Predicting Glossiness of Heat-Treated Wood Using the Back Propagation Neural Network Optimized by the Improved Whale Optimization Algorithm
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Back Propagation Neural Network
2.2. The Whale Optimization Algorithm
2.2.1. Encircling Prey
2.2.2. Bubble-Net Attacking Method
2.2.3. Search for Prey
2.3. The Improved Whale Optimization Algorithm
2.3.1. Tent Chaotic Mapping
2.3.2. The Sine Cosine Algorithm
2.3.3. Chaos-Based Adaptive Inertia Weight
2.4. The IWOA-BPNN Model
3. Results and Discussion
3.1. Data Preprocessing
3.2. Model Parameter Setting
3.3. Analysis of Simulation Rxesults of the WOA-BP Model
3.4. Performance Analysis in CEC Tests
3.5. Analysis of Input Feature Importance
4. Conclusions
- In this study, the IWOA was introduced as an improvement to the traditional WOA, which was prone to converge to local optima. To address this issue, this paper proposed several enhancements to the WOA, which were detailed in this paper. Firstly, the proposed IWOA incorporated chaos theory to initialize the population position of the algorithm and employed tent chaos mapping to generate random parameters within the whale algorithm, thereby accelerating its convergence rate. Furthermore, the WOA was combined with the sine cosine algorithm and screen the leadership position of the whale group by leveraging the strengths of cosine algorithm. This approach enhanced the algorithm’s ability to escape local optima and increased its optimization accuracy. Additionally, an adaptive strategy with inertial weights was proposed to balance global search and local development within the algorithm.
- This study investigated the glossiness of four different wood species, namely, alder, beech, birch, and pine, after heat treatment. The IWOA-BP model was developed using tree species, temperature, pressure, grain direction, and incidence angle as input variables. The model was trained on 152 randomly selected datasets and tested on 64 datasets to predict gloss values and compare them with actual measurements. The results demonstrated that the IWOA-BP model effectively predicted the glossiness of heat-treated wood with an RMSE value of 0.7834 and an R2 value of 0.9898 for the training set and an RMSE value of 0.8935 and an R2 value of 0.9885 for the test set. These findings indicated that the IWOA-BP model could accurately predict the gloss values of heat-treated wood under various conditions.
- In addition, this study compared the performance of the IWOA-BP model with that of the WOA-BP model and the original BP neural network model. The results demonstrated that, compared to the BP neural network model, the IWOA-BP model exhibited a 66.02% reduction in MAE value, a 64.21% reduction in MAPE value, a 69.60% reduction in RMSE value, and a 12.87% increase in R2 value. Similarly, when compared to the WOA-BP model, the IWOA-BP model showed a 61.33% decrease in MAE value, a 57.09% decrease in MAPE value, a 65.99% decrease in RMSE value, and a 9.75% increase in R2 value. These findings indicated that the IWOA-BP model had superior prediction accuracy and faster convergence rate. Notably, the most relevant characteristics of heat-treated wood were surface glossiness and color brightness, which our model accurately predicted with high performance. This would significantly enhance the utilization of wood processing industries and provide valuable insights for algorithm research in related fields.
- At the level of wood property correlation, future research will focus on establishing intrinsic links between glossiness and key properties such as mechanical strength, biological durability, and dimensional stability. By systematically measuring these properties under varying thermal treatment conditions and applying advanced data analytics, we aim to uncover underlying patterns and develop comprehensive correlation models. This approach will not only enhance the understanding of wood performance evolution during heat treatment but also provide a more scientific and holistic method for quality evaluation. In this context, glossiness may serve as a practical indicator of overall wood quality, increasing its value in both processing and application.
- From the perspective of input parameter optimization, this study was limited by the scope of available data, excluding potentially influential variables such as wood age, growth environment, and harvest season. These factors, though not considered in the current model, may have a significant impact on the glossiness of heat-treated wood. Due to data constraints, we were unable to assess their influence within the present research framework. Future studies should aim to collect expanded datasets either by scouring a broader range of existing literature or by conducting our own experimental operations to obtain and incorporate these variables, particularly wood age, and examine their interactions with existing inputs such as species, temperature, and pressure. This would allow for a more refined model structure that captures the complex, real-world relationships influencing glossiness. Enhancing the model in this way would improve its predictive accuracy and generalizability, offering more robust theoretical support and practical value for wood processing applications.
- Regarding model enhancement, factors such as wood density, moisture content, and treatment duration—known to significantly affect glossiness—were not included in this study. To address this, future research will adopt sensitivity analysis techniques, such as Sobol index analysis, to quantify the relative importance of these variables. This will help identify underrepresented factors in the current model and guide its optimization. By incorporating these critical variables, the model will better adapt to real-world complexities, offering a more robust and practical tool for the wood processing industry and contributing to technological innovation and product quality improvement.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Grain Orientation | Temperature | Pressure | Angle of Incidence | Measured | Predicted | Measured | Predicted | Measured | Predicted | Measured | Predicted |
---|---|---|---|---|---|---|---|---|---|---|---|
Alder | Beech | Birch | Pine | ||||||||
Radial | 100 °C | 4 MPa | 20° | 1.10 | 1.21 | 0.90 | 0.53 | 1.40 | 1.08 | 1.60 | 1.75 |
60° | 3.90 | 3.28 | 2.80 | 3.56 | 4.30 | 3.84 | 6.70 | 6.39 | |||
85° | 5.20 | 4.11 | 3.30 | 3.14 | 4.20 | 4.92 | 9.00 | 10.42 | |||
8 MPa | 20° | 1.20 | 0.62 | 1.00 | 1.18 | 1.50 | 2.66 | 1.70 | 1.28 | ||
60° | 4.50 | 3.73 | 3.50 | 3.22 | 5.50 | 5.63 | 7.40 | 6.64 | |||
85° | 5.70 | 5.11 | 5.40 | 5.55 | 5.80 | 6.17 | 7.60 | 8.56 | |||
12 MPa | 20° | 1.20 | 0.66 | 1.10 | 0.97 | 1.50 | 2.76 | 1.80 | 1.06 | ||
60° | 5.10 | 3.98 | 4.00 | 3.17 | 5.80 | 5.00 | 7.80 | 6.97 | |||
85° | 5.70 | 6.40 | 5.50 | 4.43 | 6.70 | 7.57 | 9.60 | 10.01 | |||
150 °C | 4 MPa | 20° | 1.10 | 0.64 | 1.00 | 1.14 | 1.30 | 1.01 | 1.60 | 2.37 | |
60° | 4.50 | 4.73 | 3.20 | 3.67 | 4.50 | 4.15 | 6.60 | 8.37 | |||
85° | 7.30 | 8.25 | 4.80 | 5.56 | 7.80 | 7.12 | 10.30 | 10.82 | |||
8 MPa | 20° | 1.30 | 0.78 | 1.10 | 1.01 | 1.60 | 0.61 | 1.90 | 1.74 | ||
60° | 5.50 | 5.35 | 4.10 | 3.39 | 6.30 | 5.50 | 8.70 | 9.15 | |||
85° | 10.80 | 10.15 | 8.10 | 6.23 | 13.90 | 12.85 | 18.70 | 17.09 | |||
12 MPa | 20° | 1.30 | 1.11 | 1.10 | 0.93 | 1.70 | 1.83 | 1.70 | 0.81 | ||
60° | 5.40 | 3.68 | 4.20 | 4.19 | 6.80 | 7.66 | 8.30 | 7.94 | |||
85° | 8.20 | 9.63 | 7.40 | 7.85 | 17.20 | 15.25 | 21.50 | 20.59 | |||
200 °C | 4 MPa | 20° | 1.10 | 1.56 | 0.70 | 1.23 | 1.20 | 1.32 | 1.60 | 1.53 | |
60° | 4.90 | 5.25 | 3.30 | 3.33 | 5.10 | 4.16 | 7.90 | 8.43 | |||
85° | 12.00 | 11.86 | 7.90 | 8.64 | 12.10 | 11.43 | 21.40 | 19.65 | |||
8 MPa | 20° | 1.20 | 1.18 | 0.90 | 0.81 | 1.20 | 1.43 | 1.60 | 1.32 | ||
60° | 7.00 | 6.59 | 4.40 | 3.38 | 6.50 | 6.67 | 8.90 | 7.45 | |||
85° | 23.80 | 22.98 | 8.80 | 9.00 | 15.80 | 17.65 | 29.40 | 29.49 | |||
12 MPa | 85° | 1.50 | 1.72 | 1.00 | 0.82 | 1.70 | 1.02 | 2.20 | 1.82 | ||
20° | 8.30 | 8.25 | 5.30 | 4.20 | 8.50 | 9.77 | 11.50 | 13.29 | |||
60° | 24.30 | 23.26 | 12.80 | 13.74 | 23.10 | 24.62 | 32.30 | 31.12 | |||
Tangential | 100 °C | 4 MPa | 20° | 1.20 | 1.54 | 1.10 | 1.05 | 1.50 | 2.26 | 1.80 | 1.65 |
60° | 5.40 | 5.89 | 4.00 | 5.14 | 6.20 | 5.66 | 9.80 | 8.84 | |||
85° | 10.50 | 9.44 | 5.50 | 4.99 | 7.70 | 9.09 | 18.60 | 17.85 | |||
8 MPa | 20° | 1.30 | 1.40 | 1.10 | 1.12 | 1.60 | 1.56 | 1.90 | 1.73 | ||
60° | 6.00 | 4.78 | 4.50 | 3.99 | 7.30 | 6.72 | 10.50 | 9.22 | |||
85° | 12.60 | 10.92 | 8.90 | 9.17 | 14.70 | 13.25 | 17.90 | 17.44 | |||
12 MPa | 85° | 1.30 | 0.83 | 1.10 | 1.56 | 1.70 | 1.41 | 1.80 | 1.96 | ||
20° | 6.60 | 7.02 | 4.70 | 4.52 | 8.30 | 10.09 | 10.00 | 10.19 | |||
60° | 14.20 | 13.11 | 12.00 | 12.35 | 17.30 | 15.95 | 18.30 | 19.11 | |||
150 °C | 4 MPa | 20° | 1.20 | 0.94 | 1.00 | 1.17 | 1.50 | 1.79 | 1.80 | 1.06 | |
60° | 6.40 | 7.02 | 4.20 | 3.29 | 7.00 | 6.19 | 9.90 | 10.02 | |||
85° | 16.90 | 15.02 | 7.30 | 8.07 | 12.70 | 12.28 | 19.30 | 20.07 | |||
8 MPa | 20° | 1.40 | 1.69 | 1.10 | 1.63 | 1.70 | 2.13 | 2.10 | 1.81 | ||
60° | 7.90 | 9.20 | 5.50 | 6.97 | 9.10 | 8.13 | 13.00 | 11.45 | |||
85° | 18.10 | 18.33 | 12.70 | 13.12 | 20.40 | 18.71 | 27.50 | 26.28 | |||
12 MPa | 20° | 1.40 | 1.45 | 1.10 | 1.16 | 1.90 | 1.99 | 1.90 | 2.05 | ||
60° | 7.50 | 8.00 | 5.50 | 4.73 | 10.20 | 11.68 | 11.90 | 12.22 | |||
85° | 16.40 | 18.30 | 14.10 | 15.95 | 25.70 | 24.98 | 29.80 | 29.29 | |||
200 °C | 4 MPa | 20° | 1.20 | 1.30 | 0.80 | 0.73 | 1.30 | 1.69 | 1.70 | 2.06 | |
60° | 7.50 | 7.91 | 4.70 | 3.57 | 8.00 | 7.56 | 11.00 | 10.65 | |||
85° | 21.20 | 21.26 | 13.90 | 14.90 | 19.40 | 18.79 | 27.10 | 26.06 | |||
8 MPa | 20° | 1.40 | 1.74 | 0.90 | 0.73 | 1.40 | 0.98 | 1.80 | 1.04 | ||
60° | 10.70 | 10.22 | 6.00 | 6.95 | 9.90 | 9.55 | 13.30 | 13.42 | |||
85° | 31.50 | 31.41 | 17.30 | 18.14 | 24.70 | 26.88 | 35.30 | 34.59 | |||
12 MPa | 20° | 1.70 | 1.56 | 1.00 | 0.80 | 1.90 | 1.01 | 2.30 | 2.46 | ||
60° | 12.30 | 13.05 | 6.80 | 7.09 | 13.60 | 14.09 | 16.30 | 16.87 | |||
85° | 32.20 | 33.69 | 21.70 | 21.76 | 37.20 | 37.18 | 39.50 | 39.53 |
Grain Orientation | Temperature | Pressure | Angle of Incidence | Alder | Beech | Birch | Pine | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BP | WOA-BP | IWOA-BP | BP | WOA-BP | IWOA-BP | BP | WOA-BP | IWOA-BP | BP | WOA-BP | IWOA-BP | ||||
Radial | 100 °C | 4 MPa | 20° | −2.07 | 0.78 | 0.11 | −1.73 | −0.47 | −0.36 | 1.55 | −1.50 | −0.31 | −0.32 | −1.03 | 0.15 |
60° | 0.42 | 0.20 | −0.61 | 1.48 | −0.16 | 0.76 | 0.36 | −0.44 | −0.45 | −0.17 | 1.48 | −0.30 | |||
85° | 0.61 | 1.07 | −1.08 | 2.80 | 0.28 | −0.15 | 2.47 | 0.13 | 0.72 | 0.24 | 2.47 | 1.42 | |||
8 MPa | 20° | −0.56 | 1.33 | −0.57 | 0.97 | −1.11 | 0.18 | −0.12 | −0.31 | 1.16 | 0.11 | 0.55 | −0.41 | ||
60° | −0.14 | −0.37 | −0.76 | −0.02 | −0.50 | −0.27 | 1.10 | 2.59 | 0.13 | −0.13 | 4.80 | −0.75 | |||
85° | 0.56 | 0.77 | −0.58 | 1.42 | −0.01 | 0.15 | −0.33 | −0.20 | 0.37 | 3.95 | 5.50 | 0.96 | |||
12 MPa | 20° | 0.41 | −0.92 | −0.53 | 0.58 | −0.09 | −0.12 | −0.70 | −0.25 | 1.26 | −1.39 | 2.47 | −0.73 | ||
60° | −0.21 | −0.84 | −1.11 | −1.32 | −0.31 | −0.82 | 2.24 | 3.58 | −0.79 | −0.65 | 0.89 | −0.82 | |||
85° | 0.59 | 2.32 | 0.70 | −0.36 | −0.35 | −1.06 | 2.40 | 5.01 | 0.87 | 3.07 | 5.84 | 0.41 | |||
150 °C | 4 MPa | 20° | 1.57 | 0.16 | −0.45 | −1.56 | −0.17 | 0.14 | −1.16 | −0.88 | −0.28 | 1.49 | −0.14 | 0.77 | |
60° | 0.16 | −0.01 | 0.23 | 1.01 | −0.44 | 0.47 | 0.18 | −0.62 | −0.34 | −1.68 | 1.79 | 1.77 | |||
85° | 0.11 | −0.63 | 0.95 | 3.14 | 1.21 | 0.76 | 1.06 | 2.46 | −0.67 | 1.51 | 2.65 | 0.52 | |||
8 MPa | 20° | 1.54 | 1.78 | −0.51 | 0.94 | 0.97 | −0.08 | 1.13 | 0.39 | −0.98 | −0.28 | −1.66 | −0.15 | ||
60° | 2.53 | −0.84 | −0.14 | 0.49 | −0.59 | −0.70 | 0.23 | −1.56 | −0.79 | −0.87 | 0.63 | 0.45 | |||
85° | −1.59 | −2.01 | −0.64 | 2.05 | 0.30 | −1.8 | 3.75 | −2.46 | −1.04 | −2.59 | −2.93 | −1.60 | |||
12 MPa | 20° | −2.89 | 0.72 | −0.18 | −1.66 | −0.14 | −0.16 | −0.75 | −0.58 | 0.13 | −0.09 | −2.08 | −0.88 | ||
60° | −2.03 | −0.56 | −1.71 | 1.88 | 3.94 | −0.01 | 6.50 | −1.09 | 0.86 | −2.62 | −0.78 | −0.35 | |||
85° | 2.49 | 4.19 | 1.43 | 4.71 | 1.87 | 0.45 | −1.80 | −1.69 | −1.94 | −2.10 | −1.59 | −0.90 | |||
200 °C | 4 MPa | 20° | −1.82 | 0.56 | 0.46 | −0.55 | 0.06 | 0.53 | 1.75 | 0.92 | 0.12 | 2.04 | 1.32 | −0.06 | |
60° | −0.16 | −0.04 | 0.35 | 0.58 | 2.21 | 0.03 | −2.92 | −0.44 | −0.93 | −1.85 | 0.63 | 0.53 | |||
85° | 0.38 | 0.69 | −0.13 | −0.45 | 1.47 | 0.74 | 0.61 | −0.35 | −0.66 | −5.54 | −4.95 | −1.74 | |||
8 MPa | 20° | 1.79 | 1.56 | −0.01 | 1.61 | −0.79 | −0.08 | 1.01 | 0.63 | 0.23 | 1.01 | 1.35 | −0.27 | ||
60° | −1.00 | −1.16 | −0.40 | 1.87 | 0.13 | −1.01 | 1.69 | −1.06 | 0.17 | 0.80 | 1.09 | −1.44 | |||
85° | −9.52 | −9.25 | −0.81 | 7.12 | 5.22 | 0.20 | 3.09 | 0.95 | 1.85 | −6.11 | −7.74 | 0.09 | |||
12 MPa | 20° | 1.67 | −0.53 | 0.22 | −0.10 | 0.37 | −0.17 | 0.56 | 2.16 | −0.67 | −0.08 | −0.14 | −0.37 | ||
60° | −2.46 | −1.31 | −0.04 | 2.06 | 1.22 | −1.09 | 2.43 | −0.63 | 1.27 | 0.56 | 1.30 | 1.79 | |||
85° | −5.91 | −3.29 | −1.03 | 7.91 | 7.99 | 0.94 | 2.12 | 0.85 | 1.52 | −2.73 | −3.20 | −1.17 | |||
Tangential | 100 °C | 4 MPa | 20° | −1.39 | 1.42 | 0.34 | 1.67 | −0.56 | −0.04 | 0.42 | −0.74 | 0.76 | 1.05 | 0.48 | −0.14 |
60° | −0.59 | 0.73 | 0.49 | 0.99 | −0.23 | 1.14 | −1.00 | −0.86 | −0.53 | −4.36 | 0.04 | −0.95 | |||
85° | −3.22 | 0.19 | −1.05 | 1.45 | 1.30 | −0.50 | 0.73 | 2.57 | 1.39 | −9.42 | −4.64 | −0.74 | |||
8 MPa | 20° | −0.81 | −1.00 | 0.10 | 0.91 | −0.69 | 0.02 | 0.33 | 0.57 | −0.03 | 0.11 | 2.55 | −0.16 | ||
60° | −1.59 | 1.97 | −1.21 | −1.15 | −0.55 | −0.50 | −2.31 | −1.13 | −0.57 | −5.04 | −3.00 | −1.27 | |||
85° | −3.82 | −3.22 | −1.67 | 0.25 | 0.39 | 0.27 | −3.94 | −1.98 | −1.44 | −5.93 | −1.47 | −0.45 | |||
12 MPa | 20° | 0.54 | 1.50 | −0.46 | −2.17 | 0.56 | 0.46 | 1.01 | −1.48 | −0.28 | −0.06 | 2.34 | 0.16 | ||
60° | −0.29 | −0.42 | 0.42 | 0.56 | 0.90 | −0.17 | 0.59 | 2.17 | 1.79 | −3.61 | 1.61 | 0.19 | |||
85° | −3.15 | −1.57 | −1.08 | −1.48 | −1.94 | 0.35 | 7.01 | 6.28 | −1.34 | −2.59 | 1.73 | 0.81 | |||
150 °C | 4 MPa | 20° | −3.45 | −1.28 | −0.25 | 1.60 | −0.34 | 0.17 | −2.36 | −0.53 | 0.29 | −0.85 | 1.56 | −0.73 | |
60° | −0.60 | −0.84 | 0.62 | 0.05 | 0.04 | −0.90 | −0.59 | −1.57 | −0.80 | 1.52 | −0.02 | 0.12 | |||
85° | −6.58 | −6.53 | −1.87 | 4.03 | 2.61 | 0.77 | −0.19 | 0.06 | −0.41 | −5.44 | −2.25 | 0.77 | |||
8 MPa | 20° | 0.07 | 1.10 | 0.29 | 1.67 | 0.01 | 0.53 | −0.05 | 1.27 | 0.43 | −0.07 | 1.09 | −0.28 | ||
60° | 3.53 | −1.49 | 1.30 | −1.18 | 1.66 | 1.47 | −1.83 | −2.66 | −0.96 | −4.85 | −1.89 | −1.54 | |||
85° | −4.31 | −3.64 | 0.23 | 2.65 | 1.43 | 0.42 | −3.29 | −3.12 | −1.68 | −8.41 | −5.81 | −1.21 | |||
12 MPa | 20° | 1.68 | 0.28 | 0.05 | 0.23 | 0.23 | 0.06 | 1.55 | 1.32 | 0.09 | 0.62 | 1.15 | 0.15 | ||
60° | −0.22 | −0.55 | 0.50 | 2.30 | −0.79 | −0.76 | −1.26 | −1.68 | 1.48 | −1.61 | 1.59 | 0.32 | |||
85° | 1.93 | 4.06 | 1.90 | 6.44 | 6.31 | 1.85 | −2.74 | −1.74 | −0.71 | −4.17 | −1.24 | −0.50 | |||
200 °C | 4 MPa | 20° | 1.58 | 1.01 | 0.10 | 0.28 | 0.02 | −0.06 | 0.89 | 1.03 | 0.39 | 0.40 | −0.39 | 0.36 | |
60° | 0.01 | 0.28 | 0.41 | 3.35 | 0.40 | −1.12 | 0.60 | −1.63 | −0.43 | −1.94 | −0.18 | −0.34 | |||
85° | −5.30 | −4.23 | 0.06 | −1.78 | 2.45 | 1.00 | 0.20 | −0.46 | −0.60 | −5.34 | −3.27 | −1.03 | |||
8 MPa | 20° | 0.74 | 0.39 | 0.34 | −1.60 | −0.54 | −0.16 | 0.14 | −1.40 | −0.41 | 0.46 | 2.56 | −0.75 | ||
60° | −1.46 | −1.66 | −0.47 | 4.26 | −0.44 | 0.95 | −3.15 | −0.68 | −0.34 | −0.41 | 0.80 | 0.12 | |||
85° | −9.56 | −7.61 | −0.08 | −3.38 | −0.98 | 0.84 | 2.15 | 1.90 | 2.18 | −5.70 | −3.56 | −0.70 | |||
12 MPa | 20° | 0.29 | −1.09 | −0.13 | −1.53 | −0.75 | −0.19 | 0.81 | −1.62 | −0.88 | 1.61 | 0.61 | 0.16 | ||
60° | −0.44 | 0.95 | 0.75 | 0.67 | 5.89 | 0.29 | 1.35 | 0.87 | 0.49 | 0.97 | 3.49 | 0.57 | |||
85° | −2.94 | −0.42 | 1.49 | 10.42 | 10.04 | 0.06 | −2.13 | −2.11 | −0.01 | −1.34 | 0.81 | 0.03 |
References
- Peng, X.; Zhang, Z. Surface properties of different natural precious decorative veneers by plasma modification. Eur. J. Wood Wood Prod. 2019, 77, 125–137. [Google Scholar] [CrossRef]
- Wang, W.; Ma, W.; Wu, M.; Sun, L. Effect of Water Molecules at Different Temperatures on Properties of Cellulose Based on Molecular Dynamics Simulation. Bioresources 2022, 17, 269–280. [Google Scholar] [CrossRef]
- Chu, D.; Hasanagić, R.; Hodžić, A.; Kržišnik, D.; Hodžić, D.; Bahmani, M.; Petrič, M.; Humar, M. Application of Temperature and Process Duration as a Method for Predicting the Mechanical Properties of Thermally Modified Timber. Forests 2022, 13, 217. [Google Scholar] [CrossRef]
- Kamperidou, V.; Ratajczak, I.; Perdoch, W.; Mazela, B. Impact of Thermal Modification Combined with Silicon Compounds Treatment on Wood Structure. Wood Res. 2022, 67, 773–784. [Google Scholar] [CrossRef]
- Borůvka, V.; Šedivka, P.; Novák, D.; Holeček, T.; Turek, J. Haptic and Aesthetic Properties of Heat-Treated Modified Birch Wood. Forests 2021, 12, 1081. [Google Scholar] [CrossRef]
- Zhou, F.; Zhou, Y.; Fu, Z.; Gao, X. Effects of density on colour and gloss variability changes of wood induced by heat treatment. Color Res. Appl. 2021, 46, 1151–1160. [Google Scholar] [CrossRef]
- Lu, C.; Liu, Y.; Jiang, H.; Lu, Q. Impact of heat treatment on the surface color and glossiness of young Eucalyptus Wood. Wood Res. 2022, 67, 348–360. [Google Scholar] [CrossRef]
- Gurleyen, L.; Ayata, U.; Esteves, B.; Cakicier, N. Effects of heat treatment on the adhesion strength, pendulum hardness, surface roughness, color and glossiness of Scots pine laminated parquet with two different types of UV varnish application. Maderas. Cienc. Tecnol. 2017, 19, 213–224. [Google Scholar] [CrossRef]
- Esteves, B.M.; Herrera, R.; Santos, J.; Carvalho, L.; Nunes, L.; Ferreira, J.; Domingos, I.J.; Cruz-Lopes, L. Artificial weathering of heat-treated pines from the Iberian Peninsula. Bioresources 2020, 15, 9642–9655. [Google Scholar] [CrossRef]
- Ayata, U.; Gurleyen, L.; Esteves, B. Effect of heat treatment on the surface of selected exotic wood species. Drewno. Prace Naukowe. Doniesienia. Komun. 2017, 60, 199. [Google Scholar]
- Gurleyen, L.; Esteves, B.; Ayata, U.; Gurleyen, T.; Cinar, H. The effects of heat treatment on colour and glossiness of some commercial woods in Turkey. Drewno Prace Naukowe Doniesienia Komun. 2018, 61, 201. [Google Scholar] [CrossRef]
- Bekhta, P.; Proszyk, S.; Lis, B.; Krystofiak, T. Gloss of thermally densified alder (Alnus glutinosa Goertn.), beech (Fagus sylvatica L.), birch (Betula verrucosa Ehrh.), and pine (Pinus sylvestris L.) wood veneers. Eur. J. Wood Wood Prod. 2014, 72, 799–808. [Google Scholar] [CrossRef]
- Ergün, H.; Ergün, M.E. Modeling Xanthan Gum Foam’s Material Properties Using Machine Learning Methods. Polymers 2024, 16, 740. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Huang, H.; Deng, J.; Zhang, Y.; Wang, Q. A spatio-temporal temperature prediction model for coal spontaneous combustion based on back propagation neural network. Energy 2024, 294, 130824. [Google Scholar] [CrossRef]
- Salca, E.-A.; Krystofiak, T.; Lis, B.; Hiziroglu, S. Glossiness evaluation of coated wood surfaces as function of varnish type and exposure to different conditions. Coatings 2021, 11, 558. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, W.; Li, N. Prediction of the equilibrium moisture content and specific gravity of thermally modified wood via an Aquila optimization algorithm back-propagation neural network model. Bioresources 2022, 17, 4816–4836. [Google Scholar] [CrossRef]
- Yang, H.; Cheng, W.; Han, G. Wood modification at high temperature and Pressurized Steam: A relational model of mechanical properties based on a neural network. Bioresources 2015, 10, 5758–5776. [Google Scholar] [CrossRef]
- Hasanagić, R. Optimization of thermal modification of wood by genetic algorithm and classical mathematical analysis. J. For. Sci. 2022, 68, 35–45. [Google Scholar] [CrossRef]
- Hazir, E.; Özcan, T.; Koç, K.H. Prediction of Adhesion Strength Using Extreme Learning Machine and Support Vector Regression Optimized with Genetic Algorithm. Arab. J. Sci. Eng. 2020, 45, 6985–7004. [Google Scholar] [CrossRef]
- Kadri, R.L.; Boctor, F.F. An efficient genetic algorithm to solve the resource-constrained project scheduling problem with transfer times: The single mode case. Eur. J. Oper. Res. 2018, 265, 454–462. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, W.; He, Y.; Li, M. Prediction of Physical and Mechanical Properties of Heat-Treated Wood Based on the Improved Beluga Whale Optimisation Back Propagation (IBWO-BP) Neural Network. Forests 2024, 15, 687. [Google Scholar] [CrossRef]
- Chai, H.; Chen, X.; Cai, Y.; Zhao, J. Artificial neural network modeling for predicting wood moisture content in high frequency vacuum drying process. Forests 2018, 10, 16. [Google Scholar] [CrossRef]
- Ouladbrahim, A.; Belaidi, I.; Khatir, S.; Magagnini, E.; Capozucca, R.; Abdel Wahab, M. Experimental crack identification of API X70 steel pipeline using improved artificial neural networks based on whale optimization algorithm. Mech. Mater. 2022, 166, 104200. [Google Scholar] [CrossRef]
- Liang, Z.; Han, Q.; Zhang, T.; Tang, Y.; Jiang, J.; Cheng, Z. Nonlinearity compensation of magneto-optic fiber current sensors based on WOA-BP Neural Network. IEEE Sens. J. 2022, 22, 19378–19383. [Google Scholar] [CrossRef]
- Nadimi, M.H.; Zamani, H.; Varzaneh, Z.; Mirjalili, S. A Systematic Review of the Whale Optimization Algorithm: Theoretical Foundation, Improvements, and Hybridizations. Arch. Comput. Methods Eng. 2023, 30, 4113–4159. [Google Scholar] [CrossRef]
- Yu, M.; Yao, S.; Wu, X.; Chen, L. Research on a wi-fi RSSI calibration algorithm based on WOA-BPNN for indoor positioning. Appl. Sci. 2022, 12, 7151. [Google Scholar] [CrossRef]
- Ma, W.; Wang, W.; Cao, Y. Mechanical properties of wood prediction based on the NAGGWO-BP neural network. Forests 2022, 13, 1870. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, F.; Sun, T.; Xu, B. A constrained optimization method based on BP Neural Network. Neural Comput. Appl. 2016, 29, 413–421. [Google Scholar] [CrossRef]
- Li, N.; Wang, W. Prediction of mechanical properties of thermally modified wood based on TSSA-BP Model. Forests 2022, 13, 160. [Google Scholar] [CrossRef]
- Mirjalili, S. SCA: A sine cosine algorithm for solving optimization problems. Knowl.-Based Syst. 2016, 96, 120–133. [Google Scholar] [CrossRef]
- Taherkhani, M.; Safabakhsh, R. A novel stability-based adaptive inertia weight for particle swarm optimization. Appl. Soft Comput. 2016, 38, 281–295. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, W.; Chen, Y. Carnivorous plant algorithm and BP to predict optimum bonding strength of heat-treated Woods. Forests 2022, 14, 51. [Google Scholar] [CrossRef]
- Luo, J.; He, F.; Li, H.; Zeng, X.T.; Liang, Y. A novel whale optimization algorithm with filtering disturbance and nonlinear step. Int. J. Bio-Inspired Comput. 2022, 20, 71. [Google Scholar] [CrossRef]
- Bekhta, P.; Niemz, P. Effect of high temperature on the change in color, dimensional stability and mechanical properties of Spruce Wood. Holzforschung 2003, 57, 539–546. [Google Scholar] [CrossRef]
- He, Y.; Wang, W.; Cao, Y.; Wang, Q.H.; Li, M. Prediction of Bonding Strength of Heat-Treated Wood Based on an Improved Harris Hawk Algorithm Optimized BP Neural Network Model (IHHO-BP). Forests 2024, 15, 1365. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, W.; He, Y. Prediction of Heat-Treated Wood Adhesive Strength Using BP Neural Networks Optimized by Four Novel Metaheuristic Algorithms. Forests 2025, 16, 291. [Google Scholar] [CrossRef]
- Huč, S.; Svensson, S. Influence of grain direction on the time—Dependent behavior of wood analyzed by a 3D rheological model. A mathematical consideration. Holzforschung 2018, 72, 889–897. [Google Scholar] [CrossRef]
- Majka, J.; Sydor, M.; Warguta, Ł.; Wieczorek, B. Anti-slip properties of thermally modified hardwoods. Eur. J. Wood Wood Prod. 2025, 83, 14. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, Y.; Ping, L.; Zhou, Y.; Yang, J.; Zuo, Y. An eco-friendly strategy of cell wall stapling: In situ crosslinking of acrylic acid emulsion impregnated in thermally treated poplar wood. Ind. Crops Prod. 2024, 222, 119657. [Google Scholar] [CrossRef]
- Kúdelka, J.; Ihracký, P.; Kačík, F. Discoloration and Surface Changes in Spruce Wood after Accelerated Aging. Polymers 2024, 16, 1191. [Google Scholar] [CrossRef] [PubMed]
- Croitoru, C.; Spirchez, C.; Lunguleasa, A.; Cristea, D.; Roata, I.C.; Pop, M.A.; Bedo, T.; Stanciu, E.M.; Pascu, A. Surface properties of thermally treated composite wood panels. Appl. Surf. Sci. 2018, 438, 114–126. [Google Scholar] [CrossRef]
- Lourenço, A.; Araújo, S.; Gominho, J.; Pereira, H.; Evtuguin, D. Structural changes in lignin of thermally treated eucalyptus wood. J. Wood Chem. Technol. 2020, 40, 258–268. [Google Scholar] [CrossRef]
- Wang, J.J.; Liu, J.L.; Li, J.Z.; Zhu, J.Y. Characterization of Microstructure, Chemical, and Physical Properties of Delignified and Densified Poplar Wood. Materials 2021, 14, 5709. [Google Scholar] [CrossRef]
- Deng, Q.; Li, S.; Chen, Y.P. Mechanical properties and failure mechanism of wood cell wall layers. Comput. Mater. Sci. 2012, 62, 221–226. [Google Scholar] [CrossRef]
- Şenol, S.; Budakçı, M. Effect of Thermo—Vibro—Mechanic® densification process on the gloss and hardness values of some wood materials. BioResources 2019, 14, 9611–9627. [Google Scholar] [CrossRef]
- Yu, J.; Liu, X.T.; Millan, M. A study on pyrolysis of wood of different sizes at various temperatures and pressures. Fuel 2023, 342, 127846. [Google Scholar] [CrossRef]
- Rosiak, N.; Tykarska, E.; Miklaszewski, A.; Pietrzak, R.; Cielecka—Piontek, J. Enhancing the Solubility and Dissolution of Apigenin: Solid Dispersions Approach. Int. J. Mol. Sci. 2025, 26, 566. [Google Scholar] [CrossRef]
- Arpaci, S.S.; Tomak, E.D.; Ermeydan, M.A.; Yildirim, I. Natural weathering of sixteen wood species: Changes on surface properties. Polym. Degrad. Stab. 2021, 183, 109415. [Google Scholar] [CrossRef]
Number of Hidden Layer Nodes | MAE/MPa |
---|---|
4 | 0.0039501 |
5 | 0.0055646 |
6 | 0.0013694 |
7 | 0.0065983 |
8 | 0.0020393 |
9 | 0.0017918 |
10 | 0.0043294 |
11 | 0.0034053 |
12 | 0.0023211 |
Model | Dataset | Performance Criteria | |||
---|---|---|---|---|---|
MAE/MPa | RMSE/MPa | MAPE/% | R2 | ||
BP | Train | 1.9142 | 0.4026 | 2.7318 | 0.8768 |
Test | 2.0683 | 0.4937 | 2.9391 | 0.8758 | |
WOA-BP | Train | 1.5444 | 0.3106 | 2.2625 | 0.9155 |
Test | 1.8179 | 0.4118 | 2.6275 | 0.9007 | |
IWOA-BP | Train | 0.6210 | 0.1287 | 0.7834 | 0.9898 |
Test | 0.7029 | 0.1767 | 0.8935 | 0.9885 |
Function | Formula | Dim | Search Range | Best Value |
---|---|---|---|---|
F1 | 10/20 | [−100, 100] | 300 | |
F2 | 10/20 | [−100, 100] | 600 | |
F7 | 10/20 | [−100, 100] | 2000 | |
F9 | 10/20 | [−100, 100] | 2300 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Y.; Wang, W.; He, Y. Predicting Glossiness of Heat-Treated Wood Using the Back Propagation Neural Network Optimized by the Improved Whale Optimization Algorithm. Forests 2025, 16, 716. https://doi.org/10.3390/f16050716
Cao Y, Wang W, He Y. Predicting Glossiness of Heat-Treated Wood Using the Back Propagation Neural Network Optimized by the Improved Whale Optimization Algorithm. Forests. 2025; 16(5):716. https://doi.org/10.3390/f16050716
Chicago/Turabian StyleCao, Ying, Wei Wang, and Yan He. 2025. "Predicting Glossiness of Heat-Treated Wood Using the Back Propagation Neural Network Optimized by the Improved Whale Optimization Algorithm" Forests 16, no. 5: 716. https://doi.org/10.3390/f16050716
APA StyleCao, Y., Wang, W., & He, Y. (2025). Predicting Glossiness of Heat-Treated Wood Using the Back Propagation Neural Network Optimized by the Improved Whale Optimization Algorithm. Forests, 16(5), 716. https://doi.org/10.3390/f16050716