Detecting Shoot Beetle Damage on Yunnan Pine Using Landsat Time-Series Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Experiments
2.3. Landsat Data Preparation
2.4. Spectral Indices
2.5. Multi-Date Classification Method
2.6. Outbreak Time and Direction Spread Estimation
3. Results
3.1. Field Survey
3.2. Classification of Damage Degree
3.3. Outbreak Time and Spread Path Estimation
4. Discussion
5. Conclusions
- (1)
- The SDR was a better measure than tree mortality for monitoring shoot beetle damage.
- (2)
- Reconstructed SDR can be used to predict outbreak time and beetle moving patterns.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Dai, K.J.; He, F.; Shen, Y.X.; Zhou, W.J.; Li, Y.P.; Tang, L. Advances in the research on Pinus yunnanensis forest. J. Cent. South For. Univ. 2006, 26, 138–142. [Google Scholar] [CrossRef]
- Jin, Z.Z.; Peng, J. Pinus Yunnanensis; Yunnan Science and Technology Publishing Press: Kunming, China, 2004; pp. 5–13. ISBN 7-5416-1956-6. [Google Scholar]
- Luo, F.S.; Wan, G.H.; Pi, W.L. Studies on the geographical provenance of Pinus yunnanensis I. Seeding test. Acta Bot. Yunnanica 1987, 9, 427–435. [Google Scholar]
- Wang, N.; Zhang, G. On the desertification and genesis of karst stone mountain area in east Yunnan. Adv. Earth Sci. 2003, 18, 933–938. [Google Scholar] [CrossRef]
- Liu, F.; Wang, S.J.; Liu, Y.S.; He, T.B.; Luo, H.B.; Long, J. Changes of soil quality in the process of karst rocky desertification and evaluation of impact on ecological environment. Acta Ecol. Sin. 2005, 25, 639–644. [Google Scholar] [CrossRef]
- Si, B.; Yao, X.H.; Ren, H.D.; Li, S.; He, B.H. Species Diversity in the Process of Vegetation Succession in the Karst Area in Eastern Yunnan. J. Southwest Univ. (Nat. Sci. Ed.) 2009, 31, 132–139. [Google Scholar] [CrossRef]
- Guo, H. Research on Forest Ecosystem Horological Process in the Southeast of Yunnan Hu Pen District Hills. Ph.D. Thesis, Yunnan Normal University, Kunming, China, 2016. [Google Scholar]
- Cai, N.H.; Li, G.Q.; Lu, Y.C. Discuss on the approaching nature forestry management of Pinus yunnanensis pure forests. J. Northwest For. Univ. 2006, 21, 85–88. [Google Scholar] [CrossRef]
- Cai, N.H.; Li, G.Q.; Zhu, C.F.; Huang, Y.X.; Li, J.N.; Zhao, W.D. A comparison study on the community structure between artificial and natural forests of Pinus yunnanensis. J. Northwest For. Univ. 2007, 22, 1–4. [Google Scholar] [CrossRef]
- Chen, F.; Wang, J.M.; Sun, B.G.; Chen, X.M.; Yang, Z.X.; Duan, Z.Y. Relationship between geographical distribution of Pinus yunnanensis and climate. For. Res. 2012, 25, 163–168. [Google Scholar] [CrossRef]
- Zhao, L.Z.; Cai, N.H.; Xia, Q.Z.; He, R.X.; Xu, Y.L. Effect of Drought Stress on Seed Germination and Osmotic Regulating Substances of Pinus yunnanensis. J. Northwest For. Univ. 2012, 32, 21–25. [Google Scholar] [CrossRef]
- Zhao, J.X.; Wang, S.J.; Chen, Q.B.; Wang, Y.X.; Shu, J.J. Study on soil respiration under natural and artificial forests of Pinus yunnanensis in middle Yunnan plateau, China. J. Cent. South Univ. For. Technol. 2014, 38, 96–103. [Google Scholar] [CrossRef]
- Lv, J.M.; Ju, J.H.; Ren, J.Z.; Gan, W.W. The influence of the Madden-Julian Oscillation activity anomalies on Yunnan’s extreme drought of 2009–2010. Sci. China Earth Sci. 2012, 55, 98–112. [Google Scholar] [CrossRef]
- Tao, Y.; Zhang, W.C.; Duan, C.C.; Chen, Y.; Ren, J.Z.; Xing, D.; He, Q. Climatic causes of continuous drought over Yunnan Province from 2009 to 2012. J. Yunnan Univ. 2014, 36, 866–874. [Google Scholar] [CrossRef]
- Yan, H.M.; Chen, J.G.; Zheng, J.M.; Zhou, J.Q. The climate cause of heavy drought in Yunnan in autumn 2009. Trans. Atmos. Sci. 2012, 35, 229–239. [Google Scholar] [CrossRef]
- Yang, H.; Song, J.; Yan, H.M.; Li, C.Y. Cause of the severe drought in Yunnan province during winter of 2009 to 2010. Clim. Environ. Res. 2012, 17, 315–326. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, W.; Zheng, J.M. Comparative analysis of the autumn–winter–spring drought in 2009/2010 and other sustained drought in Yunnan province. J. Yunnan Univ. 2011, 33, 172–177. [Google Scholar]
- Guo, W.H.; Shen, Y.X.; Chai, S.Q. Research progress on monitoring and management of Dendrolinus houi Lajonquire in China. For. Pest Dis. 2003, 22, 28–31. [Google Scholar] [CrossRef]
- Hu, G.H.; Lei, W.; Huai, K.Y.; Zhang, J.B.; Chen, H.W.; Zhou, Y. Life history of Retinia cristata in Yunnan Province and its damage on Pinus kesiya var. langbianensis. For. Pest Dis. 2005, 24, 13–15. [Google Scholar] [CrossRef]
- Zhang, J.S.; Yin, A.L.; Xu, G.L.; Yang, C.Z. Research on control indicators of Dendrolinus houi Lajonquire. For. Sci. Technol. 2005, 30, 21–24. [Google Scholar] [CrossRef]
- Wang, L.P.; Tang, C.C.; Su, S.C.; Lian, P.H. Studies on natural population life table of Dendrolimus houi Lajonquiere. J. Fujian For. Sci. Technol. 2007, 34, 36–40. [Google Scholar] [CrossRef]
- Amman, G.D. The Mountain Pine Beetle—Identification, Biology, Causes of Outbreaks, and Entomological Research Needs. In Proceedings of the Joint Canada/USA Workshop on Mountain Pine Beetle Related Problems in Western North America; Shrimpton, D.M., Ed.; Information Report BC-X-230; Environment Canada, Canadian Forestry Service, Pacific Forest Research Centre: Victoria, BC, Canada, 1982; pp. 7–12. [Google Scholar]
- Assal, T.J.; Sibold, J.; Reich, R. Modeling a historical mountain pine beetle outbreak using landsat MSS and multiple lines of evidence. Remote Sens. Environ. 2014, 155, 275–288. [Google Scholar] [CrossRef]
- Walter, J.A.; Platt, R.V. Multi-temporal analysis reveals that predictors of mountain pine beetle infestation change during outbreak cycles. For. Ecol. Manag. 2013, 302, 308–318. [Google Scholar] [CrossRef]
- West, D.R.; Briggs, J.S.; Jacobi, W.R.; Negrón, J.F. Mountain pine beetle-caused mortality over eight years in two pine hosts in mixed-conifer stands of the southern rocky mountains. For. Ecol. Manag. 2014, 334, 321–330. [Google Scholar] [CrossRef]
- Chen, J.M. Combining land surface temperature and shortwave infrared reflectance for early detection of mountain pine beetle infestations in western Canada. J. Appl. Remote Sens. 2011, 5, 1105–1113. [Google Scholar] [CrossRef]
- Duncan, J.P.; Powell, J.A.; Gordillo, L.F.; Eason, J. A model for mountain pine beetle outbreaks in an age-structured forest: Predicting severity and outbreak-recovery cycle period. Bull. Math. Biol. 2015, 77, 1256–1284. [Google Scholar] [CrossRef] [PubMed]
- Gartner, M.H.; Veblen, T.T.; Leyk, S.; Wessman, C.A. Detection of mountain pine beetle-killed ponderosa pine in a heterogeneous landscape using high-resolution aerial imagery. Int. J. Remote Sens. 2015, 36, 5353–5372. [Google Scholar] [CrossRef]
- Niemann, K.O.; Quinn, G.; Stephen, R.; Visintini, F.; Parton, D. Hyperspectral remote sensing of mountain pine beetle with an emphasis on previsual assessment. Can. J. Remote Sens. 2015, 41, 191–202. [Google Scholar] [CrossRef]
- White, J.C.; Wulder, M.A.; Brooks, D.; Reich, R.; Wheate, R.D. Detection of red attack stage mountain pine beetle infestation with high spatial resolution satellite imagery. Remote Sens. Environ. 2005, 96, 340–351. [Google Scholar] [CrossRef]
- White, J.C.; Coops, N.C.; Hilker, T.; Wulder, M.A.; Carroll, A.L. Detecting mountain pine beetle red attack damage with EO-1 hyperion moisture indices. Int. J. Remote Sens. 2007, 28, 2111–2121. [Google Scholar] [CrossRef]
- Wulder, M.A.; White, J.C.; Bentz, B.; Alvarez, M.F.; Coops, N.C. Estimating the probability of mountain pine beetle red-attack damage. Remote Sens. Environ. 2006, 101, 150–166. [Google Scholar] [CrossRef]
- Ye, H. On the bionomy of Tomicus piniperda (L.) (Col., Scolytidae) in the Kunming region of China. J. Appl. Entomol. 1991, 112, 366–369. [Google Scholar] [CrossRef]
- Lieutier, F.; Ye, H.; Yart, A. Shoot damage by Tomicus sp. (Coleoptera: Scolytidae) and effect on Pinus yunnanensis resistance to subsequent reproductive attacks in the stem. Agri. For. Entomol. 2015, 5, 227–233. [Google Scholar] [CrossRef]
- Duan, Y. Genetic Structuration and Host Tree Preference of T. piniperda Populations in Southwestern China, with Comparison to the French Population from Scots Pine. Ph.D. Thesis, University of Orleans, Orleans, France, Yunnan University, Kunming, China, 2003. [Google Scholar]
- Ji, M.; Dong, X.Q.; Liu, H.P.; Li, L.S.; Xu, H.; Yang, X.P.; Li, H.R.; Ze, S.Z. Preliminary study on remote sensing detection of Yunnan pine forest damaged by Tomicus piniperda. J. West China For. Sci. 2007, 36, 87–90. [Google Scholar] [CrossRef]
- Långström, B.; Li, L.S.; Liu, H.P.; Cao, P.; Liu, H.R.; Hellqvist, C.; Lieutier, F. Shoot feeding ecology of Tomicus piniperda, and T. minor, (Col. scolytidae) in Southern China. J. Appl. Entomol. 2002, 126, 333–342. [Google Scholar] [CrossRef]
- Li, L.S.; Wang, H.L.; Chai, X.S.; Wang, Y.X.; Shu, N.B.; Yang, D.S. Study on the biological characteristics of Tomicus piniperda and its damage. Yunnan For. Technol. 1993, 6, 14–20. [Google Scholar] [CrossRef]
- Ye, H.; Li, L.S. The distribution of Tomicus piniperda (L.) population in the crown of Yunnan pine during the shoot feeding period. Acta Entomol. Sin. 1994, 37, 311–316. [Google Scholar] [CrossRef]
- Ye, H. Studies on the biology of Tomicus piniperda (Col., Scolytidae) in the shoot-feeding period. Acta Entomol. Sin. 1996, 39, 58–62. [Google Scholar] [CrossRef]
- Ye, H. Mass attack by Tomicus piniperda L. (Col., Scolytidae) on Pinus yunnanensis tree in the Kunming region, Southwestern China. In Proceedings: Integrating Cultural Tactics into the Management of Bark Beetles and Reforestation Pests; Gregoire, J.C., Liebhold, F.M., Stephen, F.M., Day, K.R., Salom, S.M., Eds.; General Technical Report NE-236; USDA Forest Service: Radnor, PA, USA, 1997; pp. 225–227. [Google Scholar]
- Hui, Y.C.; Lieutier, F. Shoot aggregation by Tomicus piniperda L. (Coleoptera: Scolytidae). Southwestern China. Ann. Sci. For. 1997, 54, 635–641. [Google Scholar] [CrossRef]
- Meigs, G.W.; Kennedy, R.E.; Cohen, W.B. A landsat time series approach to characterize bark beetle and defoliator impacts on tree mortality and surface fuels in conifer forests. Remote Sens. Environ. 2011, 115, 3707–3718. [Google Scholar] [CrossRef]
- Hais, M.; Jonášová, M.; Langhammer, J.; Kučera, T. Comparison of two types of forest disturbance using multitemporal landsat TM/ETM+ imagery and field vegetation data. Remote Sens. Environ. 2009, 113, 835–845. [Google Scholar] [CrossRef]
- Meddens, A.J.H.; Hicke, J.A.; Vierling, L.A.; Hudak, A.T. Evaluating methods to detect bark beetle-caused tree mortality using single-date and multi-date landsat imagery. Remote Sens. Environ. 2013, 132, 49–58. [Google Scholar] [CrossRef]
- China Meteorological Data Service Center. Available online: http://data.cma.cn/ (accessed on 2006).
- USGS Global Visualization Viewer. Available online: http://glovis.usgs.gov (accessed on 2001).
- Cohen, W.B.; Fiorella, M.; Gray, J.; Helmer, E.; Anderson, K. An efficient and accurate method for mapping forest clearcuts in the Pacific Northwest using landsat imagery. Photogram. Eng. Remote Sens. 1998, 64, 293–300. [Google Scholar]
- Coops, N.C.; Johnson, M.; Wulder, M.A.; White, J.C. Assessment of QuickBird high spatial resolution imagery to detect red attack damage due to mountain pine beetle infestation. Remote Sens. Environ. 2006, 103, 67–80. [Google Scholar] [CrossRef]
- Jin, S.; Sader, S.A. Comparison of time series tasseled cap wetness and the normalized difference moisture index in detecting forest disturbances. Remote Sens. Environ. 2005, 94, 364–372. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Wilson, E.H.; Sader, S.A. Detection of forest harvest type using multiple dates of landsat TM imagery. Remote Sens. Environ. 2002, 80, 385–396. [Google Scholar] [CrossRef]
- Rock, B.N.; Vogelmann, J.E.; Williams, D.L. Field and airborne spectral characterization of suspected damage in red spruce (Picea rubens) from vermont. In Proceedings of the 11th International Symposium on Machine Processing of Remotely Sensed Data; Purdue University: West Lafayette, IN, USA, 1985; pp. 71–81. [Google Scholar]
- Congalton, R. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- The weather network. Available online: http://lishi.tianqi.com/xiangyun/index.html.
- Derose, R.J.; Long, J.N.; Ramsey, R.D. Combining dendrochronological data and the disturbance index to assess engelmann spruce mortality caused by a spruce beetle outbreak in Southern Utah, USA. Remote Sens. Environ. 2011, 115, 2342–2349. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.Q.; Cohen, W.B. Detecting trends in forest disturbance and recovery using yearly landsat time series: 1. Landtrendr—Temporal segmentation algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [Google Scholar] [CrossRef]
- Robertson, C.; Nelson, T.A.; Jelinski, D.E.; Michael, A.W.; Barry, B. Spatial–temporal analysis of species range expansion: The case of the mountain pine beetle, Dendroctonus ponderosae. J. Biogeogr. 2010, 36, 1446–1458. [Google Scholar] [CrossRef]
- Jackson, P.L.; Straussfogel, D.; Lindgren, B.S.; Mitchell, S.; Murphy, B. Radar observation and aerial capture of mountain pine beetle, Dendroctonus ponderosae Hopk. (Coleoptera: Scolytidae) in flight above the forest canopy. Can. J. For. Res. 2008, 38, 2313–2327. [Google Scholar] [CrossRef]
- Safranyik, L.; Linton, D.; Silversides, R.; McMullen, L. Dispersal of released mountain pine beetles under the canopy of a mature lodgepole pine stand. J. Appl. Entomol. 1992, 113, 441–450. [Google Scholar] [CrossRef]
- Furniss, M.M.; Furniss, R.L. Scolytids (Coleoptera) on snowfields above timberline in Oregon and Washington. Can. Entomol. 1972, 104, 1471–1478. [Google Scholar] [CrossRef]
Class Number | Class Name | (Shoot Damage Ratios, %) |
---|---|---|
1 | Healthy forests | 0–10 |
2 | Slightly to moderately infested forests | 10–50 |
3 | Severely infested forests | >50 |
Year | Month/Day | Day of Year | Sensor | Approximate Cloud Cover | |
---|---|---|---|---|---|
1 | 2004 | December 5 | 340 | TM5 | 0% |
2 | 2005 | November 6 | 310 | TM5 | 0% |
3 | 2006 | December 11 | 345 | TM5 | 0% |
4 | 2007 | November 17 | 317 | ETM+ | 0% |
5 | 2007 a | November 20 | 324 | ETM+ | 0% |
6 | 2007 | December 6 | 340 | ETM+ | 6% |
7 | 2007 | December 15 | 349 | ETM+ | 7% |
8 | 2007 | December 22 | 356 | ETM+ | 9% |
9 | 2008 | November 23 | 328 | TM5 | 4% |
10 | 2009 | December 12 | 346 | TM5 | 0% |
11 | 2010 | December 22 | 356 | TM5 | 0% |
12 | 2011 | November 15 | 319 | ETM+ | 14% |
13 | 2011 a | November 16 | 320 | TM5 | 11% |
14 | 2012 | November 1 | 306 | ETM+ | 13% |
15 | 2012 | November 10 | 315 | ETM+ | 0% |
16 | 2012 | December 19 | 354 | ETM+ | 0% |
17 | 2012 a | December 28 | 363 | ETM+ | 0% |
18 | 2013 | December 23 | 357 | OLI | 23% |
19 | 2014 | November 24 | 328 | OLI | 0% |
20 | 2015 | December 13 | 347 | OLI | 1% |
21 | 2015 a | December 20 | 354 | OLI | 12% |
22 | 2016 | November 20 | 325 | OLI | 0% |
TM5 (Landsat 5) | ETM+ (Landsat 7) | OLI (Landsat 8) | ||
---|---|---|---|---|
Spectral Regions (μm) | Spectral Regions (μm) | |||
Band 1 (Coastal) | 0.43–0.45 | |||
Band 1 (Blue) | 0.45–0.52 | 0.45–0.515 | Band 2 (Blue) | 0.45–0.51 |
Band 2 (Green) | 0.52–0.60 | 0.525–0.605 | Band 3 (Green) | 0.53–0.59 |
Band 3 (Red) | 0.63–0.69 | 0.63–0.69 | Band 4 (Red) | 0.64–0.67 |
Band 4 (NIR) | 0.76–0.90 | 0.75–0.90 | Band 5 (NIR) | 0.85–0.88 |
Band 5 (SWIR 1) | 1.55–1.75 | 1.55–1.75 | Band 6 (SWIR 1) | 1.57–1.65 |
Band 6 (thermal) | 10.40–12.50 | 10.40–12.50 | Band 7 (SWIR 2) | 2.11–2.29 |
Band 7 (SWIR 2) | 2.08–2.35 | 2.09–2.35 | Band 8 (Pan) | 0.50–1.38 |
Band 8 (Pan) | 0.52–0.90 | Band 9 (Cirrus) | 1.36–1.39 | |
Band 10 (TIRS 1) | 10.60–11.19 | |||
Band 11(TIRS 2) | 11.50–12.51 |
Index | Abbrev. | Formula | Notes | References |
---|---|---|---|---|
Red-green index | RGI | RED/GREEN | Useful for identifying red-stage conifer | Coops et al. [49] |
Normalized difference vegetation index | NDVI | (NIR − RED)/(NIR + RED) | Sensitive to the differences between live and dead/red-attack vegetation | Tucker [51] |
Normalized difference moisture index | NDMI | (NIR − MIR)/(NIR + MIR) | Sensitive to leaf water content | Wilson and Sader [52] |
Moisture Stress Index | MSI | MIR/NIR | Sensitive to relative leaf/canopy water content | Rock et al. [53] |
Spectral Anomaly | Reference Data with 70% Class Proportion (%) |
---|---|
MSI | 86.38 |
NDMI | 84.13 |
RGI | 71.58 |
NDVI | 78.55 |
Reference Data (>70% Class Proportions) | |||||
---|---|---|---|---|---|
Healthy Forest | Slightly to Moderately Infested Forest | Severely Infested Forest | Total | User acc. (%) | |
Healthy forest | 174 (96.7%) | 10 (5.6%) | 0 (0%) | 182 | 94.6% |
Slightly to moderately infested forest | 6 (3.3%) | 137 (76.1%) | 24 (13.3%) | 180 | 82.0% |
Severely infested forest | 0 (0%) | 33 (18.3%) | 156 (86.7%) | 178 | 82.5% |
Total | 180 | 180 | 180 | 540 | |
Pro acc. (%) | 96.7% | 76.1% | 86.7% | Overall acc. | 86.38% |
Kappa | 0.80 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, L.; Huang, J.; Zong, S.; Huang, H.; Luo, Y. Detecting Shoot Beetle Damage on Yunnan Pine Using Landsat Time-Series Data. Forests 2018, 9, 39. https://doi.org/10.3390/f9010039
Yu L, Huang J, Zong S, Huang H, Luo Y. Detecting Shoot Beetle Damage on Yunnan Pine Using Landsat Time-Series Data. Forests. 2018; 9(1):39. https://doi.org/10.3390/f9010039
Chicago/Turabian StyleYu, Linfeng, Jixia Huang, Shixiang Zong, Huaguo Huang, and Youqing Luo. 2018. "Detecting Shoot Beetle Damage on Yunnan Pine Using Landsat Time-Series Data" Forests 9, no. 1: 39. https://doi.org/10.3390/f9010039
APA StyleYu, L., Huang, J., Zong, S., Huang, H., & Luo, Y. (2018). Detecting Shoot Beetle Damage on Yunnan Pine Using Landsat Time-Series Data. Forests, 9(1), 39. https://doi.org/10.3390/f9010039