Fluctuations in Species Diversity in Evergreen Broad-Leaved Forests and Changes in Their Co-Occurrence Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Plot Survey
2.3. Division of Life Stage
2.4. Data Analysis
3. Results
3.1. Plot Census
3.2. Co-Occurrence Network Analysis of the WYS Plant Community
4. Discussion
4.1. Changes in Species Diversity in Mt. Wuyi
4.2. Co-Occurrence Networks Reveal Structural Changes in the Mt. Wuyi Community
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chisholm, R.A.; Fung, T. Janzen-Connell Effects Are a Weak Impediment to Competitive Exclusion. Am. Nat. 2020, 196, 649–661. [Google Scholar] [CrossRef]
- Wright, J.S. Plant Diversity in Tropical Forests: A Review of Mechanisms of Species Coexistence. Oecologia 2002, 130, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Wright, S.J.; Jaramillo, M.A.; Pavon, J.; Condit, R.; Hubbell, S.P.; Foster, R.B. Reproductive Size Thresholds in Tropical Trees: Variation among Individuals, Species and Forests. J. Trop. Ecol. 2005, 21, 307–315. [Google Scholar] [CrossRef]
- LaManna, J.A.; Mangan, S.A.; Alonso, A.; Bourg, N.A.; Brockelman, W.Y.; Bunyavejchewin, S.; Chang, L.-W.; Chiang, J.-M.; Chuyong, G.B.; Clay, K.; et al. Plant Diversity Increases with the Strength of Negative Density Dependence at the Global Scale. Science 2017, 356, 1389–1392. [Google Scholar] [CrossRef]
- Hubbell, S.P. Tree Dispersion, Abundance, and Diversity in a Tropical Dry Forest: That Tropical Trees Are Clumped, Not Spaced, Alters Conceptions of the Organization and Dynamics. Science 1979, 203, 1299–1309. [Google Scholar] [CrossRef] [PubMed]
- Condit, R.; Chisholm, R.A.; Hubbell, S.P. Thirty Years of Forest Census at Barro Colorado and the Importance of Immigration in Maintaining Diversity. PLoS ONE 2012, 7, e49826. [Google Scholar] [CrossRef]
- Lande, R.; Engen, S.; Saether, B.-E. Stochastic Population Dynamics in Ecology and Conservation; Oxford University Press: New York, NY, USA, 2003; ISBN 978-0-19-852525-7. [Google Scholar]
- Gravel, D.; Guichard, F.; Hochberg, M.E. Species Coexistence in a Variable World. Ecol. Lett. 2011, 14, 828–839. [Google Scholar] [CrossRef]
- Chisholm, R.A.; Condit, R.; Rahman, K.A.; Baker, P.J.; Bunyavejchewin, S.; Chen, Y.-Y.; Chuyong, G.; Dattaraja, H.S.; Davies, S.; Ewango, C.E.N.; et al. Temporal Variability of Forest Communities: Empirical Estimates of Population Change in 4000 Tree Species. Ecol. Lett. 2014, 17, 855–865. [Google Scholar] [CrossRef]
- Eck, J.L.; Stump, S.M.; Delavaux, C.S.; Mangan, S.A.; Comita, L.S. Evidence of Within-Species Specialization by Soil Microbes and the Implications for Plant Community Diversity. Proc. Natl. Acad. Sci. USA 2019, 116, 7371–7376. [Google Scholar] [CrossRef]
- Rottstock, T.; Joshi, J.; Kummer, V.; Fischer, M. Higher Plant Diversity Promotes Higher Diversity of Fungal Pathogens, While It Decreases Pathogen Infection per Plant. Ecology 2014, 95, 1907–1917. [Google Scholar] [CrossRef]
- Liu, X.; Chen, L.; Zhou, S. The Relationship between Biodiversity and Infectious Disease: Progress, Challenge and Perspective. Biodivers. Sci. 2020, 28, 1376. [Google Scholar] [CrossRef]
- Hülsmann, L.; Chisholm, R.A.; Hartig, F. Is Variation in Conspecific Negative Density Dependence Driving Tree Diversity Patterns at Large Scales? Trends Ecol. Evol. 2021, 36, 151–163. [Google Scholar] [CrossRef]
- Esper, J.; Torbenson, M.; Büntgen, U. 2023 Summer Warmth Unparalleled over the Past 2,000 Years. Nature 2024, 631, 94–97. [Google Scholar] [CrossRef] [PubMed]
- Chesson, P. Mechanisms of Maintenance of Species Diversity. Annu. Rev. Ecol. Syst. 2000, 31, 343–366. [Google Scholar] [CrossRef]
- Lebrija-Trejos, E.; Hernández, A.; Wright, S.J. Effects of Moisture and Density-Dependent Interactions on Tropical Tree Diversity. Nature 2023, 615, 100–104. [Google Scholar] [CrossRef]
- Comita, L.S.; Queenborough, S.A.; Murphy, S.J.; Eck, J.L.; Xu, K.; Krishnadas, M.; Beckman, N.; Zhu, Y. Testing Predictions of the Janzen–Connell Hypothesis: A Meta-Analysis of Experimental Evidence for Distance- and Density-Dependent Seed and Seedling Survival. J. Ecol. 2014, 102, 845–856. [Google Scholar] [CrossRef]
- Brooker, R.W. Plant–Plant Interactions and Environmental Change. New Phytol. 2006, 171, 271–284. [Google Scholar] [CrossRef] [PubMed]
- Bruno, J.F.; Stachowicz, J.J.; Bertness, M.D. Inclusion of Facilitation into Ecological Theory. Trends Ecol. Evol. 2003, 18, 119–125. [Google Scholar] [CrossRef]
- Pec, G.J.; Simard, S.W.; Cahill, J.F.; Karst, J. The Effects of Ectomycorrhizal Fungal Networks on Seedling Establishment Are Contingent on Species and Severity of Overstorey Mortality. Mycorrhiza 2020, 30, 173–183. [Google Scholar] [CrossRef]
- Putra, R.; Vandegeer, R.K.; Karan, S.; Powell, J.R.; Hartley, S.E.; Johnson, S.N. Silicon Enrichment Alters Functional Traits in Legumes Depending on Plant Genotype and Symbiosis with Nitrogen-Fixing Bacteria. Funct. Ecol. 2021, 35, 2856–2869. [Google Scholar] [CrossRef]
- Layeghifard, M.; Hwang, D.M.; Guttman, D.S. Disentangling Interactions in the Microbiome: A Network Perspective. Trends Microbiol. 2017, 25, 217–228. [Google Scholar] [PubMed]
- Bimler, M.D.; Stouffer, D.B.; Martyn, T.E.; Mayfield, M.M. Plant Interaction Networks Reveal the Limits of Our Understanding of Diversity Maintenance. Ecol. Lett. 2024, 27, e14376. [Google Scholar] [CrossRef]
- Ding, H.; Fang, Y.; Yang, Q.; Chen, X.; Yuan, F.; Xu, H.; He, L.; Yan, J.; Chen, T.; Yu, C.; et al. Community Characteristics of a Mid-Subtropical Evergreen Broad-Leaved Forest Plot in the Wuyi Mountains, Fujian Province, Southeastern China. Biodivers. Sci. 2016, 23, 479–492. [Google Scholar] [CrossRef]
- Xie, L.; Xia, Y.; Chen, S.; Zheng, X.; Ding, H.; Fang, Y. Positive Interactions Promote the Maintenance of Subtropical Plant Communities: A 5-Year Forest Dynamics Study. Braz. J. Bot 2024, 48, 13. [Google Scholar] [CrossRef]
- Song, W. Ectomycorrhizal Fungi: Potential Guardians of Terrestrial Ecosystems. mLife 2024, 3, 387–390. [Google Scholar] [CrossRef] [PubMed]
- Laliberté, E.; Zemunik, G.; Turner, B.L. Environmental Filtering Explains Variation in Plant Diversity along Resource Gradients. Science 2014, 345, 1602–1605. [Google Scholar]
- Zhang, R.; Zhang, Z.; Shang, K.; Zhao, M.; Kong, J.; Wang, X.; Wang, Y.; Song, H.; Zhang, O.; Lv, X.; et al. A taxonomic and phylogenetic perspective on plant community assembly along an elevational gradient in subtropical forests. J. Plant Ecol. 2021, 14, 702–716. [Google Scholar] [CrossRef]
- Zhang, H.; Zheng, X.; Wu, Y.; Xu, B.; Cui, P.; Zhou, X.; Fang, Y.; Xie, L.; Ding, H. Impact of Microtopography and Neighborhood Effects on Individual Survival Across Life History Stages. Plants. 2024, 3, 3216. [Google Scholar]
- Qin, Y.; Wei, Y.; Lu, J.; Mao, J.; Chen, X.; Gao, L.; Chen, Y.; Liu, M.; Deng, H. Surface Air Temperature Change in the Wuyi Mountains, Southeast China. J. Mt. Sci. 2024, 21, 1992–2004. [Google Scholar] [CrossRef]
- Lin, S.; Hu, X.; Chen, H.; Wu, C.; Hong, W. Spatio-Temporal Variation of Ecosystem Service Values Adjusted by Vegetation Cover: A Case Study of Wuyishan National Park Pilot, China. J. For. Res. 2022, 33, 851–863. [Google Scholar] [CrossRef]
- Condit, R. Tropical Forest Census Plots; Springer: Berlin/Heidelberg, Germany, 1998; ISBN 978-3-662-03666-2. [Google Scholar]
- Chen, S.; Xie, L.; Zhou, W.; Chen, H.; Xu, X.; Jiang, S.; Zang, M.; Peng, Y.; Chen, X.; Duan, Y.; et al. Species Diversity Has a Positive Interrelationship with Aboveground Biomass and a Mismatch with Productivity in a Subtropical Broadleaf Forest on the Wuyi Mountains, China. Diversity 2022, 14, 952. [Google Scholar] [CrossRef]
- Harms, K.E.; Condit, R.; Hubbell, S.P.; Foster, R.B. Habitat Associations of Trees and Shrubs in a 50-Ha Neotropical Forest Plot. J. Ecol. 2001, 89, 947–959. [Google Scholar] [CrossRef]
- Zhang, J. Helixcn/LPSC. 2023. Available online: https://github.com/helixcn/LPSC (accessed on 7 February 2025).
- Condit, R.; Lao, S.; Singh, A.; Esufali, S.; Dolins, S. Data and Database Standards for Permanent Forest Plots in a Global Network. For. Ecol. Manag. 2014, 316, 21–31. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, B.; Xiang, W.; Ding, T.; Lu, S.; Huang, F.; Li, D.; Wen, S.; He, Y.; Li, X. Dynamics of Density-Dependent Effects of Tree Species in a 15 Ha Seasonal Rain Forest Plot in Northern Tropical Karst in Nonggang, Guangxi, Southern China. Chin. Sci. Bull. 2015, 60, 1602–1611. [Google Scholar]
- Johnson, D.J.; Condit, R.; Hubbell, S.P.; Comita, L.S. Abiotic Niche Partitioning and Negative Density Dependence Drive Tree Seedling Survival in a Tropical Forest. Proc. R. Soc. B Biol. Sci. 2017, 284, 20172210. [Google Scholar] [CrossRef]
- Zhu, Y.; Queenborough, S.A.; Condit, R.; Hubbell, S.P.; Ma, K.P.; Comita, L.S. Density-Dependent Survival Varies with Species Life-History Strategy in a Tropical Forest. Ecol. Lett. 2018, 21, 506–515. [Google Scholar] [CrossRef]
- Bagchi, R.; Henrys, P.A.; Brown, P.E.; Burslem, D.F.R.P.; Diggle, P.J.; Gunatilleke, C.V.S.; Gunatilleke, I.A.U.N.; Kassim, A.R.; Law, R.; Noor, S.; et al. Spatial Patterns Reveal Negative Density Dependence and Habitat Associations in Tropical Trees. Ecology 2011, 92, 1723–1729. [Google Scholar] [CrossRef] [PubMed]
- Condit, R.; Ashton, P.S.; Manokaran, N.; LaFrankie, J.V.; Hubbell, S.P.; Foster, R.B. Dynamics of the Forest Communities at Pasoh and Barro Colorado: Comparing Two 50–Ha Plots. Philos. Trans. R. Soc. London. Ser. B Biol. Sci. 1999, 354, 1739–1748. [Google Scholar] [CrossRef]
- Chao, A.; Chiu, C.-H. Nonparametric Estimation and Comparison of Species Richness. In Encyclopedia of Life Sciences; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2016; pp. 1–11. ISBN 978-0-470-01590-2. [Google Scholar]
- Jost, L. Entropy and Diversity. Oikos 2006, 113, 363–375. [Google Scholar] [CrossRef]
- Chen, Y.; Wright, S.J.; Muller-Landau, H.C.; Hubbell, S.P.; Wang, Y.; Yu, S. Positive Effects of Neighborhood Complementarity on Tree Growth in a Neotropical Forest. Ecology 2016, 97, 776–785. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, S.; Zheng, X.; Ge, X.; Li, Y.; Fang, Y.; Cui, P.; Ding, H. Neighborhood Diversity Structure and Neighborhood Species Richness Effects Differ across Life Stages in a Subtropical Natural Secondary Forest. For. Ecosyst. 2022, 9, 100075. [Google Scholar] [CrossRef]
- Lüdecke, D.; Ben-Shachar, M.S.; Patil, I.; Waggoner, P.; Makowski, D. Performance: An R Package for Assessment, Comparison and Testing of Statistical Models. J. Open Source Softw. 2021, 6, 3139. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using Lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Liu, C.; Cui, Y.; Li, X.; Yao, M. Microeco: An R Package for Data Mining in Microbial Community Ecology. FEMS Microbiol. Ecol. 2021, 97, fiaa255. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Lu, F.; Zheng, X.; Xu, J.; Ni, Y.; Chen, S.; Ge, X.; Fang, Y.; Li, Y.; Peng, Y.; et al. Navigating Neighborhoods: Density, Size, and Species Diversity Influences on Tree Survival in Subtropical Secondary Forests. For. Ecol. Manag. 2024, 572, 122311. [Google Scholar] [CrossRef]
- Song, X.; Katabuchi, M.; Chase, J.M.; Johnson, D.J.; Zhang, W.; Deng, X.; Cao, M.; Yang, J. Drought Tolerance and Species Abundance Mediate Dry Season Negative Density Dependence in a Tropical Forest. Ecology 2024, 105, e4382. [Google Scholar] [CrossRef]
- Jin, Y.; Chen, J.; Mi, X.; Ren, H.; Ma, K.; Yu, M. Impacts of the 2008 Ice Storm on Structure and Composition of an Evergreen Broad-Leaved Forest Community in Eastern China. Biodivers. Sci. 2015, 23, 610–618. [Google Scholar] [CrossRef]
- Lemmermeyer, S.; Lörcher, L.; van Kleunen, M.; Dawson, W. Testing the Plant Growth-Defense Hypothesis Belowground: Do Faster-Growing Herbaceous Plant Species Suffer More Negative Effects from Soil Biota than Slower-Growing Ones? Am. Nat. 2015, 186, 264–271. [Google Scholar] [CrossRef]
- Yan, X.; Kohli, M.; Wen, Y.; Wang, X.; Zhang, Y.; Yang, F.; Zhou, X.; Du, G.; Hu, S.; Guo, H. Nitrogen Addition and Warming Modulate the Pathogen Impact on Plant Biomass by Shifting Intraspecific Functional Traits and Reducing Species Richness. J. Ecol. 2023, 111, 509–524. [Google Scholar] [CrossRef]
- Comita, L.S.; Muller-Landau, H.C.; Aguilar, S.; Hubbell, S.P. Asymmetric Density Dependence Shapes Species Abundances in a Tropical Tree Community. Science 2010, 329, 330–332. [Google Scholar] [CrossRef]
- Barabás, G.; Michalska-Smith, M.J.; Allesina, S. The Effect of Intra- and Interspecific Competition on Coexistence in Multispecies Communities. Am. Nat. 2016, 188, E1–E12. [Google Scholar] [CrossRef] [PubMed]
- Grilli, J.; Barabás, G.; Michalska-Smith, M.J.; Allesina, S. Higher-Order Interactions Stabilize Dynamics in Competitive Network Models. Nature 2017, 548, 210–213. [Google Scholar] [CrossRef]
- Chen, L.; Swenson, N.G.; Ji, N.; Mi, X.; Ren, H.; Guo, L.; Ma, K. Differential Soil Fungus Accumulation and Density Dependence of Trees in a Subtropical Forest. Science 2019, 366, 124–128. [Google Scholar] [CrossRef]
- Deng, Y.; Jiang, Y.-H.; Yang, Y.; He, Z.; Luo, F.; Zhou, J. Molecular Ecological Network Analyses. BMC Bioinform. 2012, 13, 113. [Google Scholar] [CrossRef]
- Hernandez, D.J.; David, A.S.; Menges, E.S.; Searcy, C.A.; Afkhami, M.E. Environmental Stress Destabilizes Microbial Networks. ISME J. 2021, 15, 1722–1734. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Feng, Y.; Zhao, R.; Lv, T.; Wang, N.; Li, Y.; Zheng, X.; Chen, S.; Ding, H.; Fang, Y. Positive Relationships between Species Diversity and Genetic Diversity on a Local Scale at Mt. Wu Yi, China. Biodivers. Conserv. 2023, 32, 4295–4311. [Google Scholar] [CrossRef]
- Bolin, L.G.; Lau, J.A. Linking Genetic Diversity and Species Diversity through Plant–Soil Feedback. Ecology 2022, 103, e3692. [Google Scholar] [CrossRef]
2013 Species | IV | 2018 Species | IV | 2023 Species | IV |
---|---|---|---|---|---|
Castanopsis carlesii | 6.88% | Castanopsis carlesii | 7.16% | Castanopsis carlesii | 7.71% |
Castanopsis fordii | 4.61% | Castanopsis fordii | 4.63% | Castanopsis fordii | 4.54% |
Castanopsis eyrei | 4.60% | Castanopsis eyrei | 4.33% | Engelhardtia fenzelii | 3.83% |
Engelhardtia fenzelii | 3.95% | Engelhardtia fenzelii | 3.78% | Castanopsis eyrei | 3.80% |
Schima superba | 2.91% | Syzygium buxifolium | 3.04% | Syzygium buxifolium | 3.41% |
Syzygium buxifolium | 2.86% | Schima superba | 2.82% | Altingia gracilipes | 2.90% |
Castanopsis faberi | 2.73% | Castanopsis faberi | 2.62% | Schima superba | 2.80% |
Altingia gracilipes | 2.51% | Altingia gracilipes | 2.62% | Rhododendron henryi | 2.74% |
Rhododendron henryi | 2.48% | Rhododendron henryi | 2.54% | Eurya muricata | 2.69% |
Lithocarpus harlandii | 2.42% | Elaeocarpus japonicus | 2.47% | Elaeocarpus japonicus | 2.63% |
Attribution | 2013 Value | 2018 Value | 2023 Value |
---|---|---|---|
Vertex | 84.00 | 79.00 | 94.00 |
Edge | 302.00 | 276.00 | 310.00 |
Average degree | 7.19 | 6.99 | 6.60 |
Average path length | 0.95 | 0.92 | 0.93 |
Network diameter | 2.00 | 2.00 | 3.00 |
Clustering coefficient | 0.41 | 0.42 | 0.42 |
Density | 0.09 | 0.09 | 0.07 |
Heterogeneity | 0.83 | 0.92 | 1.03 |
Centralization | 0.24 | 0.27 | 0.25 |
Modularity | 0.44 | 0.38 | 0.37 |
Positive | 81.79% | 87.32% | 87.74% |
Negative | 18.21% | 12.68% | 12.26% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, X.; Hu, Y.; Ge, X.; Zhou, X.; Li, Y.; Zhao, R.; Fang, Y.; Ding, H. Fluctuations in Species Diversity in Evergreen Broad-Leaved Forests and Changes in Their Co-Occurrence Network. Forests 2025, 16, 594. https://doi.org/10.3390/f16040594
Zheng X, Hu Y, Ge X, Zhou X, Li Y, Zhao R, Fang Y, Ding H. Fluctuations in Species Diversity in Evergreen Broad-Leaved Forests and Changes in Their Co-Occurrence Network. Forests. 2025; 16(4):594. https://doi.org/10.3390/f16040594
Chicago/Turabian StyleZheng, Xiao, Yaping Hu, Xiaomin Ge, Xu Zhou, Yao Li, Rong Zhao, Yanming Fang, and Hui Ding. 2025. "Fluctuations in Species Diversity in Evergreen Broad-Leaved Forests and Changes in Their Co-Occurrence Network" Forests 16, no. 4: 594. https://doi.org/10.3390/f16040594
APA StyleZheng, X., Hu, Y., Ge, X., Zhou, X., Li, Y., Zhao, R., Fang, Y., & Ding, H. (2025). Fluctuations in Species Diversity in Evergreen Broad-Leaved Forests and Changes in Their Co-Occurrence Network. Forests, 16(4), 594. https://doi.org/10.3390/f16040594