Predictive Modeling of Black Spruce (Picea mariana (Mill.) B.S.P.) Wood Density Using Stand Structure Variables Derived from Airborne LiDAR Data in Boreal Forests of Ontario
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Plot Networks
2.3. Data on Wood Quality Characteristics
2.4. LiDAR and FRI Data set
2.5. Statistical Analysis
2.5.1. Correlations
2.5.2. Parametric Approach
2.5.3. Nonparametric Approach
3. Results
3.1. Correlation Analysis
3.2. Parametric Model
3.3. Regression Tree and Random Forests Modeling
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Food and Agriculture Organization (FAO). Global Forest Resources Assessment 2010: Main Report. Available online: http://www.fao.org/docrep/013/i1757e/i1757e.pdf (accessed on 20 July 2013).
- Van Leeuwen, M.; Hilker, T.; Coops, N.C.; Frazer, G.; Wulder, M.A.; Newnham, G.J.; Culvenor, D.S. Assessment of standing wood and fiber quality using ground and airborne laser scanning: A review. For. Ecol. Manag. 2011, 261, 1467–1478. [Google Scholar] [CrossRef]
- Kennedy, R.W. Coniferous wood quality in the future: Concerns and strategies. Wood Sci. Technol. 1995, 29, 321–338. [Google Scholar] [CrossRef]
- Plomion, C.; Leprovost, G.; Stokes, A. Wood formation in trees. Plant Physiol. 2001, 127, 1513–1523. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.Y. Wood quality attributes and their impacts on wood utilization. In Proceedings of the XII World Forestry Congress, Québec City, QC, Canada, 21–28 September 2003.
- MacKenzie, J.; Bruemmer, G. Enhancing Canada’s forest fibre. For. Chron. 2009, 85, 353–354. [Google Scholar] [CrossRef]
- Watson, P.; Bradley, M. Canadian pulp fibre morphology: Superiority and considerations for end use potential. For. Chron. 2009, 85, 401–408. [Google Scholar] [CrossRef]
- Li, C. Toward full, multiple, and optimal wood fibre utilization: A modeling perspective. For. Chron. 2009, 85, 377–381. [Google Scholar] [CrossRef]
- Cöpür, Y.; Makkonen, H.; Amidon, T.E. The prediction of pulp yield using selected fiber properties. Holzforschung 2005, 59, 477–480. [Google Scholar] [CrossRef]
- Duchesne, I.; Wilhelmsson, L.; Spångberg, K. Effects of in-forest sorting of norway spruce (Picea abies) and scots pine (Pinus sylvestris) on wood and fibre properties. Can. J. For. Res. 1997, 27, 790–795. [Google Scholar] [CrossRef]
- Chave, J.; Coomes, D.; Jansen, S.; Lewis, S.L.; Swenson, N.G.; Zanne, A.E. Towards a worldwide wood economics spectrum. Ecol. Lett. 2009, 12, 351–366. [Google Scholar] [CrossRef] [PubMed]
- Hilker, T.; Frazer, G.W.; Coops, N.C.; Wulder, M.A.; Newnham, G.J.; Stewart, J.D.; Leeuwen, M.V.; Culvenor, D.S. Prediction of wood fiber attributes from lidar-derived forest canopy indicators. For. Sci. 2013, 59, 231–242. [Google Scholar] [CrossRef]
- Evans, R. Silviscan and its future in wood quality assessment. In Proceedings of the 54th Appita Annual Conference, Melbourne, Australia, 3–6 April 2000.
- Giroud, G.; Bégin, J.; Defo, M.; Ung, C.-H. Ecogeographic variation in black spruce wood properties across quebec’s boreal forest. For. Ecol. Manag. 2016, 378, 131–143. [Google Scholar] [CrossRef]
- Luther, J.E.; Skinner, R.; Fournier, R.A.; van Lier, O.R.; Bowers, W.W.; Coté, J.-F.; Hopkinson, C.; Moulton, T. Predicting wood quantity and quality attributes of balsam fir and black spruce using airborne laser scanner data. Forestry 2013. [Google Scholar] [CrossRef]
- Pokharel, B.; Dech, J.P.; Groot, A.; Pitt, D. Ecosite-based predictive modeling of black spruce (Picea mariana) wood quality attributes in boreal ontario. Can. J. For. Res. 2014, 44, 465–475. [Google Scholar] [CrossRef]
- Townshend, E.; Pokharel, B.; Groot, A.; Pitt, D.; Dech, J. Modeling wood fibre length in black spruce (Picea mariana (Mill.) BSP) based on ecological land classification. Forests 2015, 6, 3369–3394. [Google Scholar] [CrossRef]
- Rowe, J.S. Forest Regions of Canada; Canadian Forestry Service Publ. No. 1300; Canadian Forest Service: Ottawa, ON, Canada, 1972.
- Ekstrom, B.; Breau, J.; Thompson, E.; Woolnough, N.; Quist, L. Forest Management Plan for the Hearst Forest; For the 10-Year Period from 1 April 2007 to 31 March 2017; Hearst Forest Management Inc.: Hearst, ON, Canada, 2007; p. 516. [Google Scholar]
- Environment Canada. National Climate Data and Information Archive. Available online: http://climate.weatheroffice.gc.ca/Welcome_e.html (accessed on 28 April 2013).
- Pope, G.W. Lidar and Worldview-2 Satellite Data for Leaf Area Index Estimation in the Boreal Forest. Master's Thesis, Queen’s University, Kingston, ON, Canada, 2012. [Google Scholar]
- Defo, M.; Uy, N. Silviscan Analysis of Black Spruce, Jack Pine, and Trembling Aspen Samples; Project Report (Contract # 201005640); FPInnovations, Paprican: Vancouver, BC, Canada, 2012; p. 13. [Google Scholar]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016. [Google Scholar]
- Products-Terrascan. Available online: http://www.terrasolid.com/products/terrascanpage.php (accessed on 6 December 2016).
- Penner, M.; Pitt, D.G.; Woods, M.E. Parametric vs. Nonparametric lidar models for operational forest inventory in boreal ontario. Can. J. Remote Sens. 2013, 39, 426–443. [Google Scholar]
- Woods, M.; Pitt, D.; Penner, M.; Lim, K.; Nesbitt, D.; Etheridge, D.; Treitz, P. Operational implementation of a lidar inventory in Boreal Ontario. For. Chron. 2011, 87, 512–528. [Google Scholar] [CrossRef]
- Pope, G.; Treitz, P. Leaf area index (LAI) estimation in boreal mixedwood forest of ontario, canada using light detection and ranging (LiDAR) and worldview-2 imagery. Remote Sens. 2013, 5, 5040–5063. [Google Scholar] [CrossRef]
- Van Ewijk, K.Y.; Treitz, P.M.; Scott, N.A. Characterizing forest succession in central ontario using lidar-derived indices. Photogramm. Eng. Remote Sens. 2011, 77, 261–269. [Google Scholar] [CrossRef]
- De'ath, G.; Fabricius, K.E. Classification and regression trees: A powerful yet simple technique for ecological data analysis. Ecology 2000, 81, 3178–3192. [Google Scholar] [CrossRef]
- Cutler, D.R.; Edwards, T.C.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. Random forests for classification in ecology. Ecology 2007, 88, 2783–2792. [Google Scholar] [CrossRef] [PubMed]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Prasad, A.M.; Iverson, L.R.; Liaw, A. Newer classification and regression tree techniques: Bagging and random forests for ecological prediction. Ecosystems 2006, 9, 181–199. [Google Scholar] [CrossRef]
- Cutler, A.; Cutler, D.R.; Stevens, J.R. Random forests. In Ensemble Machine Learning: Methods and Applications; Zhang, C., Ma, Y., Eds.; Springer: New York, NY, USA, 2012; pp. 157–175. [Google Scholar]
- Blanchette, D.; Fournier, R.A.; Luther, J.E.; Cote, J.F. Predicting wood fiber attributes using local-scale metrics from terrestrial lidar data: A case study of newfoundland conifer species. For. Ecol. Manag. 2015, 347, 116–129. [Google Scholar] [CrossRef]
- Burkhart, H.E.; Tomé, M. Modeling Forest Trees and Stands; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar]
- Larson, P.R. Some indirect effects of environment on wood formation. In The Formation of Wood in Forest Tress; Zimmermann, M.H., Ed.; Academic Press: New York, NY, USA, 1964; pp. 345–365. [Google Scholar]
- Redsven, V.; Hirvelä, H.; Härkönen, K.; Salminen, O.; Siitonen, M. Mela2012 Reference Manual; The Finnish Forest Research Institute: Vantaa, Finland, 2012; p. 666. [Google Scholar]
- Fritts, H.C.; Shashkin, A.; Downes, G.M. A simulation model of conifer ring growth and cell structure. In Tree-Ring Analysis: Biological, Methodological, and Environmental Aspects; Wimmer, R., Vetter, R.E., Eds.; CAB International: New York, NY, USA, 1999; pp. 3–32. [Google Scholar]
- Cown, D.J.; Hebert, J.; Ball, R. Modelling Pinus radiata lumber characteristics. Part 1: Mechanical properties of small clears. N. Z. J. For. Sci. 1999, 29, 203–213. [Google Scholar]
- Lasserre, J.-P.; Mason, E.G.; Watt, M.S.; Moore, J.R. Influence of initial planting spacing and genotype on microfibril angle, wood density, fibre properties and modulus of elasticity in Pinus radiata D. Don corewood. For. Ecol. Manag. 2009, 258, 1924–1931. [Google Scholar] [CrossRef]
- Clark, A., III; Daniels, R.F.; Jordan, L. Juvenile/mature wood transition in loblolly pine as defined by annual ring specific gravity, proportion of latewood, and microfibril angle. Wood Fiber Sci. 2006, 38, 292–299. [Google Scholar]
- Antony, F.; Schimleck, L.R.; Daniels, R.F.; Clark, A.; Hall, D.B. Modeling the longitudinal variation in wood specific gravity of planted loblolly pine (Pinus taeda) in the united states. Can. J. For. Res. 2010, 40, 2439–2451. [Google Scholar] [CrossRef]
- Racine, E.B.; Coops, N.C.; St-Onge, B.; Bégin, J. Estimating forest stand age from lidar-derived predictors and nearest neighbor imputation. For. Sci. 2014, 60, 128–136. [Google Scholar] [CrossRef]
- Treitz, P.; Lim, K.; Woods, M.; Pitt, D.; Nesbitt, D.; Etheridge, D. Lidar sampling density for forest resource inventories in Ontario, Canada. Remote Sens. 2012, 4, 830–848. [Google Scholar] [CrossRef]
- Lenz, P.; Bernier-Cardou, M.; MacKay, J.; Beaulieu, J. Can wood properties be predicted from the morphological traits of a tree? A canonical correlation study of plantation-grown white spruce. Can. J. For. Res. 2012, 42, 1518–1529. [Google Scholar] [CrossRef]
Variables | Description | Unit | Mean | Stdev | Min | Max | Cor * |
---|---|---|---|---|---|---|---|
Density | Density | kg⋅m−3 | 537.33 | 49.90 | 387.60 | 669.90 | 1.00 |
MFA | Microfibril angle | Degree | 12.81 | 3.12 | 8.70 | 23.30 | −0.06 |
MOE | Modulus of elasticity | GPa | 14.89 | 2.45 | 7.60 | 20.50 | 0.48 |
C | Coarseness | µg⋅m−1 | 375.28 | 38.51 | 274.30 | 490.60 | 0.58 |
WT | Wall thickness | µm | 2.64 | 0.26 | 1.94 | 3.27 | 0.91 |
RD | Radial diameter | µm | 27.62 | 1.43 | 24.20 | 31.90 | −0.39 |
TD | Tangential diameter | µm | 26.39 | 1.37 | 23.80 | 30.40 | −0.12 |
SSA | Specific surface area | m2⋅kg−1 | 300.71 | 27.68 | 246.50 | 385.70 | −0.87 |
TOPHT | Top height | m | 17.77 | 3.62 | 9.00 | 25.90 | −0.45 |
BA | Stand basal area | m2⋅ha−1 | 27.40 | 10.34 | 1.68 | 51.42 | −0.27 |
QMD | Quadratic mean diameter | cm | 16.66 | 3.84 | 11.08 | 28.28 | −0.48 |
TPH | Tree per hectare | # | 1324 | 577 | 175 | 2602 | 0.12 |
LAI | Leaf area index | - | 2.54 | 0.78 | 0.41 | 4.54 | −0.49 |
VCI | Vertical Complexity Index ** | - | 0.68 | 0.07 | 0.35 | 0.81 | −0.30 |
H | Shannon Weaver Index | - | 2.61 | 0.27 | 1.37 | 3.09 | −0.32 |
P10 | First Decile LiDAR Height | m | 0.20 | 0.47 | 0.00 | 1.99 | −0.39 |
P20 | Second Decile LiDAR Height | m | 0.82 | 1.20 | 0.00 | 4.02 | −0.49 |
P30 | Third Decile LiDAR Height | m | 1.98 | 2.10 | 0.01 | 7.92 | −0.54 |
P40 | Fourth Decile LiDAR Height | m | 3.94 | 2.79 | 0.02 | 11.24 | −0.55 |
P50 | Fifth Decile LiDAR Height | m | 6.18 | 3.28 | 0.06 | 13.49 | −0.51 |
P60 | Sixth Decile LiDAR Height | m | 8.13 | 3.63 | 0.21 | 15.38 | −0.48 |
P70 | Seventh Decile LiDAR Height | m | 9.93 | 3.86 | 0.72 | 16.77 | −0.47 |
P80 | Eighth Decile LiDAR Height | m | 11.41 | 3.98 | 1.96 | 19.58 | −0.45 |
P90 | Ninth Decile LiDAR Height | m | 12.97 | 3.99 | 3.65 | 21.53 | −0.42 |
D1 | Cumulative % of the number of returns in Bin 1 of 10 | % | 0.32 | 0.13 | 0.10 | 0.70 | 0.52 |
D2 | Cumulative % of the number of returns in Bin 2 of 10 | % | 0.40 | 0.13 | 0.16 | 0.74 | 0.49 |
D3 | Cumulative % of the number of returns in Bin 3 of 10 | % | 0.47 | 0.14 | 0.20 | 0.81 | 0.49 |
D4 | Cumulative % of the number of returns in Bin 4 of 10 | % | 0.54 | 0.14 | 0.27 | 0.88 | 0.46 |
D5 | Cumulative % of the number of returns in Bin 5 of 10 | % | 0.62 | 0.14 | 0.36 | 0.92 | 0.43 |
D6 | Cumulative % of the number of returns in Bin 6 of 10 | % | 0.71 | 0.13 | 0.47 | 0.96 | 0.41 |
D7 | Cumulative % of the number of returns in Bin 7 of 10 | % | 0.81 | 0.10 | 0.60 | 0.98 | 0.38 |
D8 | Cumulative % of the number of returns in Bin 8 of 10 | % | 0.92 | 0.05 | 0.76 | 0.99 | 0.32 |
D9 | Cumulative % of the number of returns in Bin 9 of 10 | % | 0.98 | 0.02 | 0.93 | 0.99 | 0.21 |
DA | First returns/All Returns | % | 77.43 | 6.37 | 62.39 | 94.79 | 0.35 |
DV | First returns intersecting vegetation/total returns | % | 65.78 | 9.30 | 34.73 | 83.45 | −0.38 |
DB | First and only returns/total returns | % | 56.13 | 12.04 | 29.51 | 89.86 | 0.34 |
CC0 | Crown closure > 0 m | % | 99.20 | 1.32 | 94.85 | 100.00 | −0.22 |
CC2 | Crown closure > 2 m | % | 90.98 | 10.78 | 45.00 | 100.00 | −0.46 |
CC4 | Crown closure > 4 m | % | 85.27 | 15.56 | 18.00 | 100.00 | −0.45 |
CC6 | Crown closure > 6 m | % | 78.59 | 19.88 | 4.00 | 100.00 | −0.44 |
CC8 | Crown closure > 8 m | % | 69.87 | 24.03 | 0.00 | 100.00 | −0.43 |
CC10 | Crown closure > 10 m | % | 56.70 | 29.91 | 0.00 | 100.00 | −0.38 |
CC12 | Crown closure > 12 m | % | 41.74 | 32.60 | 0.00 | 100.00 | −0.37 |
CC14 | Crown closure > 14 m | % | 28.86 | 31.18 | 0.00 | 100.00 | −0.32 |
CC16 | Crown closure > 16 m | % | 17.16 | 24.34 | 0.00 | 96.00 | −0.36 |
CC18 | Crown closure > 18 m | % | 8.08 | 16.25 | 0.00 | 76.00 | −0.33 |
CC20 | Crown closure > 20 m | % | 3.74 | 9.81 | 0.00 | 42.11 | −0.37 |
CC22 | Crown closure > 22 m | % | 1.29 | 4.21 | 0.00 | 21.05 | −0.28 |
CC24 | Crown closure > 24 m | % | 0.19 | 0.82 | 0.00 | 4.21 | −0.27 |
CC26 | Crown closure > 26 m | % | 0.01 | 0.10 | 0.00 | 1.05 | −0.04 |
Parameters | Estimate | Std. Error | t Value | Pr (>|t|) | VIF | |
---|---|---|---|---|---|---|
(Intercept) | 651.72 | 18.91 | 34.46 | <2 × 10−16 | *** | |
QMD | −3.24 | 0.98 | −3.30 | 0.001323 | ** | 1.87 |
LAI | −19.06 | 5.14 | −3.71 | 0.000331 | *** | 1.32 |
P20 | −14.65 | 3.48 | −4.21 | 5.40 × 10−5 | *** | 1.46 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pokharel, B.; Groot, A.; Pitt, D.G.; Woods, M.; Dech, J.P. Predictive Modeling of Black Spruce (Picea mariana (Mill.) B.S.P.) Wood Density Using Stand Structure Variables Derived from Airborne LiDAR Data in Boreal Forests of Ontario. Forests 2016, 7, 311. https://doi.org/10.3390/f7120311
Pokharel B, Groot A, Pitt DG, Woods M, Dech JP. Predictive Modeling of Black Spruce (Picea mariana (Mill.) B.S.P.) Wood Density Using Stand Structure Variables Derived from Airborne LiDAR Data in Boreal Forests of Ontario. Forests. 2016; 7(12):311. https://doi.org/10.3390/f7120311
Chicago/Turabian StylePokharel, Bharat, Art Groot, Douglas G. Pitt, Murray Woods, and Jeffery P. Dech. 2016. "Predictive Modeling of Black Spruce (Picea mariana (Mill.) B.S.P.) Wood Density Using Stand Structure Variables Derived from Airborne LiDAR Data in Boreal Forests of Ontario" Forests 7, no. 12: 311. https://doi.org/10.3390/f7120311
APA StylePokharel, B., Groot, A., Pitt, D. G., Woods, M., & Dech, J. P. (2016). Predictive Modeling of Black Spruce (Picea mariana (Mill.) B.S.P.) Wood Density Using Stand Structure Variables Derived from Airborne LiDAR Data in Boreal Forests of Ontario. Forests, 7(12), 311. https://doi.org/10.3390/f7120311