Optimizing the Location of Biomass Energy Facilities by Integrating Multi-Criteria Analysis (MCA) and Geographical Information Systems (GIS)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Estimations of Biomass Availability in Tasmania
2.2. Land Availability Analysis Using a Restriction Model
2.3. Land Suitability Analysis with a Weighted Linear Model
2.4. Biomass Energy Feedstock Supply Chain Costs
3. Results and Discussion
3.1. Estimations of Biomass Availability in Tasmania
3.2. Location of Bioenergy Plants
3.3. Biomass Supply Chain Costs in Tasmania
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Solomon, S.; Qin, D.; Manning, M.; Averyt, K.; Marquis, M. Climate Change 2007-the Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC; Cambridge University Press: Cambridge, UK, 2007; Volume 4. [Google Scholar]
- Ferranti, F. Energy Wood: A Challenge for European Forests Potentials, Environmental Implications, Policy Integration and Related Conflicts; EFI Technical Report 95; European Forest Institute: Joensuu, Finland, 2014; p. 157. [Google Scholar]
- Rothe, A. Forest Biomass for Energy: Current and Potential Use in Tasmania and a Comparison with European Experience; Zentrum Wald Forst Holz Weihenstephan, University of Applied Sciences, Weihenstephan-Triesdorf: Hobart, Australia, July 2013. [Google Scholar]
- Han, S.-K.; Han, H.-S.; Bisson, J.A. Effects of grate size on grinding productivity, fuel consumption, and particle size distribution. For. Prod. J. 2015, 65, 209–216. [Google Scholar] [CrossRef]
- McKeever, D.B. Inventories of woody residues and solid wood waste in the United States, 2002. In Proceedings of the Ninth International Conference, Inorganic-Bonded Composite Materials, Vancouver, BC, Canada, 10–13 October 2004; p. 2004. [Google Scholar]
- URS-report. Stage 1-Residue Options Identification and Analysis; URS Australia Pty Ltd.: Southbank, VIC, Australia, 2015. [Google Scholar]
- Rothe, A.; Moroni, M.; Neyland, M.; Wilnhammer, M. Current and potential use of forest biomass for energy in Tasmania. Biomass Bioenergy 2015, 80, 162–172. [Google Scholar] [CrossRef]
- Han, H.-S.; Jacobson, A.; Bilek, E.T.; Sessions, J. Waste to wisdom: Utilizing forest residues for the production of bioenergy and biobased products. Am. Soc. Agric. Biol. Eng. 2018, 5–10. [Google Scholar]
- Rawlings, C.; Rummer, B.; Seeley, C.; Thomas, C.; Morrison, D.; Han, H.; Cheff, L.; Atkins, D.; Graham, D.; Windell, K. A Study of How to Decrease the Costs of Collecting, Processing and Transporting Slash; Studies for Three Sites in Montana; Montana Development Council: Montana, MT, USA, 2004. [Google Scholar]
- Harrill, H.; Han, H.-S. Application of hook-lift trucks in centralized logging slash grinding operations. Biofuels 2010, 1, 399–408. [Google Scholar] [CrossRef]
- PI, D.W.P.; Harrod, R.J.; Dodson, E.K.; Lehmkuhl, J.F.; Ohlson, P. Fuel Succession, Post-Fire Logging, and Future Fire Behavior: Addressing the “Reburn Problem”; 06-3-4-16; Final Report to the Joint Fire Sciences Program; Wenatchee Forestry Sciences Laboratory: Wenatchee, WA, USA, May 2010. [Google Scholar]
- Delivand, M.K.; Cammerino, A.R.B.; Garofalo, P.; Monteleone, M. Optimal locations of bioenergy facilities, biomass spatial availability, logistics costs and ghg (greenhouse gas) emissions: A case study on electricity productions in south Italy. J. Clean. Prod. 2015, 99, 129–139. [Google Scholar] [CrossRef]
- Noon, C.E.; Daly, M.J. Gis-based biomass resource assessment with bravo. Biomass Bioenergy 1996, 10, 101–109. [Google Scholar] [CrossRef]
- Burak, A.; Harry, C.; David, W.; Kevin, G.; Sujith, S.; Mario, E.; Norman, S. Woody biomass and mill waste utilization opportunities in alabama: Transportation cost minimization, optimum facility location, economic feasibility, and impact. Environ. Prog. Sustain. Energy 2011, 30, 720–732. [Google Scholar]
- Bowersox, D.J.; Closs, D.J.; Cooper, M.B. Supply Chain Logistics Management; McGraw-Hill: New York, NY, USA, 2002; Volume 2. [Google Scholar]
- Gold, S.; Seuring, S. Supply chain and logistics issues of bio-energy production. J. Clean. Prod. 2011, 19, 32–42. [Google Scholar] [CrossRef]
- Beccali, M.; Columba, P.; D’Alberti, V.; Franzitta, V. Assessment of bioenergy potential in sicily: A gis-based support methodology. Biomass Bioenergy 2009, 33, 79–87. [Google Scholar] [CrossRef]
- Montgomery, T.D.; Han, H.-S.; Kizha, A.R. Modeling work plan logistics for centralized biomass recovery operations in mountainous terrain. Biomass Bioenergy 2016, 85, 262–270. [Google Scholar] [CrossRef]
- Sultana, A.; Kumar, A. Optimal siting and size of bioenergy facilities using geographic information system. Appl. Energy 2012, 94, 192–201. [Google Scholar] [CrossRef]
- Yue, C.-D.; Yang, G.G.-L. Decision support system for exploiting local renewable energy sources: A case study of the chigu area of southwestern Taiwan. Energy Policy 2007, 35, 383–394. [Google Scholar] [CrossRef]
- Buchholz, T.; Rametsteiner, E.; Volk, T.A.; Luzadis, V.A. Multi criteria analysis for bioenergy systems assessments. Energy Policy 2009, 37, 484–495. [Google Scholar] [CrossRef]
- Van Dael, M.; Van Passel, S.; Pelkmans, L.; Guisson, R.; Swinnen, G.; Schreurs, E. Determining potential locations for biomass valorization using a macro screening approach. Biomass Bioenergy 2012, 45, 175–186. [Google Scholar] [CrossRef]
- Perpiña, C.; Martínez-Llario, J.C.; Pérez-Navarro, Á. Multicriteria assessment in gis environments for siting biomass plants. Land Use Policy 2013, 31, 326–335. [Google Scholar] [CrossRef]
- Mourmouris, J.; Potolias, C. A multi-criteria methodology for energy planning and developing renewable energy sources at a regional level: A case study Thassos, Greece. Energy Policy 2013, 52, 522–530. [Google Scholar] [CrossRef]
- Boggia, A.; Cortina, C. Measuring sustainable development using a multi-criteria model: A. case study. J. Environ. Manag. 2010, 91, 2301–2306. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-J.; Jing, Y.-Y.; Zhang, C.-F.; Zhao, J.-H. Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renew. Sustain. Energy Rev. 2009, 13, 2263–2278. [Google Scholar] [CrossRef]
- Massimo, M. Optimal Plant Size and Feedstock Supply Radius: Minimize the Production or Maximize the Profits? In Proceedings of the 20th European Biomass Conference and Exhibition, Milan, Italy, 18–22 June 2012; pp. 1–7. [Google Scholar]
- Saaty, T.L. Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 2008, 1, 83–98. [Google Scholar] [CrossRef]
- Whiteley, S. Calculating the sustainable yield of tasmania’s state forests. TASFORESTS-HOBART- 1999, 11, 23–34. [Google Scholar]
- Forestry Tasmania. Sustainable High Quality Eucalypt Sawlog Supply from Tasmanian State Forest; Forestry Tasmania: Tasmanian, Australia, 2007. [Google Scholar]
- Burgman, M.; Robinson, A. Review of Tasmanian Forest Estate Wood Supply Scenarios; Final Report to the Independent Verification Group, Intergovernmental Agreement; University of Melbourne: Melbourne, Australia, March 2012. [Google Scholar]
- Wilson, J. Private Forest Resourcing Model 2012: Where Are the Best Locations for a Hypothetical Tasmanian Wood Processing Plant; Unpublished Report of Esk Mapping & GIS to Private Forests; Private Forests Tasmania: Tasmania, Australia, 2012. [Google Scholar]
- PFT. Residue Solution Project (Private Forests Tasmania); Private Forests Tasmania: Tasmania, Australia, 2014. [Google Scholar]
- Wilson, J. Dorset Woody Biomass Pre-Feasibility Study 2013: A Regional Inventory of Potential Woody Biomass Resources Surrounding Scottsdale; Private Forests Tasmania: Tasmania, Australia, October 2013. [Google Scholar]
- Viana, H.; Cohen, W.B.; Lopes, D.; Aranha, J. Assessment of forest biomass for use as energy. Gis-based analysis of geographical availability and locations of wood-fired power plants in portugal. Appl. Energy 2010, 87, 2551–2560. [Google Scholar] [CrossRef]
- Shi, X.; Elmore, A.; Li, X.; Gorence, N.J.; Jin, H.; Zhang, X.; Wang, F. Using spatial information technologies to select sites for biomass power plants: A case study in guangdong province, china. Biomass Bioenergy 2008, 32, 35–43. [Google Scholar] [CrossRef]
- Herrera-Seara, M.; Aznar Dols, F.; Zamorano, M.; Alameda-Hernández, E. Optimal location of a biomass power plant in the province of granada analyzed by multi-criteria evaluation using appropriate geographic information system according to the analytic hierarchy process. In Proceedings of the International Conference on Renewable Energies and Power Quality (ICREPQ’10), Granada, Spain, 23–25 March 2010; University of Granada: Granada, Spain, 2010. [Google Scholar]
- Zhang, F.; Johnson, D.M.; Sutherland, J.W. A gis-based method for identifying the optimal location for a facility to convert forest biomass to biofuel. Biomass Bioenergy 2011, 35, 3951–3961. [Google Scholar] [CrossRef]
- Perpina, C.; Alfonso, D.; Pérez-Navarro, A.; Penalvo, E.; Vargas, C.; Cárdenas, R. Methodology based on geographic information systems for biomass logistics and transport optimisation. Renew. Energy 2009, 34, 555–565. [Google Scholar] [CrossRef]
- Rodríguez, R.; Gauthier-Maradei, P.; Escalante, H. Fuzzy spatial decision tool to rank suitable sites for allocation of bioenergy plants based on crop residue. Biomass Bioenergy 2017, 100, 17–30. [Google Scholar] [CrossRef]
- Comber, A.; Dickie, J.; Jarvis, C.; Phillips, M.; Tansey, K. Locating bioenergy facilities using a modified gis-based location–allocation-algorithm: Considering the spatial distribution of resource supply. Appl. Energy 2015, 154, 309–316. [Google Scholar] [CrossRef]
- Zubaryeva, A.; Zaccarelli, N.; del Giudice, C.; Zurlini, G. Spatially explicit assessment of local biomass availability for distributed biogas production via anaerobic co-digestion–mediterranean case study. Renew. Energy 2012, 39, 261–270. [Google Scholar] [CrossRef]
- ESRI. Advanced GIS Spatial Analysis Using Raster and Vector Data; Environmental System Research Institute: New York, NY, USA, 2001. [Google Scholar]
- ESRI. Algorithm Used by Network Analyst; ESRI: Redlands, CA, USA, 2011. [Google Scholar]
- Daskin, M.S. Network and Discrete Location: Models, Algorithms, and Applications; John Wiley & Sons: Queens Land, Australia, February 2011. [Google Scholar]
- Ghaffariyan, M.R.; Acuna, M.; Brown, M. Analysing the effect of five operational factors on forest residue supply chain costs: A case study in western australia. Biomass Bioenergy 2013, 59, 486–493. [Google Scholar] [CrossRef]
- Ghaffariyan, M.R.; Sessions, J. Comparing the Efficiency of Four Harvesting Methods in a Blue Gum Plantation in South-West Western Australia; CRC for Forestry: Tasmania, Australia, 2012. [Google Scholar]
- Monteleone, M.; Cammerino, A.; Karaoglanoglou, L.; Koullas, D.; Koukios, E. Agro-energy chains and potential from dedicated crops, agricultural and agro-industrial residues: The comparative study of the two south european regions in a 2020 perspective. In Proceedings of the 20th European Biomass Conference and Exhibition, Millan, Italy, 18–22 June 2012; pp. 371–376. [Google Scholar]
- Röser, D.; Mola-Yudego, B.; Sikanen, L.; Prinz, R.; Gritten, D.; Emer, B.; Väätäinen, K.; Erkkilä, A. Natural drying treatments during seasonal storage of wood for bioenergy in different European locations. Biomass Bioenergy 2011, 35, 4238–4247. [Google Scholar] [CrossRef]
- Ghaffariyan, M.R.; Acuna, M.; Brown, M. Natural drying and optimising a forest residue supply chain to reduce the total operating costs: A case study in western Australia. Ind. Bull.-Aust. For. Oper. Res. Alliance (AFORA) 2014, 8, 1–5. [Google Scholar]
- Murphy, G.; Kent, T.; Kofman, P.D. Modeling air drying of sitka spruce (picea sitchensis) biomass in off-forest storage yards in Ireland. For. Prod. J. 2012, 62, 443–449. [Google Scholar] [CrossRef]
- Acuna, M. Timber and biomass transport optimization: A review of planning issues, solution techniques and decision support tools. Croat. J. For. Eng. J. Theor. Appl. For. Eng. 2017, 38, 279–290. [Google Scholar]
- Sosa, A.; Acuna, M.; McDonnell, K.; Devlin, G. Controlling moisture content and truck configurations to model and optimise biomass supply chain logistics in Ireland. Appl. Energy 2015, 137, 338–351. [Google Scholar] [CrossRef] [Green Version]
- Sosa, A.; Acuna, M.; McDonnell, K.; Devlin, G. Managing the moisture content of wood biomass for the optimisation of ireland’s transport supply strategy to bioenergy markets and competing industries. Energy 2015, 86, 354–368. [Google Scholar] [CrossRef]
- Acuna, M.; Anttila, P.; Sikanen, L.; Prinz, R.; Asikainen, A. Predicting and controlling moisture content to optimise forest biomass logistics. Croat. J. For. Eng. J. Theor. Appl. For. Eng. 2012, 33, 225–238. [Google Scholar]
- Möglichkeiten und Probleme Beim Holztransport. Available online: https://zidapps.boku.ac.at/abstracts/oe_list.php?paID=3&paSID=5784&paSF=&paCF=0&paLIST=02006: na (accessed on 10 September 2018).
- Cherubini, F.; Bird, N.D.; Cowie, A.; Jungmeier, G.; Schlamadinger, B.; Woess-Gallasch, S. Energy-and greenhouse gas-based LCA of biofuel and bioenergy systems: Key issues, ranges and recommendations. Resour. Conserv. Recyc. 2009, 53, 434–447. [Google Scholar] [CrossRef]
- Ghaffariyan, M.R. Review of European biomass harvesting technologies. Silva Balc. 2010, 11, 5–20. [Google Scholar]
- Acuna, M.; Mirowski, L.; Ghaffariyan, M.R.; Brown, M. Optimising transport efficiency and costs in Australian wood chipping operations. Biomass Bioenergy 2012, 46, 291–300. [Google Scholar] [CrossRef]
Biomass Type | Residue Source | Definition |
---|---|---|
Harvesting residues | Pulpwood | Logs of any size that are not suitable for solid wood processing to a small-end-diameter of 8 cm |
Other stem wood material | Non-merchantable stem wood that is usually left in the forest. It also includes stumps but excludes limbs, foliage and roots | |
Processing residues | Sawlogs or peeler log | Offcuts, woodchips and sawdust from timber processing |
Constraint | Buffer (Meters) |
---|---|
Game reserve | -* |
Historic site | -* |
National park | -* |
Nature reserve | -* |
State reserve | -* |
Wellington park | -* |
Public authority land within world heritage area (WHA) | -* |
Conservation area | -* |
Nature recreation area | -* |
Regional reserve | -* |
Informal reserve on sustainable timber Tasmania managed land | -* |
Future potential production forest | -* |
Informal reserve on other public land | -* |
Private land within WHA | -* |
Private sanctuary | -* |
Private sanctuary and conservation covenant | -* |
Private nature reserve and conservation covenant | -* |
Conservation covenant perpetual | -* |
Indigenous protected area | -* |
Conservation covenant | -* |
Management agreement | -* |
Management agreement and stewardship agreement | -* |
Stewardship agreement | -* |
Other private reserve | -* |
Tasmania point of interest | -* |
Tasmania threatened species | -* |
Lake bordering area | Around lake bordering area 300 m buffer zones |
River, streams and waterways | Around main river, river, streams area 150 m buffer zones |
Main Criteria | Weights (Criteria) | Second Level: Sub-Criteria | Weights (Sub-Criteria) | Total Weight | Consistency Ratio |
---|---|---|---|---|---|
Economic | 0.540 | Feedstock availability | 0.747 | 0.403 | 0.04 |
Industrial area | 0.106 | 0.057 | |||
Transport logistics | 0.147 | 0.079 | |||
Environmental | 0.163 | Elevation | 0.240 | 0.039 | 0.056 |
Slope | 0.400 | 0.065 | |||
Water bodies | 0.360 | 0.059 | |||
Social | 0.297 | Local employment rate | 0.400 | 0.119 | 0.061 |
Population | 0.600 | 0.178 | |||
Sum of the weights | 1.0 | 3.0 | 1.0 |
Facility Location a | Range (km) b | Demand (No.) c | Coverage Rate (%) d | Total Area | Biomass Availability (Green Metric Tons) e | Ave Distance (km) f | $/tonne/km g | Total Cost ($) h |
---|---|---|---|---|---|---|---|---|
S1 | 200 | 12,859 | 83.93 | 463,540 | 31,757,500 | 189.96 | 0.11 | 663,586,379 |
S2_A_91 | 100 | 5380 | 35.11 | 188,674 | 13,375,500 | 97.22 | 0.11 | 143,040,272 |
S2_B_100 | 100 | 5973 | 38.98 | 222,568 | 14,694,000 | 90.14 | 0.11 | 145,696,888 |
S3_A_90 | 80 | 1772 | 11.57 | 66,958 | 5,148,000 | 61.82 | 0.11 | 35,007,430 |
S3_B_92 | 80 | 3680 | 24.02 | 120,895 | 8,402,000 | 80.84 | 0.11 | 74,713,945 |
S3_C_100 | 80 | 4644 | 30.31 | 183,703 | 11,636,000 | 79.10 | 0.11 | 101,244,836 |
S4_A_15 | 80 | 1664 | 10.86 | 28,664 | 2,743,500 | 64.90 | 0.11 | 19,585,847 |
S4_B_90 | 80 | 1772 | 11.57 | 66,958 | 5,148,000 | 61.82 | 0.11 | 35,007,430 |
S4_C_92 | 80 | 3454 | 22.54 | 115,950 | 7,994,000 | 78.50 | 0.11 | 69,028,190 |
S4_D_100 | 80 | 4644 | 30.31 | 183,703 | 11,636,000 | 79.10 | 0.11 | 101,244,836 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woo, H.; Acuna, M.; Moroni, M.; Taskhiri, M.S.; Turner, P. Optimizing the Location of Biomass Energy Facilities by Integrating Multi-Criteria Analysis (MCA) and Geographical Information Systems (GIS). Forests 2018, 9, 585. https://doi.org/10.3390/f9100585
Woo H, Acuna M, Moroni M, Taskhiri MS, Turner P. Optimizing the Location of Biomass Energy Facilities by Integrating Multi-Criteria Analysis (MCA) and Geographical Information Systems (GIS). Forests. 2018; 9(10):585. https://doi.org/10.3390/f9100585
Chicago/Turabian StyleWoo, Heesung, Mauricio Acuna, Martin Moroni, Mohammad Sadegh Taskhiri, and Paul Turner. 2018. "Optimizing the Location of Biomass Energy Facilities by Integrating Multi-Criteria Analysis (MCA) and Geographical Information Systems (GIS)" Forests 9, no. 10: 585. https://doi.org/10.3390/f9100585
APA StyleWoo, H., Acuna, M., Moroni, M., Taskhiri, M. S., & Turner, P. (2018). Optimizing the Location of Biomass Energy Facilities by Integrating Multi-Criteria Analysis (MCA) and Geographical Information Systems (GIS). Forests, 9(10), 585. https://doi.org/10.3390/f9100585