Screening Potential Bioenergy Production of Tree Species in Degraded and Marginal Land in the Tropics
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- IEA World Energy Outlook 2015. Available online: http://www.iea.org/newsroom/news/2015/november/world-energy-outlook-2015.html (accessed on 30 September 2016).
- Faaij, A.P.C. Bio-energy in Europe: Changing technology choices. Energy Policy 2006, 34, 322–342. [Google Scholar] [CrossRef]
- Bioenergy–Chances and Limits; Anton, C.; Steinicke, H. (Eds.) German National Academy of Sciences Leopoldina: Halle, Germany, 2012; Available online: http://www.leopoldina.org/en/publications/detailview/?publication%5Bpublication%5D=434&cHash=9daf8d722e71e30bf2901cf01ee800d1 (accessed on 30 September 2016).
- Nijsen, M.; Smeets, E.; Stehfest, E.; van Vuuren, D.P. An evaluation of the global potential of bioenergy production on degraded lands. GCB Bioenergy 2012, 4, 130–147. [Google Scholar] [CrossRef]
- REPORT–REthinking Energy 2017: Accelerating the Global Energy Transformation. 2017. Available online: http://www.irena.org/documentdownloads/publications/irena_rethinking_energy_2017.pdf (accessed on 30 September 2016).
- Balat, M.; Balat, H. Recent trends in global production and utilization of bio-ethanol fuel. Appl. Energy 2009, 86, 2273–2282. [Google Scholar] [CrossRef]
- Proskurina, S.; Junginger, M.; Heinimö, J.; Tekinel, B.; Vakkilainen, E. Global biomass trade for energy—Part 2: Production and trade streams of wood pellets, liquid biofuels, charcoal, industrial roundwood and emerging energy biomass: Biomass trade for energy. Biofuel Bioprod. Biorefining 2018. [Google Scholar] [CrossRef]
- Dislich, C.; Keyel, A.C.; Salecker, J.; Kisel, Y.; Meyer, K.M.; Auliya, M.; Barnes, A.D.; Corre, M.D.; Darras, K.; Faust, H.; et al. A review of the ecosystem functions in oil palm plantations, using forests as a reference system. Biol. Rev. 2017, 92, 1539–1569. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, M.; Zulkifli, R.; Sanusi, R.; Tohiran, K.A.; Terhem, R.; Moslim, R.; Norhisham, A.R.; Ashton-Butt, A.; Azhar, B. Alley-cropping system can boost arthropod biodiversity and ecosystem functions in oil palm plantations. Agric. Ecosyst. Environ. 2018, 260, 19–26. [Google Scholar] [CrossRef]
- Duke, J.A. Handbook of Energy Crops. 1983. Available online: http://www.hort.purdue.edu/newcrop/duke_energy/refa-f.html (accessed on 30 September 2016).
- Abel, S.; Couwenberg, J.; Dahms, T.; Joosten, H. The Database of Potential Paludiculture Plants (DPPP) and results for Western Pomerania. Plant Divers. Evol. Vol. 2013, 130, 219–228. [Google Scholar] [CrossRef]
- Biswas, B.; Scott, P.T.; Gresshoff, P.M. Tree legumes as feedstock for sustainable biofuel production: Opportunities and challenges. J. Plant Physiol. 2011, 168, 1877–1884. [Google Scholar] [CrossRef] [PubMed]
- Atabani, A.E.; Silitonga, A.S.; Ong, H.C.; Mahlia, T.M.I.; Masjuki, H.H.; Badruddin, I.A.; Fayaz, H. Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production. Renew. Sustain. Energy Rev. 2013, 18, 211–245. [Google Scholar] [CrossRef]
- Darabant, A.; Haruthaithanasan, M.; Atkla, W.; Phudphong, T.; Thanavat, E.; Haruthaithanasan, K. Bamboo biomass yield and feedstock characteristics of energy plantations in Thailand. Energy Procedia 2014, 59, 134–141. [Google Scholar] [CrossRef]
- Pfister, J. Sustainable Use of Wetlands in Northern Kwa-Zulu Natal–Linking Soil Properties, Crops Physiology and Land Use; Humboldt Universität zu Berlin: Berlin, Germany, 2016. [Google Scholar]
- Wi, S.G.; Lee, D.-S.; Nguyen, Q.A.; Bae, H.-J. Evaluation of biomass quality in short-rotation bamboo (Phyllostachys pubescens) for bioenergy products. Biotechnol. Biofuels 2017, 10, 127. [Google Scholar] [CrossRef] [PubMed]
- Uman, L.S. Systematic reviews and meta-analyses. J. Can. Acad. Child Adolesc. Psychiatry 2011, 20, 57–59. [Google Scholar] [PubMed]
- Saito, H.; Shibuya, M.; Tuah, S.J.; Turjaman, M.; Takahashi, K.; Jamal, Y.; Segah, H.; Putir, P.E.; Limin, S.H. Initial screening of fast-growing tree species being tolerant of dry tropical peatlands in Central Kalimantan, Indonesia. Indones. J. For. Res. 2005, 5, 107–115. [Google Scholar] [CrossRef]
- Mohibbe Azam, M.; Waris, A.; Nahar, N.M. Prospects and potential of fatty acid methyl esters of some non-traditional seed oils for use as biodiesel in India. Biomass Bioenergy 2005, 29, 293–302. [Google Scholar] [CrossRef]
- Mekala, N.K.; Potumarthi, R.; Baadhe, R.R.; Gupta, V.K. Current Bioenergy Researches: Strengths and Future Challenges. In Bioenergy Research: Advances and Applications; Elsevier: Amsterdam, The Netherlands, 2014; pp. 1–21. [Google Scholar]
- Edmeades, D.C.; Wheeler, D.M. Measurement of pH in New Zealand soils: An examination of the effect of electrolyte, electrolyte strength, and soil solution ratio. N. Z. J. Agric. Res. 1990, 33, 105–109. [Google Scholar] [CrossRef]
- Gavriloaiei, T. The influence of electrolyte solutions on soil pH measurements. Rev. Chim. 2012, 63, 396–400. [Google Scholar]
- Penman, J.; Gytarsky, M.; Hiraishi, T.; Krug, T.; Dina, K.; Pipatti, R.; Buendia, L.; Miwa, K.; Todd, N.; Tanabe, K. IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry; IPCC National Greenhouse Gas Inventories Programme Technical Support Unit: Kamiyamaguchi Hayama, Kanagawa, Japan, 2003. [Google Scholar]
- Meher, L.C.; Vidya Sagar, D.; Naik, S.N. Technical aspects of biodiesel production by transesterification—A review. Renew. Sustain. Energy Rev. 2006, 10, 248–268. [Google Scholar] [CrossRef]
- Hofstrand, D. Liquid Fuel Measurements and Conversions; Lowa State University of Science and Techonology: Ames, IA, USA, 2008. [Google Scholar]
- Demİrbas, A. Bioethanol from cellulosic materials: A renewable motor fuel from biomass. Energy Sources 2005, 27, 327–337. [Google Scholar] [CrossRef]
- Crosson, P. The on-farm economic costs of soil erosion. In Advances in Soil Science: Methods for Assessment of Soil Degradation; Lal, R., Blum, W.H., Valentine, C., Stewart, B.A., Eds.; CRC Press: Boca Raton, FL, USA, 1997; pp. 495–511. [Google Scholar]
- Borchard, N.; Artati, Y.; Lee, S.-M.; Baral, H. Sustainable forest management for land rehabilitation and provision of biomass-energy. CIFOR Br. 2017, 41, 4. [Google Scholar] [CrossRef]
- Ramachandran Nair, P.K.; Mohan Kumar, B.; Nair, V.D. Agroforestry as a strategy for carbon sequestration. J. Plant Nutr. Soil Sci. 2009, 172, 10–23. [Google Scholar] [CrossRef]
- Vieira, D.L.M.; Holl, K.D.; Peneireiro, F.M. Agro-Successional Restoration as a Strategy to Facilitate Tropical Forest Recovery. Restor. Ecol. 2009, 17, 451–459. [Google Scholar] [CrossRef]
- Gruenewald, H.; Brandt, B.K.V.; Schneider, B.U.; Bens, O.; Kendzia, G.; Hüttl, R.F. Agroforestry systems for the production of woody biomass for energy transformation purposes. Ecol. Eng. 2007, 29, 319–328. [Google Scholar] [CrossRef]
- Wichtmann, W.; Schröder, C.; Joosten, H. Paludiculture as an inclusive solution. In Paludiculture-Cultivation of Wet Peatlands: Climate Protection-Biodiversity-Regional Economic Benefits; Wichtmann, W., Schröder, C., Joosten, H., Eds.; Schweizerbart Science Publishers: Stuttgart, Germany, 2016; pp. 3–20. [Google Scholar]
- Chazdon, R.L. Tropical forest recovery: Legacies of human impact and natural disturbances. Perspect. Plant Ecol. Evol. Syst. 2003, 6, 51–71. [Google Scholar] [CrossRef]
- Popp, A.; Lotze-Campen, H.; Leimbach, M.; Knopf, B.; Beringer, T.; Bauer, N.; Bodirsky, B. On sustainability of bioenergy production: Integrating co-emissions from agricultural intensification. Biomass Bioenerg 2011, 35, 4770–4780. [Google Scholar] [CrossRef]
- Chimera, C.; Buddenhagen, C.; Clifford, P.M. Biofuels: The risks and dangers of introducing invasive species. Biofuels 2010, 1, 785–796. [Google Scholar] [CrossRef]
- Ziller, S.; Howard, G. Alien alert-biofuel plants may be invasive. Bioenergy Business 2008, 14–16. [Google Scholar]
- Richardson, D.M.; Blanchard, R. Learning from our mistakes: Minimizing problems with invasive biofuel plants. Curr. Opin. Environ. Sustain. 2011, 3, 36–42. [Google Scholar] [CrossRef]
- Wicke, B.; Sikkema, R.; Dornburg, V.; Junginger, M.; Faaij, A. Drivers of land use change and the role of palm oil production in Indonesia and Malaysia: Overview of past developments and future projections. Sci. Technol. Soc. 2008, 44, 53–60. [Google Scholar]
- Wahid, M.B.; Abdullah, S.N.A.; Henson, I.E. Oil Palm—Achievements and Potential. Plant Prod. Sci. 2005, 8, 288–297. [Google Scholar] [CrossRef]
- Verheye, W. Growth and production of oil palm. In Land Use, Land Cover and Soil Sciences; Verheye, W., Ed.; UNESCO-EOLSS Publishers: Oxford, UK, 2010. [Google Scholar]
- Tata, H.L.; van Noordwijk, M.; Jasnari; Widayati, A. Domestication of Dyera polyphylla (Miq.) Steenis in peatland agroforestry systems in Jambi, Indonesia. Agrofor. Syst. 2016, 90, 617–630. [Google Scholar] [CrossRef]
- Manuri, S.; Brack, C.; Noor’an, F.; Rusolono, T.; Anggraini, S.M.; Dotzauer, H.; Kumara, I. Improved allometric equations for tree aboveground biomass estimation in tropical dipterocarp forests of Kalimantan, Indonesia. For. Ecosyst. 2016, 3, 28. [Google Scholar] [CrossRef]
- Günther, B.; Gebauer, K.; Barkowski, R.; Rosenthal, M.; Bues, C.-T. Calorific value of selected wood species and wood products. Eur. J. Wood Wood Prod. 2012, 70, 755–757. [Google Scholar] [CrossRef]
- Demirbaş, A. Calculation of higher heating values of biomass fuels. Fuel 1997, 76, 431–434. [Google Scholar] [CrossRef]
Species | Soil pH | Soil Texture | Soil Moisture | Soil Fertility | Additional Adaptations |
---|---|---|---|---|---|
Species that tolerate poor soils, moist and dry environments | |||||
Agathis borneensis (Warb.) | <7 | -/- | -/- | -/- | Deep, well-drained, acidic soil |
Aleurites moluccana (L.) | 5.0–8.0 | -/- | Moist to dry | Poor | Tolerates droughts |
Arenga pinnata (Wurmb.) | -/- | Sand | Moist to dry | -/- | Tolerates dry environments |
Azadirachta indica (A. Juss.) | 6.0–7.0 | -/- | -/- | Poor | -/- |
Borassus flabellifer (L.) | 5.0–6.0 | -/- | Moist to dry | -/- | Tolerates droughts and short-term flooding |
Calliandra calothyrsus (Meisn.) | 5.0–6.5 | -/- | Moist to dry | Poor | Pioneer species, tolerates droughts |
Calophyllum inophyllum (L.) | 4.0–7.5 | -/- | Moist to dry | -/- | Xerophytic species, tolerates droughts |
Ceiba pentandra (L.) | -/- | Sandy | Moist | -/- | Deep, well-drained, light soil, Andosol |
Croton megalocarpus (Hutch.) | -/- | Sandy | Moist | -/- | Pioneer species; deep, well-drained, light soil |
Croton tiglium (L.) | 4.5–7.5 | -/- | -/- | -/- | -/- |
Gliricidia sepium (Jacq.) | 4.5–8.5 | Various | Moist | -/- | Pioneer species, deep, well-drained soil |
Neolamarckia cadamba (Roxb.) | -/- | -/- | Moist | -/- | Deep, alluvial soils |
Pongamia pinnata (L.) | -/- | Sandy | Moist to dry | -/- | Deep soils, tolerates droughts and acidity |
Reutealis trisperma (Blanco) | 5.4–7.1 | -/- | -/- | Poor | -/- |
Vernicia fordii (Hemsl.) | 6.0–6.5 | Sandy | Moist to dry | -/- | Deep, well-drained, light soils |
Zapoteca tetragona (Willd.) | -/- | -/- | -/- | -/- | -/- |
Species that tolerate permanently wet and waterlogged or temporarily flooded soils | |||||
Calamus caesius (Blume) | -/- | Peat, clayish, silty | Moist to wet | -/- | Margins of peat and swamp land, tolerates flooding |
Cerbera manghas (L.) | -/- | -/- | Moist to wet | -/- | Riparian, swamp and mangrove environment |
Combretocarpus rotundatus (Miq.) | 3.0–4.5 | Peat | Wet | -/- | Peat-swamp forest (Shorea spp.), tolerates waterlogged soils |
Dyera polyphylla (Miq.) | 3.0–4.5 | Peat | Wet | -/- | Peat-swamp forest, wet soils, peat |
Erythrina excelsa (Baker) | -/- | Various | Moist to wet | -/- | Riparian and swamp land, high water table |
Euterpe oleracea (Mart.) | -/- | Sandy | Moist | -/- | Light soils, tolerates flooding |
Melaleuca cajuputi (Powell) | -/- | Sandy | -/- | Poor | Poor, well-drained soils, brackish and acidic sulfate soils |
Metroxylon sagu (Rottb.) | >4.5 | Various | Moist to wet | -/- | Tolerates flooding |
Fleroya ledermannii (K.Krause) | -/- | -/- | -/- | -/- | Anemochory, tolerates flooding |
Nypa fruticans (Wurmb.) | 5.0 | Clayish | Moist to wet | -/- | Mangrove species |
Palaquium ridleyi (King & Gamble) | 3.0–4.5 | Peat | Wet | -/- | Peat-swamp forest |
Pentadesma butyracea (Sabine | -/- | -/- | -/- | -/- | Riparian forests, deep soils |
Phoenix reclinata (Jacq.) | -/- | Various | -/- | -/- | Medium-to-fine textured soil, tolerates flooding |
Sandoricum koetjape (Burm.f.) | ≥7 | Various | -/- | Poor | Pioneer species, riparian areas |
Sesbania bispinosa (Jacq.) | <10 | Various | Dry to wet | -/- | Alkaline soils, riparian areas, tolerates droughts |
Spondias mombin (L.) | 4.3–8.0 | Various | -/- | -/- | Various mineral soils, tolerates flooding |
Symphonia globulifera (L.f.) | -/- | -/- | Moist to wet | -/- | Lowland rainforest to swamp forest |
Species | Biomass | Bio-Oil and Biodiesel | Sugar or Starch and Bioethanol | |||||
---|---|---|---|---|---|---|---|---|
Mg ha−1 yr−1 | GJ ha−1 yr−1 | Mg ha−1 yr−1 | kL ha−1 yr−1 | GJ ha−1 yr−1 | Mg ha−1 yr−1 | kL ha−1 yr−1 | GJ ha−1 yr−1 | |
Species that tolerate poor soils, moist and dry environments | ||||||||
Agathis borneensis (Warb.) | 1.0–1.7 | 19–31 | -/- | -/- | -/- | -/- | -/- | -/- |
Aleurites moluccana (L.) | 3.6–5.7 | 67–105 | 0.5–6.0 | 0.5–6.0 | 16–194 | -/- | -/- | -/- |
Arenga pinnata (Wurmb) | -/- | -/- | -/- | -/- | -/- | 20 (Su) | 2.0–12.8 | 43–268 |
Azadirachta indica (A.Juss.) | -/- | -/- | 0.1–2.7 | 0.1–2.7 | 4–87 | -/- | -/- | -/- |
Borassus flabellifer (L.) | -/- | -/- | -/- | -/- | -/- | 20 (Su) | 1.2–12.8 | 25–268 |
Calliandra calothyrsus (Meisn.) | 6.0–24.0 | 111–444 | -/- | -/- | -/- | -/- | -/- | -/- |
Calophyllum inophyllum (L.) | -/- | -/- | 2.0–6.0 | 2.0–5.9 | 65–194 | -/- | -/- | -/- |
Ceiba pentandra (L.) | -/- | -/- | 1.3–4.8 | 1.3–4.8 | 42–155 | -/- | -/- | -/- |
Croton megalocarpus (Hutch) | -/- | -/- | 1.6–4.5 | 1.6–4.5 | 52–145 | -/- | -/- | -/- |
Croton tiglium (L.) | -/- | -/- | 0.2–0.9 | 0.2–0.9 | 6–29 | -/- | -/- | -/- |
Gliricidia sepium (Jacq.) | 2.0–12.0 | 37–222 | -/- | -/- | -/- | -/- | -/- | -/- |
Neolamarckia cadamba (Roxb.) | 1.8–12.9 | 33–239 | -/- | -/- | -/- | -/- | -/- | -/- |
Pongamia pinnata (L.) | -/- | -/- | 0.9–9.0 | 0.9–8.9 | 29–290 | -/- | -/- | -/- |
Reutealis trisperma (Blanco) | -/- | -/- | Yes | -/- | -/- | -/- | -/- | -/- |
Vernicia fordii (Hemsl.) | -/- | -/- | 0.3–1.0 | 0.2–1.0 | 8–32 | -/- | -/- | -/- |
Zapoteca tetragona (Willd.) | Yes | -/- | -/- | -/- | -/- | -/- | -/- | -/- |
Species that tolerate continuously wet and waterlogged or temporarily flooded soils | ||||||||
Calamus caesius (Blume) | 1.5–3.0 | 28–56 | -/- | -/- | -/- | -/- | -/- | -/- |
Cerbera manghas (L.) | -/- | -/- | 2.2 | 2.2 | 71 | -/- | -/- | -/- |
Combretocarpus rotundatus (Miq.) | -/- | -/- | -/- | -/- | -/- | -/- | -/- | -/- |
Dyera polyphylla (Miq.) | 5.4–14.0 | 100–259 | -/- | -/- | -/- | -/- | -/- | -/- |
Erythrina excelsa (Baker) | Yes | -/- | -/- | -/- | -/- | -/- | -/- | -/- |
Euterpe oleracea (Mart.) | -/- | -/- | -/- | -/- | -/- | 0.2–3.8 (Su) | 0.1 –2.4 | 2–50 |
Melaleuca cajuputi (Powell) | Yes | -/- | -/- | -/- | -/- | -/- | -/- | -/- |
Metroxylon sagu (Rottb.) | -/- | -/- | -/- | -/- | -/- | 15–24 (St) | 9.6–15.3 | 201–321 |
Fleroya ledermannii (K.Krause) | 2.7–3.2 | 49–59 | -/- | -/- | -/- | -/- | -/- | -/- |
Nypa fruticans (Wurmb.) | -/- | -/- | -/- | -/- | -/- | 3–22 (Su) | 1.9–14.0 | 40–295 |
Palaquium ridleyi (King & Gamble) | -/- | -/- | -/- | -/- | -/- | -/- | -/- | -/- |
Pentadesma butyracea (Sabine) | -/- | -/- | 0.6–8.0 | 0.6–7.9 | 20–258 | -/- | -/- | -/- |
Phoenix reclinata (Jacq.) | Yes | -/- | -/- | -/- | -/- | -/- | -/- | -/- |
Sandoricum koetjape (Burm.f.) | -/- | -/- | -/- | -/- | -/- | Yes | -/- | -/- |
Sesbania bispinosa (Jacq.) | 8.0–17.0 | 148–315 | -/- | -/- | -/- | -/- | -/- | -/- |
Spondias mombin (L.) | 0.2–0.6 | 4–10 | -/- | -/- | -/- | -/- | -/- | -/- |
Symphonia globulifera (L.f.) | Yes | -/- | -/- | -/- | -/- | -/- | -/- | -/- |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borchard, N.; Bulusu, M.; Hartwig, A.-M.; Ulrich, M.; Lee, S.M.; Baral, H. Screening Potential Bioenergy Production of Tree Species in Degraded and Marginal Land in the Tropics. Forests 2018, 9, 594. https://doi.org/10.3390/f9100594
Borchard N, Bulusu M, Hartwig A-M, Ulrich M, Lee SM, Baral H. Screening Potential Bioenergy Production of Tree Species in Degraded and Marginal Land in the Tropics. Forests. 2018; 9(10):594. https://doi.org/10.3390/f9100594
Chicago/Turabian StyleBorchard, Nils, Medha Bulusu, Ann-Michelle Hartwig, Matthias Ulrich, Soo Min Lee, and Himlal Baral. 2018. "Screening Potential Bioenergy Production of Tree Species in Degraded and Marginal Land in the Tropics" Forests 9, no. 10: 594. https://doi.org/10.3390/f9100594
APA StyleBorchard, N., Bulusu, M., Hartwig, A. -M., Ulrich, M., Lee, S. M., & Baral, H. (2018). Screening Potential Bioenergy Production of Tree Species in Degraded and Marginal Land in the Tropics. Forests, 9(10), 594. https://doi.org/10.3390/f9100594