Advancements in Artificial Intelligence Applications for Forest Fire Prediction
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Forest Fire Prediction Using Statistical and Physics Models
3.1.1. Forest Fire Prediction Based on Regression Analysis
3.1.2. Forest Fire Prediction Based on Probabilistic Model
3.1.3. Forest Fire Prediction Based on Analysis of Fire Risk Index
3.1.4. Forest Fire Prediction Based on Meteorological Models
3.2. Forest Fire Prediction Based on Machine Learning
3.2.1. Forest Fire Prediction Based on Artificial Neural Networks
3.2.2. Forest Fire Prediction Based on Ensemble Learning
3.2.3. Forest Fire Prediction Based on Probabilistic Models
3.2.4. Forest Fire Prediction Based on a Multi-Algorithm Hybrid Model
3.3. Forest Fire Prediction Based on Deep Learning
3.3.1. Forest Fire Prediction Based on Convolutional Neural Networks
3.3.2. Forest Fire Prediction Based on Convolutional Neural Networks and Recurrent Neural Networks
3.3.3. Forest Fire Prediction Based on Other Deep Learning Approaches
3.4. Forest Fire Prediction Dataset
3.4.1. Data Type
- Meteorological factors
- 2.
- Vegetation factors
- 3.
- Topographical factors
- 4.
- Soil Conditions
- 5.
- Human factors
3.4.2. Technical Means
- Remote Sensing Satellite
- 2.
- The Internet of Things Technology
4. Discussion
4.1. Based on Statistical Analysis Methods and Physical Models
4.2. Based on Machine Learning
4.3. Based on Deep Learning
5. Conclusions and Future Works
5.1. Conclusions
5.2. Future Works
- (1).
- Enhancing model resolution and dynamic updates: Utilize physical models to generate high-resolution meteorological fields, driving the dynamic parameter updates of statistical models, thereby improving AI-based prediction accuracy through high-resolution data.
- (2).
- Multi-source data fusion: Integrate diverse observational data (e.g., soil moisture, vegetation water content) with model outputs using data assimilation techniques such as Bayesian hierarchical models.
- (3).
- Hybrid framework development: Design hybrid frameworks (e.g., AI-enhanced physical models) to reduce computational costs while enhancing model generalizability.
- (4).
- Interdisciplinary collaboration: Foster cross-disciplinary cooperation (e.g., between ecology and climate science) to advance fire prediction from single-factor analyses to multi-scale coupled systems, providing more reliable decision-making support for disaster prevention.
Funding
Conflicts of Interest
Appendix A
Dataset | Study Area | Dataset Sources |
---|---|---|
FireCube dataset | Global | https://doi.org/10.5281/zenodo.6475592 accessed on 16 April 2025. |
Historical wildfire data | Global | https://firms.modaps.eosdis.nasa.gov/map/ accessed on 16 April 2025. (Fire Information for Resource Management System) |
Meteorological factors | China | http://www.geodata.cn accessed on 16 April 2025. (National Science and Technology Infrastructure of China) |
Climate data | Global | https://ldas.gsfc.nasa.gov/gldas/ (Global Land Data Assimilation System (GLDAS)) https://disc.gsfc.nasa.gov (GLDAS2.1) accessed on 16 April 2025. |
BIMs | Global | http://www.globalfiredata.org/ accessed on 16 April 2025. |
CFSR | Global | https://rda.ucar.edu accessed on 16 April 2025. |
LAI | Global | http://globalchange.bnu.edu.cn accessed on 16 April 2025. |
USGS | Global | https://lpdaac.usgs.gov/ accessed on 16 April 2025. |
MODIS active fires dataset | Global | https://modis.gsfc.nasa.gov/ accessed on 16 April 2025. |
MODIS MCD12Q1 | Global | https://lpdaac.usgs.gov/products/mcd12q1v061/ https://ladsweb.modaps.eosdis.nasa.gov/ (NASA) accessed on 16 April 2025. |
NASA FIRMS | Global | https://www.earthdata.nasa.gov/firms accessed on 16 April 2025. |
MOD13Q1 | Global | https://lpdaac.usgs.gov/products/mod13q1v006/ accessed on 16 April 2025. |
MOD13A2 | Global | https://www.gscloud.cn/home#page1/2 accessed on 16 April 2025. |
Fire history records; Road network; Vicmap features of interest | Victoria | https://www.data.vic.gov.au/ accessed on 16 April 2025. |
ERA5 (climate data) | Global | https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview (Copernicus Climate Change Service (C3S) Climate Data) accessed on 16 April 2025. |
VIIRS FEDS data | Global | https://doi.org/10.6084/m9.figshare.c.5601537.v1 accessed on 16 April 2025. |
Fuel and terrain data | U.S. | https://landfire.gov (LANDFIRE) accessed on 16 April 2025. |
NEXGDM | Global | https://data.nas.nasa.gov/geonex/geonexdata/NEX-GDM/ (NASA GeoNEX data) accessed on 16 April 2025. |
Weather data | Global | http://worldclim.org/ https://esgf-node.llnl.gov/search/cmip6/ (Simulation data for future climate) accessed on 16 April 2025. |
Burned area | Global | https://www.globalfiredata.org/ (Global Fire Emissions Database (GFEDv4s)) accessed on 16 April 2025. |
Fire Weather Index (FWI) | Global | https://cfs.nrcan.gc.ca/ accessed on 16 April 2025. |
CFSv2 | Global | https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00877 (Climate Forecast System Version 2) accessed on 16 April 2025. |
PRISM | US | https://www.prism.oregonstate.edu/ accessed on 16 April 2025. (Physiographically sensitive mapping) |
EO4WildFires dataset | Global | https://zenodo.org/records/7762564 accessed on 16 April 2025. |
SeasFire Cube | Global | https://zenodo.org/records/7108392 accessed on 16 April 2025. |
OpenStreetMap | Global | https://www.openstreetmap.org/ accessed on 16 April 2025. |
Population density | Global | https://hub.worldpop.org/ (WorldPop) accessed on 16 April 2025. |
Land cover | Global | https://land.copernicus.eu/en/products/corine-land-cover (Corine Land Cover (CLC)) accessed on 16 April 2025. |
Topography variables | Global | https://www.opendem.info/opendemeu_meta_eudem.html accessed on 16 April 2025. |
Historical burned areas | Global | https://forest-fire.emergency.copernicus.eu/ accessed on 16 April 2025. |
Vegetation/remote sensing | Global | https://search.earthdata.nasa.gov (NASA-EARTHDATA) accessed on 16 April 2025. https://www.fire.ca.gov/ (CAL FIRE FRAP) accessed on 16 April 2025. |
Topography | Global | http://www.gscloud.cn (NASA30m resolution SRTM) accessed on 16 April 2025. |
Climatic | China | http://www.resdc.cn (Resource and Environmental Science Data Center, Chinese Academy of Sciences) accessed on 16 April 2025. |
Human factor | China | http://www.webmap.cn/main.do?method=index (National Geographic Information Resource Directory Service System) accessed on 16 April 2025. |
Landsat data | Global | https://earthexplorer.usgs.gov/ accessed on 16 April 2025. |
Sentinel-1 data | Global | https://search.asf.alaska.edu/ accessed on 16 April 2025. |
Sentinel-2 data | Global | https://www.planet.com/ accessed on 16 April 2025. |
DEM SRTM data | Global | https://earthexplorer.usgs.gov/ (United States Geological Survey (USGS)) accessed on 16 April 2025. |
Land use, stream, road, building, and fire station data | Hawaii | https://planning.hawaii.gov/ accessed on 16 April 2025. |
Burned area datasets | Global | https://www.globalfiredata.org/ (Global Fire Emissions Database) accessed on 16 April 2025. |
NDVI data | Global | https://doi.org/10.5067/MODIS/MOD13C2.061 (NASA EOSDIS Land Processes DAAC) accessed on 16 April 2025. |
Spot-Challenge-Wildfires dataset | / | https://github.com/Call-for-Code/Spot-Challenge-Wildfires accessed on 16 April 2025. |
Fire_CCI51 data | Global | https://geogra.uah.es/fire_cci/firecci51.php accessed on 16 April 2025. |
Fire_CCILT11 data | Global | https://geogra.uah.es/fire_cci/fireccilt11.php accessed on 16 April 2025. |
MCD64 data | Global | https://modis-fire.umd.edu/files/MODIS_C6_Fire_User_Guide_C.pdf accessed on 16 April 2025. |
CHIRPS Climate data | Global | https://data.chc.ucsb.edu/products/CHIRPS-2.0 accessed on 16 April 2025. |
Meteorological data | China | https://data.tpdc.ac.cn/home (National Tibetan Plateau Science Data Center) accessed on 16 April 2025. |
Digital vegetation map of China | China | https://www.resdc.cn/ (Center for Resource and Environmental Science and Data) accessed on 16 April 2025. |
Weather dataset | Global | https://www.worldweatheronline.com/korcula-weather-history/dubrovacko-neretvanska/hr.aspx accessed on 16 April 2025. (World Weather Online free access database) |
Building Footprint, and raster data | Global | https://www.fs.usda.gov/rds/archive/catalog/RDS-2020-0060 (Department of Agriculture’s Research Data Archive) accessed on 16 April 2025. |
Wildland–urban interface | Global | https://frap.fire.ca.gov/mapping/gis-data/ accessed on 16 April 2025. |
Information on roads, buildings, residential areas, and rivers | China | https://www.webmap.cn/ (National Catalogue Service for Geographic Information) accessed on 16 April 2025. |
Soil type data | China | https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v20/en/ (Harmonized World Soil Database) accessed on 16 April 2025. |
MODIS LAI data | Global | https://e4ftl01.cr.usgs.gov/MOTA accessed on 16 April 2025. |
Monitoring trends in burn severity | Global | https://edcintl.cr.usgs.gov/downloads/sciweb1/shared/MTBS_Fire/data/composite_data/burned_area_extent_shapefile/mtbs_perimeter_data.zip accessed on 16 April 2025. |
Wildfire-related data | Global | https://www.mtbs.gov/ (Monitoring Trends in Burn Severity) accessed on 16 April 2025. |
dNBR | Global | https://www.usgs.gov/landsat-missions/landsat-normalized-burn-ratio accessed on 16 April 2025. |
gridMET database | Global | http://www.climatologylab.org/gridmet.html accessed on 16 April 2025. |
NCEP-DOE | Global | https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.html https://psl.noaa.gov/data/climateindices/list/ (NOAA oceanic index data) accessed on 16 April 2025. |
Population density data | Global | https://landscan.ornl.gov/ accessed on 16 April 2025. |
Road density data | Global | https://www.globio.info/download-grip-dataset accessed on 16 April 2025. |
Livestock density data | / | https://www.fao.org/dad-is/en/ accessed on 16 April 2025. |
LUH2 land cover change data | / | https://luh.umd.edu/data.shtml accessed on 16 April 2025. |
Grid-cell-level burned area data | / | https://daac.ornl.gov/VEGETATION/guides/fire_emissions_v4.html (Global Fire Emissions Database) accessed on 16 April 2025. |
LFMC dataset | Global | https://doi.org/10.6084/m9.figshare.c.6980418 accessed on 16 April 2025. |
References
- Liang, J.; Crowther, T.W.; Picard, N.; Wiser, S.; Zhou, M.; Alberti, G.; Schulze, E.-D.; McGuire, A.D.; Bozzato, F.; Pretzsch, H.; et al. Positive Biodiversity-Productivity Relationship Predominant in Global Forests. Science 2016, 354, aaf8957. [Google Scholar] [CrossRef] [PubMed]
- Augusto, L.; Boča, A. Tree Functional Traits, Forest Biomass, and Tree Species Diversity Interact with Site Properties to Drive Forest Soil Carbon. Nat. Commun. 2022, 13, 1097. [Google Scholar] [CrossRef]
- Ozel, B.; Alam, M.S.; Khan, M.U. Review of Modern Forest Fire Detection Techniques: Innovations in Image Processing and Deep Learning. Information 2024, 15, 538. [Google Scholar] [CrossRef]
- Hubau, W.; Lewis, S.L.; Phillips, O.L.; Affum-Baffoe, K.; Beeckman, H.; Cuní-Sanchez, A.; Daniels, A.K.; Ewango, C.E.N.; Fauset, S.; Mukinzi, J.M.; et al. Asynchronous Carbon Sink Saturation in African and Amazonian Tropical Forests. Nature 2020, 579, 80–87. [Google Scholar] [CrossRef]
- Zheng, B.; Ciais, P.; Chevallier, F.; Chuvieco, E.; Chen, Y.; Yang, H. Increasing Forest Fire Emissions despite the Decline in Global Burned Area. Sci. Adv. 2021, 7, eabh2646. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, M.; Motesharrei, S.; Mu, Q.; Kalnay, E.; Li, S. Local Cooling and Warming Effects of Forests Based on Satellite Observations. Nat. Commun. 2015, 6, 6603. [Google Scholar] [CrossRef]
- Chagas, V.B.P.; Chaffe, P.L.B.; Blöschl, G. Climate and Land Management Accelerate the Brazilian Water Cycle. Nat. Commun. 2022, 13, 5136. [Google Scholar] [CrossRef] [PubMed]
- Chronopoulos, K.; Matsoukis, A. Meteorological Forest Fire Risk: A Brief Review. Acad. Lett. 2021, 02, 364–367. [Google Scholar] [CrossRef]
- Clarke, B.; Otto, F.; Stuart-Smith, R.; Harrington, L. Extreme Weather Impacts of Climate Change: An Attribution Perspective. Environ. Res. Clim. 2022, 1, 012001. [Google Scholar] [CrossRef]
- Stewart, M.; Carleton, W.C.; Groucutt, H.S. Extreme Events in Biological, Societal, and Earth Sciences: A Systematic Review of the Literature. Front. Earth Sci. 2022, 10, 786–809. [Google Scholar] [CrossRef]
- Vasconcelos, R.N.; Rocha, W.J.S.F.; Costa, D.P.; Duverger, S.G.; de Santana, M.M.M.; Cambui, E.C.B.; Ferreira-Ferreira, J.; Oliveira, M.; Barbosa, L.d.S.; Cordeiro, C.L. Fire Detection with Deep Learning: A Comprehensive Review. Land 2024, 13, 1696. [Google Scholar] [CrossRef]
- Senande-Rivera, M.; Insua-Costa, D.; Miguez-Macho, G. Spatial and Temporal Expansion of Global Wildland Fire Activity in Response to Climate Change. Nat. Commun. 2022, 13, 1208. [Google Scholar] [CrossRef] [PubMed]
- Abdul Kadir, E.; Listia Rosa, S.; Syukur, A.; Othman, M.; Daud, H. Forest Fire Spreading and Carbon Concentration Identification in Tropical Region Indonesia. Alex. Eng. J. 2022, 61, 1551–1561. [Google Scholar] [CrossRef]
- Kalogiannidis, S.; Chatzitheodoridis, F.; Kalfas, D.; Patitsa, C.; Papagrigoriou, A. Socio-Psychological, Economic and Environmental Effects of Forest Fires. Fire 2023, 6, 280. [Google Scholar] [CrossRef]
- Barmpoutis, P.; Papaioannou, P.; Dimitropoulos, K.; Grammalidis, N. A Review on Early Forest Fire Detection Systems Using Optical Remote Sensing. Sensors 2020, 20, 6442. [Google Scholar] [CrossRef] [PubMed]
- Kaur, H.; Sood, S.K. A Smart Disaster Management Framework For Wildfire Detection and Prediction. Comput. J. 2020, 63, 1644–1657. [Google Scholar] [CrossRef]
- Jain, P.; Coogan, S.C.P.; Subramanian, S.G.; Crowley, M.; Taylor, S.; Flannigan, M.D. A Review of Machine Learning Applications in Wildfire Science and Management. Environ. Rev. 2020, 28, 478–505. [Google Scholar] [CrossRef]
- Su, Z.; Hu, H.; Tigabu, M.; Wang, G.; Zeng, A.; Guo, F. Geographically Weighted Negative Binomial Regression Model Predicts Wildfire Occurrence in the Great Xing’an Mountains Better Than Negative Binomial Model. Forests 2019, 10, 377. [Google Scholar] [CrossRef]
- Prasertsri, N.; Littidej, P. Spatial Environmental Modeling for WildfireProgression Accelerating Extent AnalysisUsing Geo-Informatics. Pol. J. Environ. Stud. 2020, 29, 3249–3261. [Google Scholar] [CrossRef]
- Dorji, S.; Ongsomwang, S. Wildfire susceptibility mapping in bhutan using geoinformatics technology. Suranaree J. Sci. Technol. 2017, 24, 213–237. [Google Scholar]
- Bashari, H.; Naghipour, A.A.; Khajeddin, S.J.; Sangoony, H.; Tahmasebi, P. Risk of Fire Occurrence in Arid and Semi-Arid Ecosystems of Iran: An Investigation Using Bayesian Belief Networks. Environ. Monit. Assess. 2016, 188, 531. [Google Scholar] [CrossRef]
- Koh, J.; Pimont, F.; Dupuy, J.-L.; Opitz, T. Spatiotemporal Wildfire Modeling through Point Processes with Moderate and Extreme Marks. Ann. Appl. Stat. 2023, 17, 560–582. [Google Scholar] [CrossRef]
- Coen, J.L.; Schroeder, W.; Conway, S.; Tarnay, L. Computational Modeling of Extreme Wildland Fire Events: A Synthesis of Scientific Understanding with Applications to Forecasting, Land Management, and Firefighter Safety. J. Comput. Sci. 2020, 45, 101152. [Google Scholar] [CrossRef]
- Di Virgilio, G.; Evans, J.P.; Blake, S.A.P.; Armstrong, M.; Dowdy, A.J.; Sharples, J.; McRae, R. Climate Change Increases the Potential for Extreme Wildfires. Geophys. Res. Lett. 2019, 46, 8517–8526. [Google Scholar] [CrossRef]
- Goss, M.; Swain, D.L.; Abatzoglou, J.T.; Sarhadi, A.; Kolden, C.A.; Williams, A.P.; Diffenbaugh, N.S. Climate Change Is Increasing the Likelihood of Extreme Autumn Wildfire Conditions across California. Environ. Res. Lett. 2020, 15, 094016. [Google Scholar] [CrossRef]
- Chikamoto, Y.; Timmermann, A.; Widlansky, M.J.; Balmaseda, M.A.; Stott, L. Multi-Year Predictability of Climate, Drought, and Wildfire in Southwestern North America. Sci. Rep. 2017, 7, 6568. [Google Scholar] [CrossRef]
- Zacharakis, I.; Tsihrintzis, V.A. Environmental Forest Fire Danger Rating Systems and Indices around the Globe: A Review. Land 2023, 12, 194. [Google Scholar] [CrossRef]
- Razavi, S.H.A.; Motlagh, M.S.; Noorpoor, A.; Ehsani, A.H. Modelling the Effect of Temperature Increments on Wildfires. Pollution 2022, 8, 193–209. [Google Scholar] [CrossRef]
- Valdez, M.C.; Chang, K.-T.; Chen, C.-F.; Chiang, S.-H.; Santos, J.L. Modelling the Spatial Variability of Wildfire Susceptibility in Honduras Using Remote Sensing and Geographical Information Systems. Geomat. Nat. Hazards Risk 2017, 8, 876–892. [Google Scholar] [CrossRef]
- Pérez-Sánchez, J.; Jimeno-Sáez, P.; Senent-Aparicio, J.; Díaz-Palmero, J.M.; Cabezas-Cerezo, J.d.D. Evolution of Burned Area in Forest Fires under Climate Change Conditions in Southern Spain Using ANN. Appl. Sci. 2019, 9, 4155. [Google Scholar] [CrossRef]
- Wang, N.; Zhao, S.; Wang, S. A Novel Clustering-Based Resampling with Cost-Sensitive Boosting Method to Model and Map Wildfire Susceptibility. Reliab. Eng. Syst. Saf. 2024, 242, 109742. [Google Scholar] [CrossRef]
- Zhou, F.; Pan, H.; Gao, Z.; Huang, X.; Qian, G.; Zhu, Y.; Xiao, F. Fire Prediction Based on CatBoost Algorithm. Math. Probl. Eng. 2021, 2021, 1–9. [Google Scholar] [CrossRef]
- Rihan, W.; Zhao, J.; Zhang, H.; Guo, X.; Ying, H.; Deng, G.; Li, H. Wildfires on the Mongolian Plateau: Identifying Drivers and Spatial Distributions to Predict Wildfire Probability. Remote Sens. 2019, 11, 2361. [Google Scholar] [CrossRef]
- Jaafari, A.; Zenner, E.K.; Panahi, M.; Shahabi, H. Hybrid Artificial Intelligence Models Based on a Neuro-Fuzzy System and Metaheuristic Optimization Algorithms for Spatial Prediction of Wildfire Probability. Agric. For. Meteorol. 2019, 266, 198–207. [Google Scholar] [CrossRef]
- Janizadeh, S.; Thi Kieu Tran, T.; Bateni, S.M.; Jun, C.; Kim, D.; Trauernicht, C.; Heggy, E. Advancing the LightGBM Approach with Three Novel Nature-Inspired Optimizers for Predicting Wildfire Susceptibility in Kaua’i and Moloka’i Islands, Hawaii. Expert Syst. Appl. 2024, 258, 124963. [Google Scholar] [CrossRef]
- Charizanos, G.; Demirhan, H. Bayesian Prediction of Wildfire Event Probability Using Normalized Difference Vegetation Index Data from an Australian Forest. Ecol. Inform. 2023, 73, 101899. [Google Scholar] [CrossRef]
- Joseph, M.B.; Rossi, M.W.; Mietkiewicz, N.P.; Mahood, A.L.; Cattau, M.E.; Denis, L.A.; Nagy, R.C.; Iglesias, V.; Abatzoglou, J.T.; Balch, J.K. Spatiotemporal Prediction of Wildfire Size Extremes with Bayesian Finite Sample Maxima. Ecol. Appl. 2019, 29, e01898. [Google Scholar] [CrossRef]
- Bugallo, M.; Esteban, M.D.; Marey-Pérez, M.F.; Morales, D. Wildfire Prediction Using Zero-Inflated Negative Binomial Mixed Models: Application to Spain. J. Environ. Manag. 2022, 328, 116788. [Google Scholar] [CrossRef]
- Tehrany, M.S.; Özener, H.; Kalantar, B.; Ueda, N.; Habibi, M.R.; Shabani, F.; Saeidi, V. Application of an Ensemble Statistical Approach in Spatial Predictions of Bushfire Probability and Risk Mapping. J. Sens. 2021, 2021, 31–61. [Google Scholar] [CrossRef]
- Mohajane, M.; Costache, R.; Karimi, F.; Bao Pham, Q.; Essahlaoui, A.; Nguyen, H.; Laneve, G.; Oudija, F. Application of Remote Sensing and Machine Learning Algorithms for Forest Fire Mapping in a Mediterranean Area. Ecol. Indic. 2021, 129, 107869. [Google Scholar] [CrossRef]
- Tran, T.T.K.; Janizadeh, S.; Bateni, S.M.; Jun, C.; Kim, D.; Trauernicht, C.; Rezaie, F.; Giambelluca, T.W.; Panahi, M. Improving the Prediction of Wildfire Susceptibility on Hawai’i Island, Hawai’i, Using Explainable Hybrid Machine Learning Models. J. Environ. Manag. 2024, 351, 119724. [Google Scholar] [CrossRef] [PubMed]
- Ding, C.; Zhang, X.; Chen, J.; Ma, S.; Lu, Y.; Han, W. Wildfire Detection through Deep Learning Based on Himawari-8 Satellites Platform. Int. J. Remote Sens. 2022, 43, 5040–5058. [Google Scholar] [CrossRef]
- Shams Eddin, M.H.; Roscher, R.; Gall, J. Location-Aware Adaptive Normalization: A Deep Learning Approach for Wildfire Danger Forecasting. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–18. [Google Scholar] [CrossRef]
- Pais, C.; Miranda, A.; Carrasco, J.; Shen, Z.-J.M. Deep Fire Topology: Understanding the Role of Landscape Spatial Patterns in Wildfire Occurrence Using Artificial Intelligence. Environ. Model. Softw. 2021, 143, 105122. [Google Scholar] [CrossRef]
- Yu, Q.; Zhao, Y.; Yin, Z.; Xu, Z. Wildfire Susceptibility Prediction Based on a CA-Based CCNN with Active Learning Optimization. Fire 2024, 7, 201. [Google Scholar] [CrossRef]
- Kanwal, R.; Rafaqat, W.; Iqbal, M.; Weiguo, S. Data-Driven Approaches for Wildfire Mapping and Prediction Assessment Using a Convolutional Neural Network (CNN). Remote Sens. 2023, 15, 5099. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, M.; Liu, K. Deep Neural Networks for Global Wildfire Susceptibility Modelling. Ecol. Indic. 2021, 127, 107735. [Google Scholar] [CrossRef]
- Zou, Y.; Sadeghi, M.; Liu, Y.; Puchko, A.; Le, S.; Chen, Y.; Andela, N.; Gentine, P. Attention-Based Wildland Fire Spread Modeling Using Fire-Tracking Satellite Observations. Fire 2023, 6, 289. [Google Scholar] [CrossRef]
- Prapas, I.; Ahuja, A.; Kondylatos, S.; Karasante, I.; Panagiotou, E.; Alonso, L.; Davalas, C.; Michail, D.; Carvalhais, N.; Papoutsis, I. Deep Learning for Global Wildfire Forecasting. arXiv 2023, arXiv:2211.00534. [Google Scholar] [CrossRef]
- Casallas, A.; Jiménez-Saenz, C.; Torres, V.; Quirama-Aguilar, M.; Lizcano, A.; Lopez-Barrera, E.A.; Ferro, C.; Celis, N.; Arenas, R. Design of a Forest Fire Early Alert System through a Deep 3D-CNN Structure and a WRF-CNN Bias Correction. Sensors 2022, 22, 8790. [Google Scholar] [CrossRef]
- Ji, Y.; Wang, D.; Li, Q.; Liu, T.; Bai, Y. Global Wildfire Danger Predictions Based on Deep Learning Taking into Account Static and Dynamic Variables. Forests 2024, 15, 216. [Google Scholar] [CrossRef]
- Deng, J.; Wang, W.; Gu, G.; Chen, Z.; Liu, J.; Xie, G.; Weng, S.; Ding, L.; Li, C. Wildfire Susceptibility Prediction Using a Multisource and Spatiotemporal Cooperative Approach. Earth Sci. Inform. 2023, 16, 3511–3529. [Google Scholar] [CrossRef]
- Bhowmik, R.T.; Jung, Y.S.; Aguilera, J.A.; Prunicki, M.; Nadeau, K. A Multi-Modal Wildfire Prediction and Early-Warning System Based on a Novel Machine Learning Framework. J. Environ. Manag. 2023, 341, 117908. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, M.; Liu, K. Dynamic Prediction of Global Monthly Burned Area with Hybrid Deep Neural Networks. Ecol. Appl. 2022, 32, e2610. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Fan, G.; Li, Z.; Li, S.; Gao, L.; Li, X.; Zeng, Z.-C. Deep Learning Modeling of Human Activity Affected Wildfire Risk by Incorporating Structural Features: A Case Study in Eastern China. Ecol. Indic. 2024, 160, 111946. [Google Scholar] [CrossRef]
- Ramayanti, S.; Kim, B.; Park, S.; Lee, C.-W. Wildfire Susceptibility Mapping by Incorporating Damage Proxy Maps, Differenced Normalized Burn Ratio, and Deep Learning Algorithms Based on Sentinel-1/2 Data: A Case Study on Maui Island, Hawaii. GIScience Remote Sens. 2024, 61, 2353982. [Google Scholar] [CrossRef]
- Matsoukis, A.; Kamoutsis, A.; Chronopoulos, K. Estimation of the Meteorological Forest Fire Risk in a Mountainous Region by Using Remote Air Temperature and Relative Humidity Data. Int. Lett. Nat. Sci. 2018, 67, 1–8. [Google Scholar] [CrossRef]
- Brys, C.; Navas-Delgado, I.; Aldana-Montes, J.F. Wildfire Risk Weighting and Behaviour Prediction Using Open Geospatial Data and Ontologies. J. Inf. Sci. 2023, 10, 152–165. [Google Scholar] [CrossRef]
- Beccari, A.; Borgoni, R.; Cazzuli, O.; Grimaldelli, R. Use and Performance of the Forest Fire Weather Index to Model the Risk of Wildfire Occurrence in the Alpine Region. Environ. Plan. B Plan. Des. 2016, 43, 772–790. [Google Scholar] [CrossRef]
- Joshi, K.P.; Adhikari, G.; Bhattarai, D.; Adhikari, A.; Lamichanne, S. Forest Fire Vulnerability in Nepal’s Chure Region: Investigating the Influencing Factors Using Generalized Linear Model. Heliyon 2024, 10, e28525. [Google Scholar] [CrossRef]
- Pan, J.; Wang, W.; Li, J. Building Probabilistic Models of Fire Occurrence and Fire Risk Zoning Using Logistic Regression in Shanxi Province, China. Nat. Hazards 2016, 81, 1879–1899. [Google Scholar] [CrossRef]
- Ríos-Pena, L.; Kneib, T.; Cadarso-Suárez, C.; Marey-Pérez, M. Predicting the Occurrence of Wildfires with Binary Structured Additive Regression Models. J. Environ. Manag. 2017, 187, 154–165. [Google Scholar] [CrossRef]
- Mohammadi, Z.; Lohmander, P.; Kašpar, J.; Berčák, R.; Holuša, J.; Marušák, R. The Effect of Climate Factors on the Size of Forest Wildfires (Case Study: Prague-East District, Czech Republic). J. For. Res. 2021, 33, 1291–1300. [Google Scholar] [CrossRef]
- Yin, Z.; Zhang, Y.; He, S.; Wang, H. Warm Arctic-Cold Eurasia Pattern Helps Predict Spring Wildfire Burned Area in West Siberia. Nat. Commun. 2024, 15, 9041. [Google Scholar] [CrossRef]
- Zhang, Y.; Lim, S.; Sharples, J.J. Modelling Spatial Patterns of Wildfire Occurrence in South-Eastern Australia. Geomat. Nat. Hazards Risk 2016, 7, 1800–1815. [Google Scholar] [CrossRef]
- Lan, Y.; Wang, J.; Hu, W.; Kurbanov, E.; Cole, J.; Sha, J.; Jiao, Y.; Zhou, J. Spatial Pattern Prediction of Forest Wildfire Susceptibility in Central Yunnan Province, China Based on Multivariate Data. Nat. Hazards 2022, 116, 565–586. [Google Scholar] [CrossRef]
- Papakosta, P.; Straub, D. Probabilistic Prediction of Daily Fire Occurrence in the Mediterranean with Readily Available Spatio-Temporal Data. Iforest Biogeosciences For. 2017, 10, 32–40. [Google Scholar] [CrossRef]
- Yang, S.; Zeng, A.; Tigabu, M.; Wang, G.; Zhang, Z.; Zhu, H.; Guo, F. Investigating Drought Events and Their Consequences in Wildfires: An Application in China. Fire 2023, 6, 223. [Google Scholar] [CrossRef]
- Kouassi, J.-L.K.; Wandan, N.E.; Mbow, C. Assessing the Impact of Climate Variability on Wildfires in the N’Zi River Watershed in Central Côte d’Ivoire. Fire 2018, 1, 36. [Google Scholar] [CrossRef]
- Chávez, R.O.; Castillo-Soto, M.E.; Traipe, K.; Olea, M.; Lastra, J.A.; Quiñones, T. A Probabilistic Multi-Source Remote Sensing Approach to Evaluate Extreme Precursory Drought Conditions of a Wildfire Event in Central Chile. Front. Environ. Sci. 2022, 10, 865406. [Google Scholar] [CrossRef]
- Gheshlaghi, H.A.; Feizizadeh, B.; Blaschke, T.; Lakes, T.; Tajbar, S. Forest Fire Susceptibility Modeling Using Hybrid Approaches. Trans. GIS 2021, 25, 311–333. [Google Scholar] [CrossRef]
- Baranovskiy, N. Forest Fire Danger Assessment Using SPMD-Model of Computation for Massive Parallel System. Int. Rev. Model. Simul. (IREMOS) 2017, 10, 193–201. [Google Scholar] [CrossRef]
- Boadi, C.; Harvey, S.K.; Gyeke-dako, A. Modelling of Fire Count Data: Fire Disaster Risk in Ghana. SpringerPlus 2015, 4, 794. [Google Scholar] [CrossRef] [PubMed]
- Jaafari, A.; Mafi-Gholami, D. Wildfire Hazard Mapping Using an Ensemble Method of Frequency Ratio with Shannon’s Entropy. Iran. J. For. Poplar Res. 2016, 25, 232–243. [Google Scholar] [CrossRef]
- Parisien, M.-A.; Miller, C.; Parks, S.A.; Delancey, E.R.; Robinne, F.-N.; Flannigan, M.D. The Spatially Varying Influence of Humans on Fire Probability in North America. Environ. Res. Lett. 2016, 11, 075005. [Google Scholar] [CrossRef]
- Mohammed, O.A.; Vafaei, S.; Kurdalivand, M.M.; Rasooli, S.; Yao, C.; Hu, T. A Comparative Study of Forest Fire Mapping Using GIS-Based Data Mining Approaches in Western Iran. Sustainability 2022, 14, 13625. [Google Scholar] [CrossRef]
- KC, U.; Aryal, J. Leveraging a Wildfire Risk Prediction Metric with Spatial Clustering. Fire 2022, 5, 213. [Google Scholar] [CrossRef]
- Castel-Clavera, J.; Pimont, F.; Opitz, T.; Ruffault, J.; Barbero, R.; Allard, D.; Dupuy, J.-L. A Comparative Analysis of Fire-Weather Indices for Enhanced Fire Activity Prediction with Probabilistic Approaches. Agric. For. Meteorol. 2025, 361, 110315. [Google Scholar] [CrossRef]
- Liu, Q.; Shan, Y.; Shu, L.; Sun, P.; Du, S. Spatial and Temporal Distribution of Forest Fire Frequency and Forest Area Burnt in Jilin Province, Northeast China. J. For. Res. 2018, 29, 1233–1239. [Google Scholar] [CrossRef]
- Zubieta, R.; Prudencio, F.; Ccanchi, Y.; Saavedra, M.; Sulca, J.; Reupo, J.; Alarco, G. Potential Conditions for Fire Occurrence in Vegetation in the Peruvian Andes. Int. J. Wildland Fire 2021, 30, 836–849. [Google Scholar] [CrossRef]
- Artés, T.; Castellnou, M.; Houston Durrant, T.; San-Miguel, J. Wildfire–Atmosphere Interaction Index for Extreme-Fire Behaviour. Nat. Hazards Earth Syst. Sci. 2022, 22, 509–522. [Google Scholar] [CrossRef]
- Chen, C.; Xu, T.; Sun, F.; Zhao, D. A Fire Danger Index Assessment Method for Short-Term Pre-Warning of Wildfires: A Case Study of Xiangxi, China. Saf. Sci. 2023, 167, 106287. [Google Scholar] [CrossRef]
- Stefanidou, A.; Gitas, I.Z.; Stavrakoudis, D.; Eftychidis, G. Midterm Fire Danger Prediction Using Satellite Imagery and Auxiliary Thematic Layers. Remote Sens. 2019, 11, 2786. [Google Scholar] [CrossRef]
- Abdo, H.G.; Almohamad, H.; Al Dughairi, A.A.; Al-Mutiry, M. GIS-Based Frequency Ratio and Analytic Hierarchy Process for Forest Fire Susceptibility Mapping in the Western Region of Syria. Sustainability 2022, 14, 4668. [Google Scholar] [CrossRef]
- Abedi Gheshlaghi, H. Using GIS to Develop a Model for Forest Fire Risk Mapping. J. Indian Soc. Remote Sens. 2019, 47, 1173–1185. [Google Scholar] [CrossRef]
- Mann, M.L.; Batllori, E.; Moritz, M.A.; Waller, E.K.; Berck, P.; Flint, A.L.; Flint, L.E.; Dolfi, E. Incorporating Anthropogenic Influences into Fire Probability Models: Effects of Human Activity and Climate Change on Fire Activity in California. PLoS ONE 2016, 11, e0153589. [Google Scholar] [CrossRef]
- Busico, G.; Giuditta, E.; Kazakis, N.; Colombani, N. A Hybrid GIS and AHP Approach for Modelling Actual and Future Forest Fire Risk Under Climate Change Accounting Water Resources Attenuation Role. Sustainability 2019, 11, 7166. [Google Scholar] [CrossRef]
- Ghorbanzadeh, O.; Blaschke, T. Wildfire Susceptibility Evaluation By Integrating an Analytical Network Process Approach Into GIS-Based Analyses. Int. J. Adv. Sci. Eng. Technol. 2018, 6, 48–53. [Google Scholar]
- Babu, S.; Roy, A.; Prasad, P.R. Forest Fire Risk Modeling in Uttarakhand Himalaya Using TERRA Satellite Datasets. Eur. J. Remote Sens. 2016, 49, 381–395. [Google Scholar] [CrossRef]
- Kayet, N.; Chakrabarty, A.; Pathak, K.; Sahoo, S.; Dutta, T.; Hatai, B.K. Comparative Analysis of Multi-Criteria Probabilistic FR and AHP Models for Forest Fire Risk (FFR) Mapping in Melghat Tiger Reserve (MTR) Forest. J. For. Res. 2018, 31, 565–579. [Google Scholar] [CrossRef]
- Kumari, B.; Pandey, A.C. Geo-Informatics Based Multi-Criteria Decision Analysis (MCDA) through Analytic Hierarchy Process (AHP) for Forest Fire Risk Mapping in Palamau Tiger Reserve, Jharkhand State, India. J. Earth Syst. Sci. 2020, 129, 204. [Google Scholar] [CrossRef]
- Holdrege, M.C.; Schlaepfer, D.R.; Palmquist, K.A.; Crist, M.; Doherty, K.E.; Lauenroth, W.K.; Remington, T.E.; Riley, K.; Short, K.C.; Tull, J.C.; et al. Wildfire Probability Estimated from Recent Climate and Fine Fuels across the Big Sagebrush Region. Fire Ecol. 2024, 20, 22. [Google Scholar] [CrossRef]
- Yu, G.; Feng, Y.; Wang, J.; Wright, D.B. Performance of Fire Danger Indices and Their Utility in Predicting Future Wildfire Danger Over the Conterminous United States. Earth’s Future 2023, 11, e2023EF003823. [Google Scholar] [CrossRef]
- Alizadeh, M.R.; Adamowski, J.; Entekhabi, D. Land and Atmosphere Precursors to Fuel Loading, Wildfire Ignition and Post-Fire Recovery. Geophys. Res. Lett. 2024, 51, e2023GL105324. [Google Scholar] [CrossRef]
- O, S.; Hou, X.; Orth, R. Observational Evidence of Wildfire-Promoting Soil Moisture Anomalies. Sci. Rep. 2020, 10, 11008. [Google Scholar] [CrossRef]
- Sharma, S.; Dhakal, K. Boots on the Ground and Eyes in the Sky: A Perspective on Estimating Fire Danger from Soil Moisture Content. Fire 2021, 4, 45. [Google Scholar] [CrossRef]
- Vissio, G.; Turco, M.; Provenzale, A. Testing Drought Indicators for Summer Burned Area Prediction in Italy. Nat. Hazards 2022, 116, 1125–1137. [Google Scholar] [CrossRef]
- Farahmand, A.; Stavros, E.N.; Reager, J.T.; Behrangi, A. Introducing Spatially Distributed Fire Danger from Earth Observations (FDEO) Using Satellite-Based Data in the Contiguous United States. Remote Sens. 2020, 12, 1252. [Google Scholar] [CrossRef]
- Turco, M.; Jerez, S.; Augusto, S.; Tarín-Carrasco, P.; Ratola, N.; Jiménez-Guerrero, P.; Trigo, R.M. Climate Drivers of the 2017 Devastating Fires in Portugal. Sci. Rep. 2019, 9, 13886. [Google Scholar] [CrossRef]
- He, K.; Shen, X.; Merow, C.; Nikolopoulos, E.; Gallagher, R.V.; Yang, F.; Anagnostou, E.N. Improving Fire Severity Prediction in South-Eastern Australia Using Vegetation-Specific Information. Nat. Hazards Earth Syst. Sci. 2024, 24, 3337–3355. [Google Scholar] [CrossRef]
- Bieniek, P.A.; Waigl, C.F.; Bhatt, U.S.; Ballinger, T.J.; Lader, R.T.; Borries-Strigle, C.; Hostler, J.; Fischer, E.; Burgard, M.; Stevens, E.; et al. The Impact of Snowoff Timing and Associated Atmospheric Drivers on the Alaska Wildfire Season. Earth Interact. 2025, 29, 1. [Google Scholar] [CrossRef]
- Urrutia-Jalabert, R.; González, M.E.; González-Reyes, Á.; Lara, A.; Garreaud, R. Climate Variability and Forest Fires in Central and South-central Chile. Ecosphere 2018, 9, e02171. [Google Scholar] [CrossRef]
- Paschalidou, A.K.; Kassomenos, P.A. What Are the Most Fire-Dangerous Atmospheric Circulations in the Eastern-Mediterranean? Analysis of the Synoptic Wildfire Climatology. Sci. Total Environ. 2016, 539, 536–545. [Google Scholar] [CrossRef]
- Farfán, M.; Dominguez, C.; Espinoza, A.; Jaramillo, A.; Alcántara, C.; Maldonado, V.; Tovar, I.; Flamenco, A. Forest Fire Probability under ENSO Conditions in a Semi-Arid Region: A Case Study in Guanajuato. Environ. Monit. Assess. 2021, 193, 684. [Google Scholar] [CrossRef]
- Grünig, M.; Seidl, R.; Senf, C. Increasing Aridity Causes Larger and More Severe Forest Fires across Europe. Glob. Change Biol. 2023, 29, 1648–1659. [Google Scholar] [CrossRef] [PubMed]
- Lindley, T.T.; Zwink, A.B.; Barnes, R.R.; Murdoch, G.P.; Ancell, B.C.; Burke, P.C.; Skinner, P.S. Preliminary Use of Convection-Allowing Models in Fire Weather. J. Oper. Meteorol. 2023, 11, 72–81. [Google Scholar] [CrossRef]
- Jones, T.A.; Lindley, T.T.; Skinner, P.; Barnes, R.R. A Red Flag Threat Index Based on the Real-Time Mesoscale Analysis for Use in the Warn-on-Forecast System. Bull. Am. Meteorol. Soc. 2024, 105, E2405–E2416. [Google Scholar] [CrossRef]
- Dacre, H.F.; Crawford, B.R.; Charlton-Perez, A.J.; Lopez-Saldana, G.; Griffiths, G.H.; Veloso, J.V. Chilean Wildfires: Probabilistic Prediction, Emergency Response, and Public Communication. Bull. Am. Meteorol. Soc. 2018, 99, 2259–2274. [Google Scholar] [CrossRef]
- Lindley, T.T.; Bowers, B.R.; Murdoch, G.P.; Smith, B.R.; Gitro, C.M. Fire-Effective Low-Level Thermal Ridges on the Southern Great Plains. J. Oper. Meteorol. 2017, 5, 146–160. [Google Scholar] [CrossRef]
- Zhao, F.; Liu, Y. Atmospheric Circulation Patterns Associated with Wildfires in the Monsoon Regions of China. Geophys. Res. Lett. 2019, 46, 4873–4882. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S.; Ondei, S.; Lucieer, A.; Furlaud, J.M.; Foyster, S.M.; Williamson, G.J.; Prior, L.D. Post-Fire Live and Dead Fuel Flammability Stabilises Eucalyptus Forest-Sedgeland Boundaries in Southern Tasmania. For. Ecol. Manag. 2025, 578, 122466. [Google Scholar] [CrossRef]
- Graciano, J.J.; Rodríguez-Flores, F.d.J.; Corral Rivas, S.; Návar, J. Modeling Forest Wildfires at Regional Scales. Geofísica Int. 2023, 62, 563–579. [Google Scholar] [CrossRef]
- Pan, Y.; Yang, J.; Chen, D.; Zhu, T.; Bao, Q.; Mahmoudi, P. Skillful Seasonal Prediction of Summer Wildfires over Central Asia. Glob. Planet. Change 2023, 221, 104043. [Google Scholar] [CrossRef]
- Sadatrazavi, A.; Motlagh, M.S.; Noorpoor, A.; Ehsani, A.H. Predicting Wildfires Occurrences Using Meteorological Parameters. Int. J. Environ. Res. 2022, 16, 106. [Google Scholar] [CrossRef]
- Kantarcioglu, O.; Kocaman, S.; Schindler, K. Artificial Neural Networks for Assessing Forest Fire Susceptibility in Türkiye. Ecol. Inform. 2023, 75, 102034. [Google Scholar] [CrossRef]
- Ntinopoulos, N.; Sakellariou, S.; Christopoulou, O.; Sfougaris, A. Fusion of Remotely-Sensed Fire-Related Indices for Wildfire Prediction through the Contribution of Artificial Intelligence. Sustainability 2023, 15, 11527. [Google Scholar] [CrossRef]
- Aljumah, A. IoT-Inspired Framework for Real-Time Prediction of Forest Fire. Int. J. Comput. Commun. Control 2022, 17, 4371. [Google Scholar] [CrossRef]
- Nassa, V.K.; Pandey, B.K.; Sankar, S.; Pandey, D.; Kumar, M.R.S.; Vinodhini, V. IoT-Based Early Forest Fire Detection Using MLP and AROC Method. Int. J. Glob. Warm. 2022, 27, 55–70. [Google Scholar] [CrossRef]
- Jodhani, K.H.; Patel, H.; Soni, U.; Patel, R.; Valodara, B.; Gupta, N.; Patel, A.; Omar, P.J. Assessment of Forest Fire Severity and Land Surface Temperature Using Google Earth Engine: A Case Study of Gujarat State, India. Fire Ecol. 2024, 20, 23. [Google Scholar] [CrossRef]
- Sánchez, M.B.; Tonini, M.; Mapelli, A.; Fiorucci, P. Spatial Assessment of Wildfires Susceptibility in Santa Cruz (Bolivia) Using Random Forest. Geosciences 2021, 11, 224. [Google Scholar] [CrossRef]
- Jang, E.; Kang, Y.; Im, J.; Lee, D.-W.; Yoon, J.; Kim, S.-K. Detection and Monitoring of Forest Fires Using Himawari-8 Geostationary Satellite Data in South Korea. Remote Sens. 2019, 11, 271. [Google Scholar] [CrossRef]
- Latifah, A.L.; Shabrina, A.; Wahyuni, I.N.; Sadikin, R. Evaluation of Random Forest Model for Forest Fire Prediction Based on Climatology over Borneo. In Proceedings of the 2019 International Conference on Computer, Control, Informatics and its Applications (IC3INA), Tangerang, Indonesia, 23–24 October 2019; pp. 4–8. [Google Scholar]
- Jaafari, A.; Razavi Termeh, S.V.; Bui, D.T. Genetic and Firefly Metaheuristic Algorithms for an Optimized Neuro-Fuzzy Prediction Modeling of Wildfire Probability. J. Environ. Manag. 2019, 243, 358–369. [Google Scholar] [CrossRef]
- Peng, W.; Wei, Y.; Chen, G.; Lu, G.; Ye, Q.; Ding, R.; Hu, P.; Cheng, Z. Analysis of Wildfire Danger Level Using Logistic Regression Model in Sichuan Province, China. Forests 2023, 14, 2352. [Google Scholar] [CrossRef]
- Nikolaychuk, O.; Pestova, J.; Yurin, A. Wildfire Susceptibility Mapping in Baikal Natural Territory Using Random Forest. Forests 2024, 15, 170. [Google Scholar] [CrossRef]
- Radočaj, D.; Jurišić, M.; Gašparović, M. A Wildfire Growth Prediction and Evaluation Approach Using Landsat and MODIS Data. J. Environ. Manag. 2022, 304, 114351. [Google Scholar] [CrossRef] [PubMed]
- Qiu, L.; Chen, J.; Fan, L.; Sun, L.; Zheng, C. High-Resolution Mapping of Wildfire Drivers in California Based on Machine Learning. Sci. Total Environ. 2022, 833, 155155. [Google Scholar] [CrossRef]
- Tang, X.; Machimura, T.; Li, J.; Yu, H.; Liu, W. Evaluating Seasonal Wildfire Susceptibility and Wildfire Threats to Local Ecosystems in the Largest Forested Area of China. Earth’s Future 2022, 10, e2021EF002199. [Google Scholar] [CrossRef]
- Yue, W.; Ren, C.; Liang, Y.; Lin, X.; Liang, J. Method of Wildfire Risk Assessment in Consideration of Land-Use Types: A Case Study in Central China. Forests 2023, 14, 1393. [Google Scholar] [CrossRef]
- Yue, W.; Ren, C.; Liang, Y.; Lin, X.; Yin, A.; Liang, J. Wildfire Risk Assessment Considering Seasonal Differences: A Case Study of Nanning, China. Forests 2023, 14, 1616. [Google Scholar] [CrossRef]
- McNorton, J.R.; Di Giuseppe, F.; Pinnington, E.; Chantry, M.; Barnard, C. A Global Probability-Of-Fire (PoF) Forecast. Geophys. Res. Lett. 2024, 51, e2023GL107929. [Google Scholar] [CrossRef]
- Wang, S.S.-C.; Qian, Y.; Leung, L.R.; Zhang, Y. Identifying Key Drivers of Wildfires in the Contiguous US Using Machine Learning and Game Theory Interpretation. Earth’s Future 2021, 9, e2020EF001910. [Google Scholar] [CrossRef] [PubMed]
- D’Arcy, E.; Murphy-Barltrop, C.J.R.; Shooter, R.; Simpson, E.S. A Marginal Modelling Approach for Predicting Wildfire Extremes across the Contiguous United States. Extremes 2023, 26, 381–398. [Google Scholar] [CrossRef]
- Yang, X.; Jin, X.; Zhou, Y. Wildfire Risk Assessment and Zoning by Integrating Maxent and GIS in Hunan Province, China. Forests 2021, 12, 1299. [Google Scholar] [CrossRef]
- Naseer, R.; Chaudhary, M.N. Assessing Forest Fire Likelihood and Identification of Fire Risk Zones Using Maximum Entropy-Based Model in Khyber Pakhtunkhwa, Pakistan. Environ. Monit. Assess. 2025, 197, 281. [Google Scholar] [CrossRef] [PubMed]
- Martín, Y.; Zúñiga-Antón, M.; Rodrigues Mimbrero, M. Modelling Temporal Variation of Fire-Occurrence towards the Dynamic Prediction of Human Wildfire Ignition Danger in Northeast Spain. Geomat. Nat. Hazards Risk 2019, 10, 385–411. [Google Scholar] [CrossRef]
- Kaur, H.; Sood, S.K. Soft-Computing-Centric Framework for Wildfire Monitoring, Prediction and Forecasting. Soft Comput. 2019, 24, 9651–9661. [Google Scholar] [CrossRef]
- Malik, A.; Rao, M.R.; Puppala, N.; Koouri, P.; Thota, V.A.K.; Liu, Q.; Chiao, S.; Gao, J. Data-Driven Wildfire Risk Prediction in Northern California. Atmosphere 2021, 12, 109. [Google Scholar] [CrossRef]
- Achu, A.; Thomas, J.; Aju, C.; Gopinath, G.; Kumar, S.; Reghunath, R. Machine-Learning Modelling of Fire Susceptibility in a Forest-Agriculture Mosaic Landscape of Southern India. Ecol. Inform. 2021, 64, 101348. [Google Scholar] [CrossRef]
- Al-Fugara, A.; Mabdeh, A.N.; Ahmadlou, M.; Pourghasemi, H.R.; Al-Adamat, R.; Pradhan, B.; Al-Shabeeb, A.R. Wildland Fire Susceptibility Mapping Using Support Vector Regression and Adaptive Neuro-Fuzzy Inference System-Based Whale Optimization Algorithm and Simulated Annealing. ISPRS Int. J. Geo Inf. 2021, 10, 382. [Google Scholar] [CrossRef]
- Bui, Q.-T. Metaheuristic Algorithms in Optimizing Neural Network: A Comparative Study for Forest Fire Susceptibility Mapping in Dak Nong, Vietnam. Geomat. Nat. Hazards Risk 2019, 10, 136–150. [Google Scholar] [CrossRef]
- Janiec, P.; Gadal, S. A Comparison of Two Machine Learning Classification Methods for Remote Sensing Predictive Modeling of the Forest Fire in the North-Eastern Siberia. Remote Sens. 2020, 12, 4157. [Google Scholar] [CrossRef]
- Janizadeh, S.; Bateni, S.M.; Jun, C.; Im, J.; Pai, H.-T.; Band, S.S.; Mosavi, A. Combination Four Different Ensemble Algorithms with the Generalized Linear Model (GLM) for Predicting Forest Fire Susceptibility. Geomat. Nat. Hazards Risk 2023, 14, 2206512. [Google Scholar] [CrossRef]
- Mabdeh, A.N.; Al-Fugara, A.; Khedher, K.M.; Mabdeh, M.; Al-Shabeeb, A.R.; Al-Adamat, R. Forest Fire Susceptibility Assessment and Mapping Using Support Vector Regression and Adaptive Neuro-Fuzzy Inference System-Based Evolutionary Algorithms. Sustainability 2022, 14, 9446. [Google Scholar] [CrossRef]
- Nur, A.; Kim, Y.; Lee, J.; Lee, C.-W. Spatial Prediction of Wildfire Susceptibility Using Hybrid Machine Learning Models Based on Support Vector Regression in Sydney, Australia. Remote Sens. 2023, 15, 760. [Google Scholar] [CrossRef]
- Coughlan, R.; Di Giuseppe, F.; Vitolo, C.; Barnard, C.; Lopez, P.; Drusch, M. Using Machine Learning to Predict Fire-ignition Occurrences from Lightning Forecasts. Meteorol. Appl. 2021, 28, e1973. [Google Scholar] [CrossRef]
- Jiménez-Ruano, A.; Jolly, W.M.; Freeborn, P.H.; Vega-Nieva, D.J.; Monjarás-Vega, N.A.; Briones-Herrera, C.I.; Rodrigues, M. Spatial Predictions of Human and Natural-Caused Wildfire Likelihood across Montana (USA). Forests 2022, 13, 1200. [Google Scholar] [CrossRef]
- Chen, R.; He, B.; Quan, X.; Lai, X.; Fan, C. Improving Wildfire Probability Modeling by Integrating Dynamic-Step Weather Variables over Northwestern Sichuan, China. Int. J. Disaster Risk Sci. 2023, 14, 313–325. [Google Scholar] [CrossRef]
- Li, Y.; Xu, S.; Fan, Z.; Zhang, X.; Yang, X.; Wen, S.; Shi, Z. Risk Factors and Prediction of the Probability of Wildfire Occurrence in the China–Mongolia–Russia Cross-Border Area. Remote Sens. 2022, 15, 42. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, H.; Ma, G.; Zhang, Y.; Yao, J.; Gu, C. A Wildfire Occurrence Risk Model Based on a Back-Propagation Neural Network-Optimized Genetic Algorithm. Front. Energy Res. 2023, 10, 176–184. [Google Scholar] [CrossRef]
- Hai, T.; Theruvil Sayed, B.; Majdi, A.; Zhou, J.; Sagban, R.; Band, S.S.; Mosavi, A. An Integrated GIS-Based Multivariate Adaptive Regression Splines-Cat Swarm Optimization for Improving the Accuracy of Wildfire Susceptibility Mapping. Geocarto Int. 2023, 38, 2167005. [Google Scholar] [CrossRef]
- Sankaran, K.S.; Lim, S.-J.; Bhaskar, S.C.V. An Automated Prediction of Remote Sensing Data of Queensland-Australia for Flood and Wildfire Susceptibility Using BISSOA-DBMLA Scheme. Acta Geophys. 2022, 70, 3005–3021. [Google Scholar] [CrossRef]
- Lelis, C.A.S.; Roncal, J.J.; Silveira, L.; De Aquino, R.D.G.; Marcondes, C.A.C.; Marques, J.; Loubach, D.S.; Verri, F.A.N.; Curtis, V.V.; De Souza, D.G. Drone-Based AI System for Wildfire Monitoring and Risk Prediction. IEEE Access 2024, 12, 139865–139882. [Google Scholar] [CrossRef]
- Pham, V.T.; Do, T.A.T.; Tran, H.D.; Do, A.N.T. Classifying Forest Cover and Mapping Forest Fire Susceptibility in Dak Nong Province, Vietnam Utilizing Remote Sensing and Machine Learning. Ecol. Inform. 2024, 79, 102392. [Google Scholar] [CrossRef]
- Bergado, J.R.; Persello, C.; Reinke, K.; Stein, A. Predicting Wildfire Burns from Big Geodata Using Deep Learning. Saf. Sci. 2021, 140, 105276. [Google Scholar] [CrossRef]
- Son, R.; Ma, P.; Wang, H.; Rasch, P.J.; Wang, S.; Kim, H.; Jeong, J.; Lim, K.S.; Yoon, J. Deep Learning Provides Substantial Improvements to County-Level Fire Weather Forecasting Over the Western United States. J. Adv. Model. Earth Syst. 2022, 14, e2022MS002995. [Google Scholar] [CrossRef]
- Üstek, İ.; Arana-Catania, M.; Farr, A.; Petrunin, I. Deep Autoencoders for Unsupervised Anomaly Detection in Wildfire Prediction. Earth Space Sci. 2024, 11, e2024EA003997. [Google Scholar] [CrossRef]
- Prapas, I.; Kondylatos, S.; Papoutsis, I.; Camps-Valls, G.; Ronco, M.; Fernández-Torres, M.-Á.; Guillem, M.P.; Carvalhais, N. Deep Learning Methods for Daily Wildfire Danger Forecasting. arXiv 2021, arXiv:2111.02736. [Google Scholar] [CrossRef]
- Cheng, S.; Chassagnon, H.; Kasoar, M.; Guo, Y.; Arcucci, R. Deep Learning Surrogate Models of JULES-INFERNO for Wildfire Prediction on a Global Scale. IEEE Trans. Emerg. Top. Comput. Intell. 2024, 9, 444–454. [Google Scholar] [CrossRef]
- Liang, H.; Zhang, M.; Wang, H. A Neural Network Model for Wildfire Scale Prediction Using Meteorological Factors. IEEE Access 2019, 7, 176746–176755. [Google Scholar] [CrossRef]
- Seo, H.; Kim, Y. Enhancing Alaskan Wildfire Prediction and Carbon Flux Estimation: A Two-Stage Deep Learning Approach within a Process-Based Model. Environ. Res. Lett. 2024, 19, 124040. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, C.; Li, W.; Gao, L.; Liu, L.; Fang, L.; Zhang, C. Fire Danger Forecasting Using Machine Learning-Based Models and Meteorological Observation: A Case Study in Northeastern China. Multimed. Tools Appl. 2023, 83, 61861–61881. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, X.; Cheng, P.; Wang, M.; Huang, Y. Unveiling Spatiotemporal Patterns of Wildfire Risk: A Transformer-Based Earth System Analysis. Clim. Dyn. 2024, 63, 21. [Google Scholar] [CrossRef]
- Hang, H.T.; Mallick, J.; Alqadhi, S.; Bindajam, A.A.; Abdo, H.G. Exploring Forest Fire Susceptibility and Management Strategies in Western Himalaya: Integrating Ensemble Machine Learning and Explainable AI for Accurate Prediction and Comprehensive Analysis. Environ. Technol. Innov. 2024, 35, 103655. [Google Scholar] [CrossRef]
- Mishra, B.; Panthi, S.; Poudel, S.; Ghimire, B.R. Forest Fire Pattern and Vulnerability Mapping Using Deep Learning in Nepal. Fire Ecol. 2023, 19, 3. [Google Scholar] [CrossRef]
- Sayad, Y.O.; Mousannif, H.; Al Moatassime, H. Predictive Modeling of Wildfires: A New Dataset and Machine Learning Approach. Fire Saf. J. 2019, 104, 130–146. [Google Scholar] [CrossRef]
- Cilli, R.; Elia, M.; D’Este, M.; Giannico, V.; Amoroso, N.; Lombardi, A.; Pantaleo, E.; Monaco, A.; Sanesi, G.; Tangaro, S.; et al. Explainable Artificial Intelligence (XAI) Detects Wildfire Occurrence in the Mediterranean Countries of Southern Europe. Sci. Rep. 2022, 12, 16349. [Google Scholar] [CrossRef]
- Song, S.; Zhou, X.; Yuan, S.; Cheng, P.; Liu, X. Interpretable Artificial Intelligence Models for Predicting Lightning Prone to Inducing Forest Fires. J. Atmos. Sol. Terr. Phys. 2025, 267, 106408. [Google Scholar] [CrossRef]
- Banerjee, P. MODIS-FIRMS and Ground-Truthing-Based Wildfire Likelihood Mapping of Sikkim Himalaya Using Machine Learning Algorithms. Nat. Hazards 2021, 110, 899–935. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Gayen, A.; Lasaponara, R.; Tiefenbacher, J.P. Application of Learning Vector Quantization and Different Machine Learning Techniques to Assessing Forest Fire Influence Factors and Spatial Modelling. Environ. Res. 2020, 184, 109321. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Y.; Lu, Y.; Zhao, P.; Wang, S.; Sun, Y.; Luo, Y. Application of Remote Sensing and Explainable Artificial Intelligence (XAI) for Wildfire Occurrence Mapping in the Mountainous Region of Southwest China. Remote Sens. 2024, 16, 3602. [Google Scholar] [CrossRef]
- Hernandez, K.; Hoskins, A.B. Machine Learning Algorithms Applied to Wildfire Data in California’s Central Valley. Trees For. People 2024, 15, 100516. [Google Scholar] [CrossRef]
- Jaafari, A.; Zenner, E.K.; Pham, B.T. Wildfire Spatial Pattern Analysis in the Zagros Mountains, Iran: A Comparative Study of Decision Tree Based Classifiers. Ecol. Inform. 2018, 43, 200–211. [Google Scholar] [CrossRef]
- Kondylatos, S.; Prapas, I.; Ronco, M.; Papoutsis, I.; Camps-Valls, G.; Piles, M.; Fernández-Torres, M.; Carvalhais, N. Wildfire Danger Prediction and Understanding with Deep Learning. Geophys. Res. Lett. 2022, 49, e2022GL099368. [Google Scholar] [CrossRef]
- Yang, S.; Huang, Q.; Yu, M. Advancements in Remote Sensing for Active Fire Detection: A Review of Datasets and Methods. Sci. Total Environ. 2024, 943, 173273. [Google Scholar] [CrossRef]
- Meng, L.; O’Hehir, J.; Gao, J.; Peters, S.; Hay, A. A Theoretical Framework for Improved Fire Suppression by Linking Management Models with Smart Early Fire Detection and Suppression Technologies. J. For. Res. 2024, 35, 86. [Google Scholar] [CrossRef]
- Luiselli, L.; Pacini, N. Remote Sensing That Makes Sense in Ecological Research-From Pixels to Conservation. Afr. J. Ecol. 2025, 63, 70002. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, T.; Ding, Y.; Wadhwani, R.; Huang, X. Review and Perspectives of Digital Twin Systems for Wildland Fire Management. J. For. Res. 2024, 36, 14. [Google Scholar] [CrossRef]
- Bushnaq, O.M.; Chaaban, A.; Al-Naffouri, T.Y. The Role of UAV-IoT Networks in Future Wildfire Detection. IEEE Internet Things J. 2021, 8, 16984–16999. [Google Scholar] [CrossRef]
- Shukla, P.; Shukla, S. Unmanned Aerial Vehicle (UAV) Based Disaster Detection and Crowd Sensing Using Deep Learning Models. In Proceedings of the 26th International Conference on Distributed Computing and Networking, Hyderabad, India, 4–7 January 2025; Association for Computing Machinery: New York, NY, USA, 2025; pp. 414–419. [Google Scholar] [CrossRef]
- Jaafari, A.; Mafi-Gholami, D.; Thai Pham, B.; Tien Bui, D. Wildfire Probability Mapping: Bivariate vs. Multivariate Statistics. Remote Sens. 2019, 11, 618. [Google Scholar] [CrossRef]
- Hong, H.; Jaafari, A.; Zenner, E.K. Predicting Spatial Patterns of Wildfire Susceptibility in the Huichang County, China: An Integrated Model to Analysis of Landscape Indicators. Ecol. Indic. 2019, 101, 878–891. [Google Scholar] [CrossRef]
- Penman, T.D.; McColl-Gausden, S.C.; Cirulis, B.A.; Kultaev, D.; Ababei, D.A.; Bennett, L.T. Improved Accuracy of Wildfire Simulations Using Fuel Hazard Estimates Based on Environmental Data. J. Environ. Manag. 2022, 301, 113789. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Liu, Y. Important Meteorological Predictors for Long-Range Wildfires in China. For. Ecol. Manag. 2021, 499, 119638. [Google Scholar] [CrossRef]
- Dong, H.; Wu, H.; Sun, P.; Ding, Y. Wildfire Prediction Model Based on Spatial and Temporal Characteristics: A Case Study of a Wildfire in Portugal’s Montesinho Natural Park. Sustainability 2022, 14, 10107. [Google Scholar] [CrossRef]
- Han, H.; Abitew, T.A.; Bazrkar, H.; Park, S.; Jeong, J. Integrating Machine Learning for Enhanced Wildfire Severity Prediction: A Study in the Upper Colorado River Basin. Sci. Total Environ. 2024, 952, 175914. [Google Scholar] [CrossRef]
- Yue, W.; Ren, C.; Liang, Y.; Liang, J.; Lin, X.; Yin, A.; Wei, Z. Assessment of Wildfire Susceptibility and Wildfire Threats to Ecological Environment and Urban Development Based on GIS and Multi-Source Data: A Case Study of Guilin, China. Remote Sens. 2023, 15, 2659. [Google Scholar] [CrossRef]
- Kaur, H.; Sood, S.K.; Bhatia, M. Cloud-Assisted Green IoT-Enabled Comprehensive Framework for Wildfire Monitoring. Clust. Comput. 2019, 23, 1149–1162. [Google Scholar] [CrossRef]
- Yazici, K.; Taskin, A. A Comparative Bayesian Optimization-Based Machine Learning and Artificial Neural Networks Approach for Burned Area Prediction in Forest Fires: An Application in Turkey. Nat. Hazards 2023, 119, 1883–1912. [Google Scholar] [CrossRef]
- Cisneros, D.; Gong, Y.; Yadav, R.; Hazra, A.; Huser, R. A Combined Statistical and Machine Learning Approach for Spatial Prediction of Extreme Wildfire Frequencies and Sizes. Extremes 2023, 26, 301–330. [Google Scholar] [CrossRef]
- Taktak, H.; Boukadi, K.; Zouari, F.; Ghedira Guégan, C.; Mrissa, M.; Gargouri, F. A Knowledge-Driven Service Composition Framework for Wildfire Prediction. Clust. Comput. 2023, 27, 977–996. [Google Scholar] [CrossRef]
- Pham, B.T.; Jaafari, A.; Avand, M.; Al-Ansari, N.; Dinh Du, T.; Yen, H.P.H.; Phong, T.V.; Nguyen, D.H.; Le, H.V.; Mafi-Gholami, D.; et al. Performance Evaluation of Machine Learning Methods for Forest Fire Modeling and Prediction. Symmetry 2020, 12, 1022. [Google Scholar] [CrossRef]
- Pérez-Porras, F.-J.; Triviño-Tarradas, P.; Cima-Rodríguez, C.; Meroño-de-Larriva, J.-E.; García-Ferrer, A.; Mesas-Carrascosa, F.-J. Machine Learning Methods and Synthetic Data Generation to Predict Large Wildfires. Sensors 2021, 21, 3694. [Google Scholar] [CrossRef] [PubMed]
- Sulova, A.; Jokar Arsanjani, J. Exploratory Analysis of Driving Force of Wildfires in Australia: An Application of Machine Learning within Google Earth Engine. Remote Sens. 2020, 13, 10. [Google Scholar] [CrossRef]
- Shmuel, A.; Heifetz, E. Global Wildfire Susceptibility Mapping Based on Machine Learning Models. Forests 2022, 13, 1050. [Google Scholar] [CrossRef]
- Ismail, F.N.; Woodford, B.J.; Licorish, S.A.; Miller, A.D. An Assessment of Existing Wildfire Danger Indices in Comparison to One-Class Machine Learning Models. Nat. Hazards 2024, 120, 14837–14868. [Google Scholar] [CrossRef]
- Song, Y.; Wang, Y. Global Wildfire Outlook Forecast with Neural Networks. Remote Sens. 2020, 12, 2246. [Google Scholar] [CrossRef]
- Shafapourtehrany, M. Geospatial Wildfire Risk Assessment from Social, Infrastructural and Environmental Perspectives: A Case Study in Queensland Australia. Fire 2023, 6, 22. [Google Scholar] [CrossRef]
- Tavakkoli Piralilou, S.; Einali, G.; Ghorbanzadeh, O.; Nachappa, T.G.; Gholamnia, K.; Blaschke, T.; Ghamisi, P. A Google Earth Engine Approach for Wildfire Susceptibility Prediction Fusion with Remote Sensing Data of Different Spatial Resolutions. Remote Sens. 2022, 14, 672. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, M.; Liu, K. Wildfire Susceptibility Assessment in Southern China: A Comparison of Multiple Methods. Int. J. Disaster Risk Sci. 2017, 8, 164–181. [Google Scholar] [CrossRef]
- Wang, Z.; He, B.; Chen, R.; Fan, C. Improving Wildfire Danger Assessment Using Time Series Features of Weather and Fuel in the Great Xing’an Mountain Region, China. Forests 2023, 14, 986. [Google Scholar] [CrossRef]
- Wu, Z.; Li, M.; Wang, B.; Quan, Y.; Liu, J. Using Artificial Intelligence to Estimate the Probability of Forest Fires in Heilongjiang, Northeast China. Remote Sens. 2021, 13, 1813. [Google Scholar] [CrossRef]
- Matougui, Z.; Zouidi, M. A Temporal Perspective on the Reliability of Wildfire Hazard Assessment Based on Machine Learning and Remote Sensing Data. Earth Sci. Inform. 2024, 18, 19. [Google Scholar] [CrossRef]
- Gholamnia, K.; Gudiyangada Nachappa, T.; Ghorbanzadeh, O.; Blaschke, T. Comparisons of Diverse Machine Learning Approaches for Wildfire Susceptibility Mapping. Symmetry 2020, 12, 604. [Google Scholar] [CrossRef]
- Shmuel, A.; Ziv, Y.; Heifetz, E. Machine-Learning-Based Evaluation of the Time-Lagged Effect of Meteorological Factors on 10-Hour Dead Fuel Moisture Content. For. Ecol. Manag. 2022, 505, 119897. [Google Scholar] [CrossRef]
- Sykas, D.; Zografakis, D.; Demestichas, K. Deep Learning Approaches for Wildfire Severity Prediction: A Comparative Study of Image Segmentation Networks and Visual Transformers on the EO4WildFires Dataset. Fire 2024, 7, 374. [Google Scholar] [CrossRef]
- Abdollahi, A.; Pradhan, B. Explainable Artificial Intelligence (XAI) for Interpreting the Contributing Factors Feed into the Wildfire Susceptibility Prediction Model. Sci. Total Environ. 2023, 879, 163004. [Google Scholar] [CrossRef]
- Zhu, Q.; Li, F.; Riley, W.J.; Xu, L.; Zhao, L.; Yuan, K.; Wu, H.; Gong, J.; Randerson, J. Building a Machine Learning Surrogate Model for Wildfire Activities within a Global Earth System Model. Geosci. Model Dev. 2022, 15, 1899–1911. [Google Scholar] [CrossRef]
Satellite | Spatial Coverage | Spatial Resolution | Revisit Time |
---|---|---|---|
MODIS | Global | 500 m/1 km | 24 h |
AVHRR | Global | 1.09 km | 12 h |
VIIRS | Global | 375/750 m | 12 h |
Landsat-7/8/9 | Global | 30/60/100 m | 8–16 days |
Sentinel-1 A/B | Global | 10 m | 6 days |
Sentinel-2 A/B | Global | 10/20 m | 3–5 days |
Sentinel-3 A/B | Global | 1 km | 24 h |
FengYun-3C | Global | 1 km | 6 days |
MSG-SEVIRI | Regional | 1 km/3 km | 15 min |
GOES-16 and 18 | Regional | 500 m/1 km/2 km | 15 min |
HJ-1B (WVC/IRMSS) | Regional | 30 m/150–300 m | 4 days |
Himawari-8/9 AHI | Regional | 0.5–1 km | 10 min |
Ref. | Methodology | Data Type | Study Area | Results |
---|---|---|---|---|
[20] | GIS-based logistic regression and Frequency Ratio models | MODIS hotspot data; environmental factors; climatic factors; anthropogenic factors | Western Bhutan | success rates = 88.3% |
[19] | Geographic weighted regression model | Digital elevation model; slope; aspect; NDVI; NBR; LST; distance roads | Kalasin, Thailand | > 82% |
[21] | Bayesian Belief Networks | Wildfire data; topographical factors; climate data; human factors; | Iran | ROC = 0.986 |
[181] | Dempster–Shafer-based evidential belief function and the multivariate logistic regression | Historical fire data; topography; climate; anthropogenic | Iran | AUC = 0.864 |
[182] | Statistical/probabilistic Weight of Evidence model and a knowledge-based Analytical Hierarchy Process | Slope, aspect, altitude, NDVI, annual rainfall, wind speed, land use, and proximity to rivers, roads, and human settlements | Huichang County, China | AUCsuccess rate = 0.94; AUCprediction rate = 0.91 |
[98] | Predictive model | Land cover type, vapor pressure deficit, surface soil moisture, and the Enhanced Vegetation Index, fire database | U.S. | Accuracy = 75% |
[100] | A vegetation-type-specific fire severity classification | Antecedent drought conditions, fire weather, and topography | South-eastern Australia | = 0.89 |
[183] | Fuel hazard models based on environmental variables (environmental model) | Fire data; fuel data | South-eastern Australia | Accuracy = 41%–47% |
[84] | Frequency Ratio and Analytic Hierarchy Process (AHP) techniques | Slope, aspect, curvature, elevation, NDVI, NDMI, TWI, rainfall, temperature, wind speed, TWI, and distance to settlements, rivers and roads | Western region of Syria | AUC = 0.864 |
[85] | Multi-Criteria Decision Analysis method | Slope, slope aspect, altitude, land cover, normalized difference vegetation index, annual rainfall, annual temperature, distance to settlements, and distance to road | Noshahr Forests (North Iran) | AUC = 0.783 |
[71] | Index of Entropy with Fuzzy Membership Value, Frequency Ratio, and Information Value | The spatial database incorporated the inventory of forest fire and conditioning factors | Nowshahr County in Iran | AUC = 0.890 |
[87] | Geographic Information System and the Analytic Hierarchy Process | Vegetation, morphology, climate, and proximity to human activities | Southern Italy | R2 = 0.79 |
[88] | Spatial multi-criteria decision-making, analytical network process | Topographic, climatologic, vegetation coverage and anthropological indicators | Northern area of Iran | Accuracy = 84% |
[74] | Frequency Ratio, Shannon’s Entropy | Topography, climate, and human activities | Iran | success rate = 85.16% |
[60] | Generalized Linear Model, binary logistic regression | Fire points and various independent variables | Chure region | AUC = 0.92 |
[89] | Statistical Analysis | Modified Normalized Difference Fire Index, Perpendicular Moisture Index | Uttarakhand Himalaya | Accuracy = 87.31% |
[90] | Frequency Ratio, Analytic Hierarchy Process | Altitude, slope, aspect, topographic position index, NDVI, rainfall, air temperature, land surface temperature, wind speed, distance to settlements | India | Accuracy = 79.3% |
[76] | Evidential belief function, Weight of Evidence | Slope percentage, slope direction, altitude, distance from rivers, distance from roads, distance from settlements, land use, slope curvature, rainfall, and maximum annual temperature | Iran | AUC = 0.896 |
[75] | Shannon’s Entropy, Frequency Ratio | NDVI, land use, Landsat data | Iran | AUC = 0.832 |
Ref. | Data Type | Study Area | Results |
---|---|---|---|
[30] | wildfire records; meteorological data; Fire Weather Indices | Southern Spain | Accuracy (60%~80%) |
[117] | IoT sensors data (temperature, wind speed, humidity, and precipitation measure) | / | Accuracy = 96.78% |
[116] | Normalized Difference Vegetation Index; Normalized Difference Moisture Index; Fire Weather Index | Greece | Accuracy = 75.8/76% (ignition/no ignition state) |
[191] | Climate data; collect data | / | Accuracy = 86.0% |
[124] | Wildfire Spot Data; meteorological data; NDVI data and vegetation type; topography, road network, and population; | Sichuan Province, China | AUC = 0.944, OA = 87.28%, TPR = 0.829, TS = 0.723 |
[126] | Landsat 8 data with level-2A; MODIS data; Shuttle Radar Topography data; weather data | Korcula island | Accuracy = 90.6% |
[33] | Wildfire data; land cover data; climate data; vegetation cover; topography data | The Mongolian Plateau | Accuracy > 90% |
[128] | Recording of historical fire; topographic, vegetation, climatic, and anthropogenic factors; | China | AUC > 0.95 |
[29] | Historical wildfires; remote sensing data; geographical information systems data; climatological data | Honduras | AUC = 0.87 |
[167] | Wildfires data; land cover maps; Open Street Map data; climate data; NDVI | Italian peninsula in the Mediterranean | AUC = 81.3% |
[125] | Topographic; land cover; climatic; social; historical wildfires | Irkutsk Oblast | Accuracy = 0.89; AUC = 0.96 |
[132] | Wildfire data; predictor variables | US | IoA = 0.71 |
[32] | Vegetation factors, human factors, surface temperature, terrain factors, and meteorological factors; Fire Point Information | Yunnan Province, China | Accuracy = 0.82; AUC = 0.83 |
[31] | Meteorology; human activity; topography; fuel; geography; historical wildfire data | California, USA | Balanced Accuracy = 73.56% |
[129] | Historical wildfire dataset; susceptibility conditioning factors; vulnerability factors | China | Accuracy = 0.932 |
[130] | Historical wildfire dataset; nonseasonal factors; seasonal factors; ecological vulnerability factors | Nanning, China | Precision = spring (0.982) > autumn (0.972) > summer (0.971) > winter (0.952) > (0.924) |
[35] | Wildfire data; topographic; meteorological; anthropogenic; environmental | Kaua’i and Moloka’i Islands, Hawaii | AUC = 0.9314 |
[34] | Wildfire historical locations; predictor variables | Northern Iran | Accuracy = 0.99 |
[123] | Historical fire locations; explanatory variables | Iran | AUCsuccess rate = 0.92; AUCprediction rate = 0.91 |
[66] | Climate, vegetation, topographical, human activities, and location; forest burn scar data | Yunnan Province, China | AUC = 0.882~0.890 |
[63] | Burned area data; climate data; water vapor pressure | Central Bohemian Region | R2 = 0.761 |
[36] | NDVI data; exploration of predictors; wildfire data | Australian | Accuracy = 0.969 |
[137] | IoT sensors data; digital elevation maps | / | Accuracy = 93.97% |
[136] | Wildfire data; independent variables | Spain | AUC > 0.8 |
[192] | Fire inventory map; explanatory variables; | Vietnam | AUC = 0.96 |
[169] | Meteorological factors; topographical factors; ecological factors; in situ factors; anthropogenic factors; wildfire data | Sikkim Himalaya | Accuracy = 0.914 |
[193] | Meteorological data; environmental data; burn area data | Southwestern Spain | G-means = 0.72~0.76 |
[194] | Topography; environment; climate; social economic; wildfire information | Australia | Accuracy = 96% |
[170] | Forest fire data; topographical factors; climatic factors; other factors | Southern Iran | AUC = 88.2% |
[185] | Forest fire dataset; climatic conditions; burned area; FWI | Northwest Portugal | AUC = 0.8052 |
[186] | Wildfire information; weather conditions; soil and land properties | Southwestern United States | Accuracy = 72% |
[195] | Meteorological factors; fuel characteristics; topography; anthropogenic factors; regional fire history | Global | Accuracy = 0.88 |
[196] | Fire Weather Index system; Forest Fire Danger Index; wildfire features; weather features; LFMC features; social features | Western Australia | Accuracy = 99% |
[197] | Fire dataset; meteorological datasets; ocean climate indices; | Global | IOA = 0.82, 0.82, 0.8, 0.75, 0.56 |
[198] | Inventory dataset; hazard-related factors; vulnerability-related factors | Queensland Australia | Prediction rates = 89.21% |
[187] | Historical wildfire dataset; susceptibility conditioning factors; ecological and urban vulnerability factors | China | Accuracy = 0.863 |
[171] | Wildfire data; meteorological factors; human factors; topographical and vegetation factors; socio-economic | Southwest China | Accuracy = 95.0% |
[172] | Fire history; meteorological factors; topographical and vegetation factors; socio-economic | California | F1-Score = 0.689 |
[199] | Wildfire data; topographical, meteorological/hydrological, vegetation, and anthropological factors | Northern Iran | AUC = 94.71% |
[200] | Meteorologically related variables; vegetation-related variables; landform-related variables; wildfire data | Southern China | Accuracy = 94.23% |
[201] | Historical fire data; topographic variables; weather variables; fuel variables | Great Xing’an Mountain Region, China | F1-Score = 0.923 |
[166] | Wildfire data; vegetation data; land surface temperature; thermal anomalies | Canada | Accuracy = 98.32% |
[202] | Climate; topography; anthropogenic; vegetation; forest fires data | Northeast China | Accuracy = 85.2% |
[203] | Historical fire location; conditioning factors | Algeria | Accuracy = 0.867 |
[173] | Topographic, weather, soil type, land use, and proximity to settlements, roads, and rivers; | Iran | Accuracy = 99.8% |
[204] | Wildfire inventory data; conditioning factors | Iran | Accuracy = 88% |
[205] | Meteorological factor; wildfire data; topographic factor; vapor pressure deficit | Israel | Accuracy = 0.67% |
[138] | Fire history; weather; vegetation; powerline; terrain | Northern California | Accuracy = 92% |
[148] | Wildfire occurrence dataset; dynamic step weather variables; fuel variables; topography and infrastructure variables | Sichuan Province, China | AUC = 0.98 |
[149] | Burned area data; climate; topography; vegetation; anthropogenic factors | China–Mongolia–Russia Cross-Border Area | Prediction Rate = 0.835 |
[39] | Historical fire; meteorological data; environmental data; human factors | Brisbane catchment, Australia | Accuracy = 88.51% |
[150] | Physiography; meteorology; anthropology; wildfire data | South of China | Accuracy = 81.6% |
[151] | Fire history; topographical factors; environmental data; socio-economic factors | Iran | AUC > 0.8 |
[40] | Fire information; topography; anthropogenic activities; climate; vegetation | North of Morocco | AUC = 0.989 |
[41] | Wildfire data; methodology | Hawai’i | AUC = 0.9269 |
[145] | Historical Fire; topographical; meteorological; environmental; anthropological | Australia | AUC = 0.882 |
[146] | Lightning–ignition database; environmental predictors | Australia | Accuracy = 78% |
[147] | Terrain; fuel condition; human accessibility; weather; ignition seasonality | Montana, US | AUC = 0.84/0.89 (Natural/human-caused ignitions) |
[139] | 279 forest fire locations; Sentinel 2A satellite images; NASA fire archives; and field visits; fire-influencing factors | Southern Western Ghats, India | AUC = 0.890 |
[140] | 109 fire locations; 14 relevant factors | Jerash Province, Jordan | AUC = 0.965 |
[141] | Historic fire locations; topological, climatic, and socio-economic data | Dak Nong, Vietnam | AUC = 0.9515 |
[120] | Topographic variables; land cover classifications; ecoregion delineations | Santa Cruz, Bolivia | AUC = 0.8 |
[121] | Himawari-8 geostationary satellite data | South Korea | Success rate = 93% |
[143] | 108 historical forest fire events; climatic; vegetation variables | Iran | AUC = 0.85 |
[115] | Anthropogenic; topographic; vegetation; hydrological factors | Türkiye | AUC = 0.94 |
[144] | Forest fire locations, fourteen factors | Jordan | AUC = 0.97 |
[135] | Temperature, wind, precipitation, elevation, slope, aspect, population density | Pakistan | AUC = 0.833 |
[118] | IoT sensors data; historical fire | / | Accuracy = 90% |
Ref. | Dataset | Study Area | Results |
---|---|---|---|
[43] | Historical wildfire data; topographical data; meteorological data | Global | Precision = 83.71% |
[45] | Historical wildfire data; topographical data; meteorological factors | Chongqing in China | Accuracy = 91.7%, AUC = 94.87% |
[46] | Historical wildfire data; topography; weather; fuel | South of Pakistan | Accuracy = 98.71% |
[47] | Building binary ignition maps (BIMs); building explanatory variable maps (EVMs) | Global | Precision = 89.18% (MAM), 91.97% (JJA), 91.50% (SON), 95.19% (DJF) |
[155] | Fire history records dataset; topographical databases; land cover/use; MODIS images; lightning imaging sensor data; meteorological data | Victoria is the southeastern state of Australia | Accuracy = 78.57% |
[48] | Observational fire data; terrain data; fuel data; weather data | Anderson Forest | PR-AUC = 98%; PR-AUC = 24% |
[42] | Himawari-8 satellite | Australian | Accuracy > 80% |
[44] | Wildfire data; land cover data | South-Central Chile | accuracyhigh-risk = 100%; accuracymedium-risk = 93%; accuracylow-risk = 91% |
[49] | Climate; vegetation; land cover; human presence; wildfire emissions | Global | AUC8 = 0.9754; AUC16 = 0.9756; AUC32 = 0.9781; AUC64 = 0.9782; |
[152] | FIRMS; aspect, elevation, and slope; climate | Australia | Accuracy = 98.99% |
[206] | historical data on forest fires; meteorological data; multispectral and SAR satellite imagery | Europe | F1 score = 0.87; IoU = 0.77; |
[51] | Local/global variables; static variables; climatic indices; burned areas | Global | Accuracy = 95.8% |
[158] | Daily weather data; satellite variables; roads density; population density; land cover; topography variables; historical burned areas; EFFIS burned areas | Greece | AUC = 0.926 |
[52] | Ignition; vegetation/remote sensing; topography; climatic; human factor | Yunnan Province, China | AUC = 0.901; Accuracy = 0.912 |
[55] | Historical hotspots; terrestrial information; terrestrial; anthropogenic; topographical | The six eastern provinces of China | Accuracy = 92.79% |
[56] | Satellite data; wildfire inventory map; topographical; meteorological; land use; NDVI, NBR; anthropological | Maui Island, Hawaii | AUC = 0.879 |
[53] | Historical wildfire data; vegetation data; geological data; environmental and meteorological data | California | Accuracy = 97.1% |
[54] | Meteorology datasets; biophysical predictors; burned area data set | Global | IOA = 0.9 |
[159] | Global temperature; vegetation density; soil moisture; previous forecasts | Global | AEP < 0.3%; SSIM > 98% |
[157] | Historical weather; vegetation index; wildfires dataset | Global | Accuracy = 0.71 |
[174] | Daily weather data; satellite variables; soil moisture index; human activity; historical burned areas; elevation and slope | Greece | Precision = 92.3% (2020), 95% (2021) |
[160] | Fire occurrence records; weather data | Alberta, Canada | Accuracy = 90.9% |
[162] | Fire occurrence record; Fire Weather Index | Northeastern China | Accuracy = 87.5% |
[207] | Fire historical records; meteorological, topographic, and landcover/vegetation factors | Victoria, Australia | Accuracy = 93.38% |
[208] | Fuel conditions; climate factors; ignition; anthropogenic suppression | Global | Accuracy > 90% |
[163] | Climate; vegetation; ocean indices; human activity variables; fire historical records | Global | Accuracy = 98.94% |
[164] | Annual rainfall; evapotranspiration; distance from roads across | Western Himalaya | AUC = 0.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Shu, L.; Liu, X.; Cheng, P.; Wang, M.; Huang, Y. Advancements in Artificial Intelligence Applications for Forest Fire Prediction. Forests 2025, 16, 704. https://doi.org/10.3390/f16040704
Liu H, Shu L, Liu X, Cheng P, Wang M, Huang Y. Advancements in Artificial Intelligence Applications for Forest Fire Prediction. Forests. 2025; 16(4):704. https://doi.org/10.3390/f16040704
Chicago/Turabian StyleLiu, Hui, Lifu Shu, Xiaodong Liu, Pengle Cheng, Mingyu Wang, and Ying Huang. 2025. "Advancements in Artificial Intelligence Applications for Forest Fire Prediction" Forests 16, no. 4: 704. https://doi.org/10.3390/f16040704
APA StyleLiu, H., Shu, L., Liu, X., Cheng, P., Wang, M., & Huang, Y. (2025). Advancements in Artificial Intelligence Applications for Forest Fire Prediction. Forests, 16(4), 704. https://doi.org/10.3390/f16040704