Semi-Automatic Stand Delineation Based on Very-High-Resolution Orthophotographs and Topographic Features: A Case Study from a Structurally Complex Natural Forest in the Southern USA
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. Data Sets
3. Methods
3.1. Object-Based Image Analysis (OBIA)
3.2. Additional GIS Processes and Assignment of Class Names
- The final GIS database should be vector-based, consisting of polygons (stands);
- The minimum mapping area of a stand should be 4 ha;
- Stand shapes should be smooth, as if delineated by a human analyst;
- Natural linear elements (i.e., creeks, roads, and ridges) in the landscape should serve as a foundation for stand boundaries (where possible);
- Forest characteristics (height, diameter, etc.) must be sufficiently homogeneous within stand polygons;
- Some forest areas are composed of “mixed stands” where different tree species are interspersed within the stand. The stands of this sort should not be divided into smaller patches based on individual trees;
- There are no gaps or overlaps among neighboring stands (topology must be established);
- Data format is shapefile (*.shp) compatible to analyze in GIS (Esri’s ArcGIS Pro is preferred).
3.3. Accuracy Assessment
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sanchez-Lopez, N.; Boschetti, L.; Hudak, A.T. Semi-automated delineation of stands in an even-age dominated forest: A LiDAR-GEOBIA two-stage evaluation strategy. Remote Sens. 2018, 10, 1622. [Google Scholar] [CrossRef]
- Demirpolat, C.; Leloglu, U.M. Forest stand segmentation with multi-temporal Sentinel-2 imagery and superpixels. J. Appl. Remote Sens. 2024, 18, 014530. [Google Scholar] [CrossRef]
- Pukkala, T.; Aquilué, N.; Kutchartt, E.; Trasobares, A. A hybrid method for delineating homogeneous forest segments from LiDAR data in Catalonia (Spain). Eur. J. Remote Sens. 2024, 57, 2425337. [Google Scholar] [CrossRef]
- Xiong, H.; Pang, Y.; Jia, W.; Bai, Y. Forest stand delineation using airborne LiDAR and hyperspectral data. Silva Fenn. 2024, 58, 23014. [Google Scholar] [CrossRef]
- Hernando, A.; Tiede, D.; Albrecht, F.; Lang, S. Spatial and thematic assessment of object-based forest stand delineation using an OFA-matrix. Int. J. Appl. Earth Obs. Geoinf. 2012, 19, 214–225. [Google Scholar] [CrossRef]
- Kadiogullari, A.İ.; Sayin, M.A.; Çelik, D.A.; Borucu, S.; Çil, B.; Bulut, S. Analysing land cover changes for understanding of forest dynamics using temporal forest management plans. Environ. Monit. Assess. 2014, 186, 2089–2110. [Google Scholar] [CrossRef] [PubMed]
- Başkent, E.Z.; Köse, S.; Keleş, S. The forest management planning system of Turkey: Constructive criticism towards the sustainable management of forest ecosystems. Int. For. Rev. 2005, 7, 208–217. [Google Scholar] [CrossRef]
- GDF. Ecosystem-Based Multifunctional Forest Planning Guidelines (Code No: 299); The Turkish General Directorate of Forestry: Ankara, Turkey, 2017. (In Turkish) [Google Scholar]
- Öztürk, M.G.; Bekar, İ.; Tavşanoğlu, Ç. Rethinking lightning-induced fires: Spatial variability and implications for management policies. For. Ecol. Manag. 2024, 572, 122262. [Google Scholar] [CrossRef]
- Bilgili, E.; Küçük, Ö.; Sağlam, B.; Coşkuner, K.A. Büyük Orman Yangınları: Sebepleri, Organizasyonu ve İdaresi. In Orman Yangınları: Sebepleri, Etkileri, İzlenmesi, Alınması Gereken Önlemler ve Rehabilitasyon Faaliyetleri; Kavzoğlu, T., Ed.; TÜBA, Ankara Basım Yayın Hizmetleri: Ankara, Turkey, 2021; pp. 1–23. (In Turkish) [Google Scholar]
- Ozkan, U.Y.; Demirel, T.; Ozdemir, I.; Saglam, S.; Mert, A. Examining LiDAR–WorldView-3 data synergy to generate a detailed stand map in a mixed forest in the north-west of Turkey. Adv. Space Res. 2020, 65, 2608–2621. [Google Scholar] [CrossRef]
- Blaschke, T.; Lang, S.; Hay, G.J. Object-Based Image Analysis—Spatial Concepts for Knowledge-Driven Remote Sensing Application; Springer: Berlin/Heidelberg, Germany, 2008; p. 817. [Google Scholar]
- Yurtseven, H.; Akgul, M.; Coban, S.; Gulci, S. Determination and accuracy analysis of individual tree crown parameters using UAV based imagery and OBIA techniques. Measurement 2019, 145, 651–664. [Google Scholar] [CrossRef]
- Kim, M.; Madden, M.; Warner, T. Estimation of optimal image object size for the segmentation of forest stands with multispectral IKONOS imagery. In Object-Based Image Analysis (Spatial Concepts for Knowledge-Driven Remote Sensing Applications); Springer: Berlin, Germany, 2008; pp. 291–307. [Google Scholar]
- Costa, H.; Foody, G.M.; Boyd, D.S. Supervised methods of image segmentation accuracy assessment in land cover mapping. Remote Sens. Environ. 2018, 205, 338–351. [Google Scholar] [CrossRef]
- Subedi, M.R.; Portillo-Quintero, C.; Kahl, S.S.; McIntyre, N.E.; Cox, R.D.; Perry, G. Leveraging NAIP imagery for accurate large-area land use/land cover mapping: A case study in central Texas. Photogramm. Eng. Remote Sens. 2023, 89, 547–560. [Google Scholar] [CrossRef]
- Atkins, J.W.; Costanza, J.; Dahlin, K.M.; Dannenberg, M.P.; Elmore, A.J.; Fitzpatrick, M.C.; Hakkenberg, C.R.; Hardiman, B.S.; Kamoske, A.; LaRue, E.A.; et al. Scale dependency of lidar-derived forest structural diversity. Methods Ecol. Evol. 2023, 14, 708–723. [Google Scholar] [CrossRef]
- McNab, W.H. A topographic index to quantify the effect of mesoscale landform on site productivity. Can. J. For. Res. 1993, 23, 1100–1107. [Google Scholar] [CrossRef]
- Lee, T.; Vatandaslar, C.; Merry, K.; Bettinger, P.; Peduzzi, A.; Stober, J. Estimating forest inventory information for the Talladega National Forest using airborne laser scanning systems. Remote Sens. 2024, 16, 2933. [Google Scholar] [CrossRef]
- Comaniciu, D.; Meer, P. Mean shift: A robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 603–619. [Google Scholar] [CrossRef]
- ArcGIS, version Pro 3.0; Environmental Systems Research Institute Inc.: Redlands, CA, USA, 2022.
- Hamal, M.; Shahnawaz, P. Comparison of the direct supervised classification and segment mean shift classification: A case study of Hetauda sub-metropolitan city of Nepal. J. Geoinf. Nepal 2024, 23, 35–47. [Google Scholar] [CrossRef]
- Zaforemska, A.; Xiao, W.; Gaulton, R. Individual tree detection from UAV lidar data in a mixed species woodland. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 657–663. [Google Scholar] [CrossRef]
- Zhou, S.; Jones, C.B. Shape-aware line generalization with weighted effective area. In Developments in Spatial Data Handling; Fisher, P.F., Ed.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 369–380. [Google Scholar] [CrossRef]
- Ucar, Z.; Bettinger, P.; Weaver, S.; Merry, K.L.; Faw, K. Dynamic accuracy of recreation-grade GPS receivers in oak-hickory forests. Forestry 2014, 87, 504–511. [Google Scholar] [CrossRef]
- Fassnacht, F.E.; White, J.C.; Wulder, M.A.; Næsset, E. Remote sensing in forestry: Current challenges, considerations and directions. Forestry 2024, 97, 11–37. [Google Scholar] [CrossRef]
- Goodbody, T.R.H.; Coops, N.C.; Irwin, L.A.K.; Armour, C.C.; Saunders, S.C.; Dykstra, P.; Butson, C.; Perkins, G.C. Integration of Airborne Laser Scanning data into forest ecosystem management in Canada: Current status and future directions. For. Chron. 2024, 100, 238–258. [Google Scholar] [CrossRef]
- Silveyra Gonzalez, R.; Lafiti, H.; Weinacker, H.; Dees, M.; Koch, B.; Heurich, M. Integrating LiDAR and high-resolution imagery for object-based mapping of forest habitats in a heterogeneous temperate forest landscape. Int. J. Remote Sens. 2018, 39, 8859–8884. [Google Scholar] [CrossRef]
- Dechesne, C.; Mallet, C.; Le Bris, A.; Gouet, V.; Hervieu, A. Forest stand segmentation using airborne lidar data and very high resolution multispectral imagery. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 207–214. [Google Scholar] [CrossRef]
- Varo-Martínez, M.A.; Navarro-Cerrillo, R.M.; Hernández-Clemente, R.; Duque-Lazo, J. Semi-automated stand delineation in Mediterranean Pinus sylvestris plantations through segmentation of LiDAR data: The influence of pulse density. Int. J. Appl. Earth Obs. Geoinf. 2017, 56, 54–64. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, W.; Pukkala, T.; Jin, X. Stand delineation based on laser scanning data and simulated annealing. Eur. J. For. Res. 2021, 140, 1065–1080. [Google Scholar] [CrossRef]
Spatial Characteristics | Final Stand Map | Reference Stand Map |
---|---|---|
The number of stands | 2333 | 6922 |
Average stand size (ha) | 40.8 | 13.7 |
Minimum stand size (ha) | 4.0 | 0.1 |
Maximum stand size (ha) | 2982.1 | 2433.0 |
Standard deviation (ha) | 89.6 | 56.1 |
Total area covered (ha) | 95,271.1 | 94,669.7 |
No. | OLOij | OLUij | Overall Agreement | No. | OLOij | OLUij | Overall Agreement |
---|---|---|---|---|---|---|---|
1 | 0.548 | 0.182 | 0.365 | 32 | 0.582 | 0.032 | 0.307 |
2 | 0.566 | 0.036 | 0.301 | 33 | 1.000 | 0.033 | 0.517 |
3 | 0.562 | 0.361 | 0.461 | 34 | 0.646 | 0.053 | 0.349 |
4 | 0.529 | 0.093 | 0.311 | 35 | 0.646 | 0.042 | 0.344 |
5 | 0.244 | 0.047 | 0.146 | 36 | 1.000 | 0.002 | 0.501 |
6 | 0.992 | 0.204 | 0.598 | 37 | 0.561 | 0.055 | 0.308 |
7 | 0.982 | 0.044 | 0.513 | 38 | 0.744 | 0.504 | 0.624 |
8 | 0.989 | 0.137 | 0.563 | 39 | 0.881 | 0.074 | 0.478 |
9 | 1.000 | 0.039 | 0.519 | 40 | 0.644 | 0.068 | 0.356 |
10 | 0.536 | 0.208 | 0.372 | 41 | 0.766 | 0.062 | 0.414 |
11 | 0.982 | 0.105 | 0.544 | 42 | 0.701 | 0.106 | 0.404 |
12 | 0.983 | 0.064 | 0.524 | 43 | 0.501 | 0.166 | 0.334 |
13 | 0.456 | 0.051 | 0.254 | 44 | 0.789 | 0.550 | 0.669 |
14 | 0.477 | 0.289 | 0.383 | 45 | 0.719 | 0.047 | 0.383 |
15 | 0.434 | 0.058 | 0.246 | 46 | 0.879 | 0.128 | 0.503 |
16 | 0.645 | 0.150 | 0.397 | 47 | 0.361 | 0.470 | 0.415 |
17 | 0.573 | 0.173 | 0.373 | 48 | 0.797 | 0.264 | 0.530 |
18 | 0.470 | 0.637 | 0.553 | 49 | 0.434 | 0.986 | 0.710 |
19 | 0.666 | 0.202 | 0.434 | 50 | 0.680 | 0.070 | 0.375 |
20 | 0.986 | 0.197 | 0.592 | 51 | 0.988 | 0.270 | 0.629 |
21 | 0.366 | 0.433 | 0.400 | 52 | 0.691 | 0.055 | 0.373 |
22 | 0.676 | 0.184 | 0.430 | 53 | 0.637 | 0.178 | 0.407 |
23 | 0.948 | 0.111 | 0.530 | 54 | 0.696 | 0.100 | 0.398 |
24 | 0.940 | 0.292 | 0.616 | 55 | 0.883 | 0.585 | 0.734 |
25 | 0.461 | 0.048 | 0.255 | 56 | 0.703 | 0.018 | 0.360 |
26 | 0.781 | 0.510 | 0.646 | 57 | 0.519 | 0.122 | 0.320 |
27 | 0.580 | 0.065 | 0.323 | 58 | 0.688 | 0.277 | 0.482 |
28 | 1.000 | 0.048 | 0.524 | 59 | 0.682 | 0.146 | 0.414 |
29 | 0.357 | 0.134 | 0.245 | 60 | 0.685 | 0.092 | 0.388 |
30 | 0.806 | 0.150 | 0.478 | 61 | 0.250 | 0.150 | 0.200 |
31 | 0.136 | 0.307 | 0.222 | 62 | 0.664 | 0.006 | 0.335 |
Average | 0.679 | 0.182 | 0.430 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vatandaslar, C.; Bettinger, P.; Merry, K.; Stober, J.; Lee, T. Semi-Automatic Stand Delineation Based on Very-High-Resolution Orthophotographs and Topographic Features: A Case Study from a Structurally Complex Natural Forest in the Southern USA. Forests 2025, 16, 666. https://doi.org/10.3390/f16040666
Vatandaslar C, Bettinger P, Merry K, Stober J, Lee T. Semi-Automatic Stand Delineation Based on Very-High-Resolution Orthophotographs and Topographic Features: A Case Study from a Structurally Complex Natural Forest in the Southern USA. Forests. 2025; 16(4):666. https://doi.org/10.3390/f16040666
Chicago/Turabian StyleVatandaslar, Can, Pete Bettinger, Krista Merry, Jonathan Stober, and Taeyoon Lee. 2025. "Semi-Automatic Stand Delineation Based on Very-High-Resolution Orthophotographs and Topographic Features: A Case Study from a Structurally Complex Natural Forest in the Southern USA" Forests 16, no. 4: 666. https://doi.org/10.3390/f16040666
APA StyleVatandaslar, C., Bettinger, P., Merry, K., Stober, J., & Lee, T. (2025). Semi-Automatic Stand Delineation Based on Very-High-Resolution Orthophotographs and Topographic Features: A Case Study from a Structurally Complex Natural Forest in the Southern USA. Forests, 16(4), 666. https://doi.org/10.3390/f16040666