Spatial Distribution Changes and Factor Analysis of Topsoil Organic Carbon Across Different Forest Types on Hainan Island
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Data Sources
2.2.1. The Third National Land Survey Data
2.2.2. Observed SOC Data
2.2.3. Normalized Difference Vegetation Index (NDVI) Data
2.2.4. Age Data
2.2.5. Environmental Data
2.3. Methods
2.3.1. Technical Approach
2.3.2. SOC Estimation Database Construction
2.3.3. Univariate Analysis and Group Comparison
2.3.4. Factor Selection and Model Validation
2.3.5. Spatial Change Analysis
3. Results
3.1. Univariate Analysis of Different Forest SOC
3.2. Construction and Evaluation of Different Forest SOC Model
3.3. Spatial Analysis of Forest SOC
4. Discussion
4.1. Impact of Important Factors on Different Forest SOC
4.2. Spatial Distribution Pattern of Forest SOC
4.3. Limitations and Uncertainties
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [PubMed]
- Li, B.; Fang, X.; Li, Y.; Xiang, W.; Tian, D.; Chen, X.; Yan, W.; Deng, D. Dynamic properties of soil organic carbon in Hunan’s forests. Acta Ecol. Sin. 2015, 35, 4265–4278. [Google Scholar]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Available online: https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Full_Report.pdf (accessed on 22 November 2024).
- Li, H.; Wu, Y.; Liu, S.; Xiao, J.; Zhao, W.; Chen, J.; Alexandrov, G.; Cao, Y. Decipher soil organic carbon dynamics and driving forces across China using machine learning. Glob. Change Biol. 2022, 28, 3394–3410. [Google Scholar]
- Ding, J.; Chen, L.; Ji, C.; Hugelius, G.; Li, Y.; Liu, L.; Qin, S.; Zhang, B.; Yang, G.; Li, F.; et al. Decadal soil carbon accumulation across Tibetan permafrost regions. Nat. Geosci. 2017, 10, 420–424. [Google Scholar]
- Zhao, Y.; Wang, M.; Hu, S.; Zhang, X.; Ouyang, Z.; Zhang, G.; Huang, B.; Zhao, S.; Wu, J.; Xie, D.; et al. Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands. Proc. Natl. Acad. Sci. USA 2018, 115, 4045–4050. [Google Scholar]
- Mohanty, B.P.; Famiglietti, J.S.; Skaggs, T.H. Evolution of soil moisture spatial structure in a mixed vegetation pixel during the Southern Great Plains 1997 (SGP97) Hydrology Experiment. Water Resour. Res. 2000, 36, 3675–3686. [Google Scholar]
- Andrews, T.J.; Muller, G.J. Photosynthetic Gas Exchange of the Mangrove, Rhizophora stylosa Griff., in Its Natural Environment. Oecologia 1985, 65, 449–455. [Google Scholar]
- Bjorkman, O.; Demmig, B.; Andrews, T.J. Mangrove Photosynthesis: Response to High-Irradiance Stress. Funct. Plant Biol. 1988, 15, 43–61. [Google Scholar]
- Ball, M.C. Interactive Effects of Salinity and Irradiance on Growth: Implications for Mangrove Forest Structure along Salinity Gradients. Trees 2002, 16, 126–139. [Google Scholar] [CrossRef]
- Parida, A.K.; Das, A.B.; Mittra, B. Effects of Salt on Growth, Ion Accumulation, Photosynthesis and Leaf Anatomy of the Mangrove, Bruguiera parviflora. Trees 2004, 18, 167–174. [Google Scholar] [CrossRef]
- Lopez-Hoffman, L.; DeNoyer, J.L.; Monroe, I.E.; Shaftel, R.; Anten, N.P.; Martínez-Ramos, M.; Ackerly, D.D. Mangrove Seedling Net Photosynthesis, Growth, and Survivorship Are Interactively Affected by Salinity and Light. Biotropica 2006, 38, 606–616. [Google Scholar]
- Raupach, M.R.; Rayner, P.J.; Barrett, D.J.; DeFries, R.S.; Heimann, M.; Ojima, D.S.; Schmullius, C.C. Model-Data Synthesis in Terrestrial Carbon Observation: Methods, Data Requirements and Data Uncertainty Specifications. Glob. Change Biol. 2005, 11, 378–397. [Google Scholar]
- Hagger, V.; Worthington, T.A.; Lovelock, C.E.; Adame, M.F.; Amano, T.; Brown, B.M.; Saunders, M.I. Drivers of Global Mangrove Loss and Gain in Social-Ecological Systems. Nat. Commun. 2022, 13, 6373. [Google Scholar] [PubMed]
- Arnaud, M.; Krause, S.; Norby, R.J.; Dang, T.H.; Acil, N.; Kettridge, N.; Ullah, S. Global Mangrove Root Production, Its Controls and Roles in the Blue Carbon Budget of Mangroves. Glob. Change Biol. 2023, 29, 3256–3270. [Google Scholar]
- Allen, D.E.; Pringle, M.J.; Page, K.L.; Dalal, R.C. A review of sampling designs for the measurement of soil organic carbon in Australian grazing lands. Rangel. J. 2010, 32, 227–246. [Google Scholar]
- Zhang, Z.; Ding, J.; Zhu, C.; Wang, J.; Ge, X.; Li, X.; Han, L.; Chen, X.; Wang, J. Historical and future variation of soil organic carbon in China. Geoderma 2023, 436, 116557. [Google Scholar]
- Thompson, J.A.; Kolka, R.K. Soil carbon storage estimation in a forested watershed using quantitative soil–landscape modeling. Soil Sci. Soc. Am. J. 2005, 69, 1086–1093. [Google Scholar]
- Tao, F.; Zhou, Z.; Huang, Y.; Li, Q.; Lu, X.; Ma, S.; Huang, X.; Liang, Y.; Hugelius, G.; Jiang, L.; et al. Deep learning optimizes data-driven representation of soil organic carbon in earth system model over the conterminous United States. Front. Big Data 2020, 3, 17. [Google Scholar]
- Yan, L.; Zhou, G.; Wang, Y.; Hu, T.; Sui, X. The spatial and temporal dynamics of carbon budget in the alpine grasslands on the Qinghai-Tibetan Plateau using the Terrestrial Ecosystem Model. J. Cleaner Prod. 2015, 107, 195–201. [Google Scholar]
- Sun, Z.; An, Y.; Kong, J.; Zhao, J.; Cui, W.; Nie, T.; Zhang, T.; Liu, W.; Wu, L. Exploring the spatio-temporal patterns of global mangrove gross primary production and quantifying the factors affecting its estimation, 1996–2020. Sci. Total Environ. 2024, 908, 168262. [Google Scholar]
- Hamilton, S.E.; Friess, D.A. Global carbon stocks and potential emissions due to mangrove deforestation from 2000 to 2012. Nat. Clim. Change 2018, 8, 240–244. [Google Scholar] [CrossRef]
- Pham, T.D.; Yokoya, N.; Bui, D.T.; Yoshino, K.; Friess, D.A. Remote sensing approaches for monitoring mangrove species, structure, and biomass: Opportunities and challenges. Remote Sens. 2019, 11, 230. [Google Scholar] [CrossRef]
- Worthington, T.A.; Andradi-Brown, D.A.; Bhargava, R.; Buelow, C.; Bunting, P.; Duncan, C.; Fatoyinbo, L.; Friess, D.A.; Goldberg, L.; Hilarides, L.; et al. Harnessing big data to support the conservation and rehabilitation of mangrove forests globally. One Earth 2020, 2, 429–443. [Google Scholar] [CrossRef]
- Wang, B.; Gray, J.M.; Waters, C.M.; Anwar, M.R.; Orgill, S.E.; Cowie, A.L.; Feng, P.; Liu, D.L. Modelling and mapping soil organic carbon stocks under future climate change in south-eastern Australia. Geoderma 2022, 405, 115442. [Google Scholar] [CrossRef]
- Yigini, Y.; Panagos, P. Assessment of soil organic carbon stocks under future climate and land cover changes in Europe. Sci. Total Environ. 2016, 557–558, 838–850. [Google Scholar] [CrossRef]
- Chen, Y.; Xiong, K.; Luo, L.; Chen, J. Ecosystem services supply-demand mismatch and their drivers in highly spatially heterogeneous South China karst ecoregions. Land Degrad. Dev. 2024, 35, 816–831. [Google Scholar] [CrossRef]
- Wang, Z. Geostatistics and its applications in ecology. Sci. Press 1999, 1, 123–145. [Google Scholar]
- Shi, X.; Nie, T.; Xiong, Q.; Liu, Z.; Zhang, J.; Liu, W.; Wu, L.; Cui, W.; Sun, Z. Assessment of carbon stock and sequestration of the mangrove ecosystems on Hainan Island based on InVEST and MaxEnt models. J. Trop. Biol. 2023, 14, 298–306. [Google Scholar]
- Li, W.; Zhang, J.; Liu, S.; Che, X.; Chen, X.; Zou, H. Meteorological Characteristics and Monitoring Indicators of Drought in Hainan Island. J. Trop. Biol. 2022, 13, 324–330. [Google Scholar]
- National Soil Survey Office of China. Soil Data of China; Resources and Environment Data Cloud Platform: Beijing, China, 1995; Available online: http://www.resdc.cn/data.aspx?DATAID=145 (accessed on 4 March 2025).
- Bao, S. Soil Agrochemical Analysis, 3rd ed; China Agriculture Press: Beijing, China, 2000; pp. 30–34. [Google Scholar]
- Zhang, S.Q.; Xu, Q.; Yang, Q.; Jiang, Y.M.; Wang, X.; Liu, W. Soil Carbon, Nitrogen, Phosphorus Content and Carbon-to-Nitrogen Ratio in Sandy Soils of the Coastal Zone of Hainan Island. J. For. Environ. 2019, 39, 398–403. [Google Scholar]
- Li, M.; Cao, S.; Zhu, Z. Spatiotemporally consistent global dataset of the GIMMS normalized difference vegetation index (PKU GIMMS NDVI) from 1982 to 2020. Earth Syst. Sci. Data Discuss. 2023, 15, 4181–4203. [Google Scholar]
- Pinzon, J.E.; Tucker, C.J. A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens. 2014, 6, 6929–6960. [Google Scholar] [CrossRef]
- Besnard, S.; Koirala, S.; Santoro, M.; Weber, U.; Nelson, J.; Gütter, J.; Herault, B.; Kassi, J.; N’Guessan, A.; Neigh, C.; et al. Mapping global forest age from forest inventories, biomass and climate data. Earth Syst. Sci. Data Discuss. 2021, 2021, 4881–4896. [Google Scholar]
- Abatzoglou, J.T.; Dobrowski, S.Z.; Parks, S.A. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 2018, 5, 170191. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Gamarra, J.G.; Picard, N.; Zhou, M.; Pijanowski, B.; Jacobs, D.F.; Reich, P.B.; Crowther, T.W.; Nabuurs, G.J.; De-Miguel, S.; et al. Co-limitation towards lower latitudes shapes global forest diversity gradients. Nat. Ecol. Evol. 2022, 6, 1423–1437. [Google Scholar]
- Fanin, N.; Bezaud, S.; Sarneel, J.M.; Cecchini, S.; Nicolas, M.; Augusto, L. Relative importance of climate, soil and plant functional traits during the early decomposition stage of standardized litter. Ecosystems 2020, 23, 1004–1018. [Google Scholar] [CrossRef]
- Kock, N. Common method bias in PLS-SEM: A full collinearity assessment approach. Int. J. e-Collab. 2015, 11, 1–10. [Google Scholar]
- Viscarra Rossel, R.A.; Webster, R.; Bui, E.N.; Baldock, J.A. Baseline map of organic carbon in Australian soil to support national carbon accounting and monitoring under climate change. Glob. Change Biol. 2014, 20, 2953–2970. [Google Scholar]
- Dubey, N.; Ghosh, S. The relative role of soil moisture and vapor pressure deficit in affecting the Indian vegetation productivity. Environ. Res. Lett. 2023, 18, 064012. [Google Scholar]
- Sulman, B.N.; Roman, D.T.; Yi, K.; Wang, L.; Phillips, R.P.; Novick, K.A. High atmospheric demand for water can limit forest carbon uptake and transpiration as severely as dry soil. Geophys. Res. Lett. 2016, 43, 9686–9695. [Google Scholar] [CrossRef]
- Eamus, D.; Boulain, N.; Cleverly, J.; Breshears, D.D. Global change-type drought-induced tree mortality: Vapor pressure deficit is more important than temperature per se in causing decline in tree health. Ecol. Evol. 2013, 3, 2711–2729. [Google Scholar] [CrossRef] [PubMed]
- Peñuelas, J.; Canadell, J.G.; Ogaya, R. Increased water-use efficiency during the 20th century did not translate into enhanced tree growth. Glob. Ecol. Biogeogr. 2011, 20, 597–608. [Google Scholar]
- Leonardi, S.; Gentilesca, T.; Guerrieri, R.; Ripullone, F.; Magnani, F.; Mencuccini, M.; Noije, T.V.; Borghetti, M. Assessing the effects of nitrogen deposition and climate on carbon isotope discrimination and intrinsic water-use efficiency of angiosperm and conifer trees under rising CO2 conditions. Glob. Change Biol. 2012, 18, 2925–2944. [Google Scholar]
- Leopold, A.; Marchand, C.; Renchon, A.; Deborde, J.; Quiniou, T.; Allenbach, M. Net ecosystem CO2 exchange in the “Coeur de Voh” mangrove, New Caledonia: Effects of water stress on mangrove productivity in a semi-arid climate. Agric. For. Meteorol. 2016, 223, 217–232. [Google Scholar]
- Leopold, A.; Marchand, C.; Allenbach, M.; Renchon, A.; Deborde, J.; Bourgeois, C.; Quiniou, T. Net ecosystem CO2 exchanges between a dwarf Avicennia marina var. Australasica mangrove and the atmosphere: Application of the eddy-covariance flux tower to “Le Coeur de Voh” mangrove (New Caledonia). In The Mangrove & Macrobenthos Meeting (MMM4); Elsevier: Amsterdam, The Netherlands, 2016; Volume 223. [Google Scholar]
- Davidson, E.A.; Janssens, I.A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 2006, 440, 165–173. [Google Scholar]
- Xu, S.; Wu, C.; Wang, L.; Gonsamo, A.; Shen, Y.; Niu, Z. A new satellite-based monthly precipitation downscaling algorithm with non-stationary relationship between precipitation and land surface characteristics. Remote Sens. Environ. 2015, 162, 119–140. [Google Scholar]
- Zhang, H.; Wu, B.; Yan, N.; Zhu, W.; Feng, X. An improved satellite-based approach for estimating vapor pressure deficit from MODIS data. J. Geophys. Res. Atmos. 2014, 119, 12256. [Google Scholar]
- Gou, R.; Chi, J.; Liu, J. Atmospheric water demand constrains net ecosystem production in subtropical mangrove forests. J. Hydrol. 2024, 630, 130651. [Google Scholar]
- Wu, D.; Li, G.; Kang, Q.; Zhang, X.; Cao, Z.; Li, Z. Characteristics of CO2 flux and its influence factors over winter wheat agroecosystem in the North China Plain. J. Appl. Ecol. 2018, 29, 827–838. [Google Scholar]
- Green, J.K.; Berry, J.; Ciais, P.; Zhang, Y.; Gentine, P. Amazon rainforest photosynthesis increases in response to atmospheric dryness. Sci. Adv. 2020, 6, eabb7232. [Google Scholar]
- Pan, Y.; Wang, Y.; Xin, J.; Tang, G.; Song, T.; Wang, Y.; Li, X.; Wu, F. Study on dissolved organic carbon in precipitation in Northern China. Atmos. Environ. 2010, 44, 2350–2357. [Google Scholar] [CrossRef]
- Chen, S.; Huang, Y.; Zou, J.; Shi, Y. Mean residence time of global topsoil organic carbon depends on temperature, precipitation and soil nitrogen. Glob. Planet. Change 2013, 100, 99–108. [Google Scholar] [CrossRef]
- Pregitzer, K.S.; Euskirchen, E.S. Carbon cycling and storage in world forests: Biome patterns related to forest age. Glob. Change Biol. 2004, 10, 2052–2077. [Google Scholar] [CrossRef]
- Chen, H.Y.; Shrestha, B.M. Stand age, fire and clearcutting affect soil organic carbon and aggregation of mineral soils in boreal forests. Soil Biol. Biochem. 2012, 50, 149–157. [Google Scholar] [CrossRef]
- Sanders, C.J.; Maher, D.T.; Tait, D.R.; Williams, D.; Holloway, C.; Sippo, J.Z.; Santos, I.R. Are global mangrove carbon stocks driven by rainfall? J. Geophys. Res. Biogeosci. 2016, 121, 2600–2609. [Google Scholar] [CrossRef]
- Osland, M.J.; Gabler, C.A.; Grace, J.B.; Day, R.H.; McCoy, M.L.; McLeod, J.L.; From, A.S.; Enwright, N.M.; Feher, L.C.; Stagg, C.L.; et al. Climate and plant controls on soil organic matter in coastal wetlands. Glob. Change Biol. 2018, 24, 5361–5379. [Google Scholar] [CrossRef]
- Gao, T.; Guan, W.; Mao, J.; Jiang, Z.; Liao, B. Carbon storage and influence factors of major mangrove communities in Fucheng, Leizhou Peninsula, Guangdong Province. Ecol. Environ. Sci. 2017, 26, 985–990. [Google Scholar]
- Alongi, D.M. Carbon sequestration in mangrove forests. Carbon Manag. 2012, 3, 313–322. [Google Scholar] [CrossRef]
- Wang, S.; Fan, J.; Zhong, H.; Li, Y.; Zhu, H.; Qiao, Y.; Zhang, H. A multi-factor weighted regression approach for estimating the spatial distribution of soil organic carbon in grasslands. Catena 2019, 174, 248–258. [Google Scholar] [CrossRef]
- Khormali, F.; Ajami, M.; Ayoubi, S.; Srinivasarao, C.; Wani, S.P. Role of deforestation and hillslope position on soil quality attributes of loess-derived soils in Golestan province, Iran. Agric. Ecosyst. Environ. 2009, 134, 178–189. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, L.; Chen, Y.; Shi, T.; Luo, M.; Ju, Q.; Zhang, H.; Wang, S. Prediction of soil organic carbon based on Landsat 8 monthly NDVI data for the Jianghan Plain in Hubei Province, China. Remote Sens. 2019, 11, 1683. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, X.; Zhang, X.; Tani, H.; Guo, E.; Yin, S.; Zhang, T. Evaluating and comparing remote sensing terrestrial GPP models for their response to climate variability and CO2 trends. Sci. Total Environ. 2019, 668, 696–713. [Google Scholar] [PubMed]
- Mcleod, E.; Chmura, G.L.; Bouillon, S.; Salm, R.; Björk, M.; Duarte, C.M.; Lovelock, C.E.; Schlesinger, W.H.; Silliman, B.R. A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 2011, 9, 552–560. [Google Scholar] [CrossRef]
- Sun, W.; Liu, X. Review on carbon storage estimation of forest ecosystem and applications in China. For. Ecosyst. 2020, 7, 4. [Google Scholar]
- Wang, X.; Feng, Z.; Ouyang, Z. The impact of human disturbance on vegetative carbon storage in forest ecosystems in China. For. Ecol. Manag. 2001, 148, 117–123. [Google Scholar]
- Zeng, Y.; Fang, N.; Shi, Z. Effects of human activities on soil organic carbon redistribution at an agricultural watershed scale on the Chinese Loess Plateau. Agric. Ecosyst. Environ. 2020, 303, 107112. [Google Scholar]
- Mohamed, E.S.; Abu-hashim, M.; AbdelRahman, M.A.; Schütt, B.; Lasaponara, R. Evaluating the effects of human activity over the last decades on the soil organic carbon pool using satellite imagery and GIS techniques in the Nile Delta Area, Egypt. Sustainability 2019, 11, 2644. [Google Scholar] [CrossRef]
- Wang, J.; Wang, H.; Ding, Y.; Zhang, Y.; Cong, W.; Zang, R.; Liu, S. Shifting cultivation and logging change soil organic carbon functional groups in tropical lowland rainforests on Hainan Island in China. For. Ecol. Manag. 2023, 549, 121447. [Google Scholar]
- Lin, J.; Tian, Y.; Zhang, Y.; Bai, X.; Zhang, Q.; Tao, J.; Yang, Y.; Yang, Y. Spatial distribution characteristics of soil organic carbon in mangrove wetlands at the Maoling River estuary, Beibu Gulf. Mar. Environ. Sci. 2024, 43, 339–347. [Google Scholar]
- Wang, Z.; Wang, Q. Study on the spatial heterogeneity of forest soil physical properties. Acta Ecol. Sin. 2000, 6, 945–950. [Google Scholar]
- Wiesmeier, M.; Urbanski, L.; Hobley, E.; Lang, B.; Lützow, M.; Marin-Spiotta, E.; Wesemael, B.; Rabot, E.; Ließ, M.; Garcia-Franco, N.; et al. Soil organic carbon storage as a key function of soils-A review of drivers and indicators at various scales. Geoderma 2019, 333, 149–162. [Google Scholar]
- Ren, Y.; Mao, D.; Wang, Z.; Yu, Z.; Xu, X.; Huang, Y.; Xi, Y.; Luo, L.; Jia, M.; Song, K.; et al. China’s wetland soil organic carbon pool: New estimation on pool size, change, and trajectory. Glob. Change Biol. 2023, 29, 6139–6156. [Google Scholar]
Variable Type | Data | Resolution (°) | Dataset | Detail |
---|---|---|---|---|
Meteorology | VPD | 0.0416 × 0.0416 | TerraClimate | Vapor pressure deficit |
Meteorology | PAR | 0.5 × 0.625 | MERRA-2 | Photosynthetically active radiation |
Meteorology | PRE | 0.5 × 0.625 | MERRA-2 | Precipitation |
Meteorology | CCF | 0.5 × 0.625 | MERRA-2 | Cloud cover fraction |
Meteorology | WS | 0.5 × 0.625 | MERRA-2 | Wind speed |
Meteorology | TEM | 0.1 × 0.1 | MERRA-2 | Temperature |
Geography | DEM | 0.00027 × 0.00027 | MERRA-2 | Digital elevation model |
Botany | TSR | 0.025 × 0.025 | Science-i | Total species richness |
Botany | NDVI | 0.0083 × 0.0083 | PKU GIMMS NDVI | Normalized difference vegetation index |
Botany | AGE | 0.0083 × 0.0083 | MPI-BGC forest age dataset | Forest age |
Botany | Forest distribution | - | 3rd NLSC | Third national land survey of China |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Sun, Z.; Zheng, Y.; Dong, L.; Wang, P.; Zhang, J.; Lu, J.; Wu, L. Spatial Distribution Changes and Factor Analysis of Topsoil Organic Carbon Across Different Forest Types on Hainan Island. Forests 2025, 16, 550. https://doi.org/10.3390/f16030550
Zhang X, Sun Z, Zheng Y, Dong L, Wang P, Zhang J, Lu J, Wu L. Spatial Distribution Changes and Factor Analysis of Topsoil Organic Carbon Across Different Forest Types on Hainan Island. Forests. 2025; 16(3):550. https://doi.org/10.3390/f16030550
Chicago/Turabian StyleZhang, Xiang, Zhongyi Sun, Yinqi Zheng, Lu Dong, Peng Wang, Jie Zhang, Jingli Lu, and Lan Wu. 2025. "Spatial Distribution Changes and Factor Analysis of Topsoil Organic Carbon Across Different Forest Types on Hainan Island" Forests 16, no. 3: 550. https://doi.org/10.3390/f16030550
APA StyleZhang, X., Sun, Z., Zheng, Y., Dong, L., Wang, P., Zhang, J., Lu, J., & Wu, L. (2025). Spatial Distribution Changes and Factor Analysis of Topsoil Organic Carbon Across Different Forest Types on Hainan Island. Forests, 16(3), 550. https://doi.org/10.3390/f16030550