measurement. Agric. For. Meteorol. 2006, 137, 125–137. [Google Scholar] [CrossRef]
- Yu, G.; Chen, Z.; Piao, S.; Peng, C.; Ciais, P.; Wang, Q.; Li, X.; Zhu, X. High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region. Proc. Natl. Acad. Sci. USA 2014, 111, 4910–4915. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Hu, S.; Zeng, L.; Meng, K.; Liao, Z.; Wang, K. Estimation of Daily Maize Gross Primary Productivity by Considering Specific Leaf Nitrogen and Phenology via Machine Learning Methods. Remote Sens. 2024, 16, 341. [Google Scholar] [CrossRef]
- Ha, T.V.; Uereyen, S.; Kuenzer, C. Agricultural drought conditions over mainland Southeast Asia: Spatiotemporal characteristics revealed from MODIS-based vegetation time-series. Int. J. Appl. Earth Obs. Geoinf. 2023, 121, 103378. [Google Scholar] [CrossRef]
- Lee, B.; Kim, N.; Kim, E.-S.; Jang, K.; Kang, M.; Lim, J.-H.; Cho, J.; Lee, Y. An artificial intelligence approach to predict gross primary productivity in the forests of South Korea using satellite remote sensing data. Forests 2020, 11, 1000. [Google Scholar] [CrossRef]
- Ma, H.; Liang, S. Development of the GLASS 250-m leaf area index product (version 6) from MODIS data using the bidirectional LSTM deep learning model. Remote Sens. Environ. 2022, 273, 112985. [Google Scholar] [CrossRef]
- Huang, L.; Liu, M.; Jiang, Y.; Tang, R. Coupled Estimation Of daily Gross Primary Production and Evapotranspiration at 84 Global Forest Sites. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 3741–3744. [Google Scholar]
- Li, X.; Xiao, J. Mapping photosynthesis solely from solar-induced chlorophyll fluorescence: A global, fine-resolution dataset of gross primary production derived from OCO-2. Remote Sens. 2019, 11, 2563. [Google Scholar] [CrossRef]
- Jung, M.; Reichstein, M.; Schwalm, C.R.; Huntingford, C.; Sitch, S.; Ahlström, A.; Arneth, A.; Camps-Valls, G.; Ciais, P.; Friedlingstein, P. Compensatory water effects link yearly global land CO2 sink changes to temperature. Nature 2017, 541, 516–520. [Google Scholar] [CrossRef]
- Liang, S.; Zhang, X.; Xiao, Z.; Cheng, J.; Liu, Q.; Zhao, X. Global Land Surface Satellite (GLASS) Products: Algorithms, Validation and Analysis; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Feng, P.; Wang, B.; Li Liu, D.; Waters, C.; Xiao, D.; Shi, L.; Yu, Q. Dynamic wheat yield forecasts are improved by a hybrid approach using a biophysical model and machine learning technique. Agric. For. Meteorol. 2020, 285, 107922. [Google Scholar] [CrossRef]
- Little, M.P.; Rosenberg, P.S.; Arsham, A. Alternative stopping rules to limit tree expansion for random forest models. Sci. Rep. 2022, 12, 15113. [Google Scholar] [CrossRef]
- Aziz, G.; Minallah, N.; Saeed, A.; Frnda, J.; Khan, W. Remote sensing based forest cover classification using machine learning. Sci. Rep. 2024, 14, 69. [Google Scholar] [CrossRef]
- Li, M.; Zhu, Z.; Ren, W.; Wang, Y. Predicting Gross Primary Productivity under Future Climate Change for the Tibetan Plateau Based on Convolutional Neural Networks. Remote Sens. 2024, 16, 3723. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Chen, J.; Li, K.; Tang, Z.; Bilal, K.; Yu, S.; Weng, C.; Li, K. A parallel random forest algorithm for big data in a spark cloud computing environment. IEEE Trans. Parallel Distrib. Syst. 2016, 28, 919–933. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, E.; Zhang, C.; Han, Y. Impact of seasonal global land surface temperature (LST) change on gross primary production (GPP) in the early 21st century. Sustain. Cities Soc. 2024, 110, 105572. [Google Scholar]
- Qadeer, A.; Shakir, M.; Wang, L.; Talha, S.M. Evaluating machine learning approaches for aboveground biomass prediction in fragmented high-elevated forests using multi-sensor satellite data. Remote Sens. Appl. Soc. Environ. 2024, 36, 101291. [Google Scholar] [CrossRef]
- Mitra, B.; Tiwari, S.P.; Uddin, M.S.; Mahmud, K.; Rahman, S.M. Decision tree ensemble with Bayesian optimization to predict the spatial dynamics of chlorophyll-a concentration: A case study in Bay of Bengal. Mar. Pollut. Bull. 2024, 199, 115945. [Google Scholar] [CrossRef]
- Ma, A.; Wan, Y.; Zhong, Y.; Wang, J.; Zhang, L. SceneNet: Remote sensing scene classification deep learning network using multi-objective neural evolution architecture search. ISPRS J. Photogramm. Remote Sens. 2021, 172, 171–188. [Google Scholar] [CrossRef]
- Liu, X.; Al-Shaibah, B.; Zhao, C.; Tong, Z.; Bian, H.; Zhang, F.; Zhang, J.; Pei, X. Estimation of the key water quality parameters in the surface water, middle of northeast China, based on Gaussian process regression. Remote Sens. 2022, 14, 6323. [Google Scholar] [CrossRef]
- Gaucherel, C.; Alleaume, S.; Hély, C. The comparison map profile method: A strategy for multiscale comparison of quantitative and qualitative images. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2708–2719. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, X.; Li, Y.; Wang, T.; Shen, M.; Du, M.; He, H.; Li, Y.; Luo, W.; Ma, M. Spatiotemporal pattern of gross primary productivity and its covariation with climate in China over the last thirty years. Glob. Change Biol. 2018, 24, 184–196. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Li, Z.; Wang, T.; Chen, A.; Wang, X.; Du, M.; Jia, G.; Li, Y.; Li, H.; Luo, W. A new estimation of China’s net ecosystem productivity based on eddy covariance measurements and a model tree ensemble approach. Agric. For. Meteorol. 2018, 253, 84–93. [Google Scholar] [CrossRef]
- Zhou, T.; Hou, Y.; Yang, Z.; Laffitte, B.; Luo, K.; Luo, X.; Liao, D.; Tang, X. Reducing spatial resolution increased net primary productivity prediction of terrestrial ecosystems: A Random Forest approach. Sci. Total Environ. 2023, 897, 165134. [Google Scholar] [CrossRef]
- Sarkar, D.P.; Shankar, B.U.; Parida, B.R. Machine learning approach to predict terrestrial gross primary productivity using topographical and remote sensing data. Ecol. Inform. 2022, 70, 101697. [Google Scholar] [CrossRef]
- Kalantar, B.; Ueda, N.; Idrees, M.O.; Janizadeh, S.; Ahmadi, K.; Shabani, F. Forest Fire Susceptibility Prediction Based on Machine Learning Models with Resampling Algorithms on Remote Sensing Data. Remote Sens. 2020, 12, 3682. [Google Scholar] [CrossRef]
- Ij, H. Statistics versus machine learning. Nat Methods 2018, 15, 233. [Google Scholar]
- Lee, B.; Kim, E.; Jang, K.; Cho, N.H.; Song, W.; Park, G.; Park, C.; Lim, J.-H. Estimating Gross Primary Production using machine-learning algorithms based on eddy covariance measurements and remote sensing in forest ecosystem. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 1 April 2019; p. 9036. [Google Scholar]
- Irvin, J.; Zhou, S.; McNicol, G.; Lu, F.; Liu, V.; Fluet-Chouinard, E.; Ouyang, Z.; Knox, S.H.; Lucas-Moffat, A.; Trotta, C. Gap-filling eddy covariance methane fluxes: Comparison of machine learning model predictions and uncertainties at FLUXNET-CH4 wetlands. Agric. For. Meteorol. 2021, 308, 108528. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J.M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S.-I. From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2020, 2, 56–67. [Google Scholar] [CrossRef]
- Jiang, H.; Chen, A.; Wu, Y.; Zhang, C.; Chi, Z.; Li, M.; Wang, X. Vegetation monitoring for mountainous regions using a new integrated topographic correction (ITC) of the SCS+ C correction and the shadow-eliminated vegetation index. Remote Sens. 2022, 14, 3073. [Google Scholar] [CrossRef]
- Habeeb, H.N.; Mustafa, Y.T. Deep learning approaches for estimating forest vegetation cover and exploring influential ecosystem factors. Earth Sci. Inform. 2024, 17, 3379–3396. [Google Scholar] [CrossRef]
- Whitcraft, A.K.; Vermote, E.F.; Becker-Reshef, I.; Justice, C.O. Cloud cover throughout the agricultural growing season: Impacts on passive optical earth observations. Remote Sens. Environ. 2015, 156, 438–447. [Google Scholar] [CrossRef]
- Xie, M.; Li, L.; Liu, B.; Liu, Y.; Wan, Q. Responses of terrestrial ecosystem productivity and community structure to intra-annual precipitation patterns: A meta-analysis. Front. Plant Sci. 2023, 13, 1088202. [Google Scholar] [CrossRef] [PubMed]
- Chaparro, D.; Duveiller, G.; Piles, M.; Cescatti, A.; Vall-Llossera, M.; Camps, A.; Entekhabi, D. Sensitivity of L-band vegetation optical depth to carbon stocks in tropical forests: A comparison to higher frequencies and optical indices. Remote Sens. Environ. 2019, 232, 111303. [Google Scholar] [CrossRef]
- Zha, T.; Barr, A.; Bernier, P.-Y.; Lavigne, M.; Trofymow, J.; Amiro, B.; Arain, M.; Bhatti, J.; Black, T.; Margolis, H. Gross and aboveground net primary production at Canadian forest carbon flux sites. Agric. For. Meteorol. 2013, 174, 54–64. [Google Scholar] [CrossRef]
- Lee, H.; Park, J.; Cho, S.; Lee, M.; Kim, H.S. Impact of leaf area index from various sources on estimating gross primary production in temperate forests using the JULES land surface model. Agric. For. Meteorol. 2019, 276, 107614. [Google Scholar] [CrossRef]
- Chen, X.; Cai, A.; Guo, R.; Liang, C.; Li, Y. Variation of gross primary productivity dominated by leaf area index in significantly greening area. J. Geogr. Sci. 2023, 33, 1747–1764. [Google Scholar] [CrossRef]
- De Bock, A.; Belmans, B.; Vanlanduit, S.; Blom, J.; Alvarado-Alvarado, A.; Audenaert, A. A review on the leaf area index (LAI) in vertical greening systems. Build. Environ. 2023, 229, 109926. [Google Scholar] [CrossRef]
- Madani, N.; Parazoo, N.C.; Kimball, J.S.; Ballantyne, A.P.; Reichle, R.H.; Maneta, M.; Saatchi, S.; Palmer, P.I.; Liu, Z.; Tagesson, T. Recent amplified global gross primary productivity due to temperature increase is offset by reduced productivity due to water constraints. AGU Adv. 2020, 1, e2020AV000180. [Google Scholar] [CrossRef]
- Bao, S.; Wutzler, T.; Koirala, S.; Cuntz, M.; Ibrom, A.; Besnard, S.; Walther, S.; Šigut, L.; Moreno, A.; Weber, U. Environment-sensitivity functions for gross primary productivity in light use efficiency models. Agric. For. Meteorol. 2022, 312, 108708. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, X.; Huang, Z.; Guo, B.; Tian, L.; Wei, C.; Meng, Y.; Zhang, Y. Integrating satellite-based passive microwave and optically sensed observations to evaluating the spatio-temporal dynamics of vegetation health in the red soil regions of southern China. GIScience Remote Sens. 2022, 59, 215–233. [Google Scholar] [CrossRef]
- Zhou, Z.; Ding, Y.; Liu, S.; Wang, Y.; Fu, Q.; Shi, H. Estimating the applicability of NDVI and SIF to gross primary productivity and grain-yield monitoring in China. Remote Sens. 2022, 14, 3237. [Google Scholar] [CrossRef]
- Liang, S.; Cheng, J.; Jia, K.; Jiang, B.; Liu, Q.; Xiao, Z.; Yao, Y.; Yuan, W.; Zhang, X.; Zhao, X. The global land surface satellite (GLASS) product suite. Bull. Am. Meteorol. Soc. 2021, 102, E323–E337. [Google Scholar] [CrossRef]
- Leinenkugel, P.; Wolters, M.L.; Kuenzer, C.; Oppelt, N.; Dech, S. Sensitivity analysis for predicting continuous fields of tree-cover and fractional land-cover distributions in cloud-prone areas. In Remote Sensing the Mekong; Routledge: London, UK, 2018; pp. 53–75. [Google Scholar]
- Virnodkar, S.S.; Pachghare, V.K.; Patil, V.; Jha, S.K. Remote sensing and machine learning for crop water stress determination in various crops: A critical review. Precis. Agric. 2020, 21, 1121–1155. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Wang, D.; Tan, D.; Liu, L. Particle swarm optimization algorithm: An overview. Soft Comput. 2018, 22, 387–408. [Google Scholar] [CrossRef]
- Song, Y.; Wang, T.; Cai, P.; Mondal, S.K.; Sahoo, J.P. A comprehensive survey of few-shot learning: Evolution, applications, challenges, and opportunities. ACM Comput. Surv. 2023, 55, 1–40. [Google Scholar] [CrossRef]
- Habeeb, H.N.; Mustafa, Y.T. Deep Learning-Based Prediction of Forest Cover Change in Duhok, Iraq: Past and Future. Forestist 2025, 75, 68. [Google Scholar] [CrossRef]
- Ma, Y.; Chen, S.; Ermon, S.; Lobell, D.B. Transfer learning in environmental remote sensing. Remote Sens. Environ. 2024, 301, 113924. [Google Scholar] [CrossRef]
Row | Variables | VIF |
---|---|---|
1 | PAR | 119.89 |
2 | SR | 119.12 |
3 | NR | 8.46 |
4 | EVI | 8.08 |
5 | VPD | 6.97 |
6 | Temp | 6.76 |
7 | NDVI | 5.17 |
8 | LAI | 2.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Na, Q.; Lai, Q.; Bao, G.; Xue, J.; Liu, X.; Gao, R. Estimation of Gross Primary Productivity Using Performance-Optimized Machine Learning Methods for the Forest Ecosystems in China. Forests 2025, 16, 518. https://doi.org/10.3390/f16030518
Na Q, Lai Q, Bao G, Xue J, Liu X, Gao R. Estimation of Gross Primary Productivity Using Performance-Optimized Machine Learning Methods for the Forest Ecosystems in China. Forests. 2025; 16(3):518. https://doi.org/10.3390/f16030518
Chicago/Turabian StyleNa, Qin, Quan Lai, Gang Bao, Jingyuan Xue, Xinyi Liu, and Rihe Gao. 2025. "Estimation of Gross Primary Productivity Using Performance-Optimized Machine Learning Methods for the Forest Ecosystems in China" Forests 16, no. 3: 518. https://doi.org/10.3390/f16030518
APA StyleNa, Q., Lai, Q., Bao, G., Xue, J., Liu, X., & Gao, R. (2025). Estimation of Gross Primary Productivity Using Performance-Optimized Machine Learning Methods for the Forest Ecosystems in China. Forests, 16(3), 518. https://doi.org/10.3390/f16030518