Different Nitrate and Ammonium Ratios Affect Growth and Physiological Characteristics of Camellia oleifera Abel. Seedlings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Site
2.2. Plant Materials and Experimental Treatments
2.3. Seedling Growth Measurements
2.4. Analysis of Physiological Parameters
2.5. Data Analysis
3. Results
3.1. Plant Growth and Dry Weights
3.2. Leaf Total Nitrogen Content
3.3. Chlorophyll Content
3.4. Peroxidase (POD) and Superoxide Dismutase (SOD) Activities
3.5. Nitrate Reductase (NR), Glutamine Synthetase (GS), and Glutamate Synthase (GOGAT) Activities
3.6. Contents of Soluble Saccharides and Soluble Proteins
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, Y.; Wang, B.; Chen, J.; Wang, X.; Wang, R.; Peng, S.; Chen, L.; Ma, L.; Luo, J. Identification of Rubisco rbcL and rbcS in Camellia oleifera and their potential as molecular markers for selection of high tea oil cultivars. Front. Plant Sci. 2015, 6, 189. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Ye, H.; Rui, Y.; Chen, G.; Zhang, N. Fatty acid composition of Camellia oleifera oil. J. für Verbraucherschutz und Lebensmittelsicherheit 2011, 6, 9–12. [Google Scholar] [CrossRef]
- Dong, B.; Wu, B.; Hong, W.; Li, X.; Li, Z.; Xue, L.; Huang, Y. Transcriptome analysis of the tea oil camellia (Camellia oleifera) reveals candidate drought stress genes. PLoS ONE 2017, 12, e0181835. [Google Scholar] [CrossRef]
- Cheng, Y.; Wu, S.; Ho, C.; Huang, S.; Cheng, C.; Yen, G. Beneficial effects of camellia oil (Camellia oleifera Abel.) on ketoprofen-induced gastrointestinal mucosal damage through upregulation of HO-1 and VEGF. J. Agric. Food Chem. 2014, 62, 642–650. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Chen, J.; Chen, L.; Wang, X.; Wang, R.; Ma, L.; Peng, S.; Luo, J.; Chen, Y. Combined drought and heat stress in Camellia oleifera cultivars: Leaf characteristics, soluble sugar and protein contents, and Rubisco gene expression. Trees 2015, 29, 1483–1492. [Google Scholar] [CrossRef]
- Kong, W.; Liu, X.; Yao, X.; Wang, K.; Ren, H.; Cao, Y. Research on photosynthetic characteristics of four oil-tea (Camellia) species. J. Southwest Univ. (Natl. Sci. Ed.) 2013, 35, 1–7. [Google Scholar]
- Liu, C.; Chen, L.; Tang, W.; Peng, S.; Li, M.; Deng, N.; Chen, Y. Predicting potential distribution and evaluating suitable soil condition of oil tea camellia in China. Forests 2018, 9, 487. [Google Scholar] [CrossRef]
- Song, X.; Tang, J.; Qin, Q.; Pan, B.; Cao, J. Mechanism of biomass accumulation and nutrient distribution in Camellia oleifera mature forest. J. South. Agric. 2014, 45, 255–258. [Google Scholar]
- Marschner, P. Rhizosphere Biology. In Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Academic Press: New York, NY, USA, 2012. [Google Scholar]
- Weber, K.; Burow, M. Nitrogen–Essential macronutrient and signal controlling flowering time. Physiol. Plant. 2018, 162, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Bi, G.; Harkess, R.L.; Blythe, E.K. Effects of Different NH4: NO3 ratios on growth and nutrition uptake in Iris germanica ‘Immortality’. HortScience 2016, 51, 1045–1049. [Google Scholar]
- Bauer, G.; Berntson, G. Ammonium and nitrate acquisition by plants in response to elevated CO2 concentration: The roles of root physiology and architecture. Tree Physiol. 2001, 21, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Tam, N.; Wong, Y. Effect of ammonia concentrations on growth of Chlorella vulgaris and nitrogen removal from media. Bioresour. Technol. 1996, 57, 45–50. [Google Scholar] [CrossRef]
- Lu, Y.L.; Xu, Y.C.; Shen, Q.R.; Dong, C.X. Effects of different nitrogen forms on the growth and cytokinin content in xylem sap of tomato (Lycopersicon esculentum Mill.) seedlings. Plant Soil 2009, 315, 67. [Google Scholar] [CrossRef]
- Sun, M.; Lu, X.; Cao, X. Effect of different forms of nitrogen on the activity of nitrate reductase and expression of the relative genes in Citrus sinensis × Poncirus trifoliate. J. Fruit Sci. 2017, 34, 410–417. [Google Scholar]
- Robinson, N.; Brackin, R.; Vinall, K.; Soper, F.; Holst, J.; Gamage, H.; Paungfoo-Lonhienne, C.; Rennenberg, H.; Lakshmanan, P.; Schmidt, S. Nitrate paradigm does not hold up for sugarcane. PLoS ONE 2011, 6, e19045. [Google Scholar] [CrossRef]
- Chen, Y.; Peng, S.; Wang, X.; Yang, X.; He, J.; Wand, D. Study of high yield cultivation technologies of oil-tea camellia (Camellia oleifera)-formulate fertilization. For. Res.-Chin. Acad. For. 2007, 20, 650. [Google Scholar]
- Xu, P.; Xie, L. Researches on Fertilization of Camellia Oleifera. Chin. Agric. Sci. Bull. 2011, 8, 1–6. [Google Scholar]
- Liu, J.; Wu, L.; Chen, D.; Li, M.; Wei, C. Soil quality assessment of different Camellia oleifera stands in mid-subtropical China. Appl. Soil Ecol. 2017, 113, 29–35. [Google Scholar] [CrossRef]
- Parkinson, J.; Allen, S. A wet oxidation procedure suitable for the determination of nitrogen and mineral nutrients in biological material. Commun. Soil Sci. Plant Anal. 1975, 6, 1–11. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, J.; Li, Y. Nondestructive and rapid estimation of leaf chlorophyll and nitrogen status of peace lily using a chlorophyll meter. J. Plant nutr. 2004, 27, 557–569. [Google Scholar] [CrossRef]
- Wang, X. The Principle and Measuring Technique on Plant Physiology and Biochemistry; Beijing High Education Press: Beijing, China, 2006. [Google Scholar]
- Li, H.S. The Principle and Measuring Technique on Plant Physiology and Biochemistry; Beijing High Education Press: Beijing, China, 1999. [Google Scholar]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Maehly, A. The assay of catalases and peroxidases. Methods Biochem. Anal. 1954, 357–424. [Google Scholar] [CrossRef]
- Giannopolitis, C.N.; Ries, S.K. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol. 1977, 59, 309–314. [Google Scholar] [CrossRef]
- Pike, C.S.; Cohen, W.S.; Monroe, J.D. Nitrate reductase: A model system for the investigation of enzyme induction in eukaryotes. Biochem. Mol. Biol. Ed. 2002, 30, 111–116. [Google Scholar] [CrossRef] [Green Version]
- O’neal, D.; Joy, K. Glutamine synthetase of pea leaves. I. Purification, stabilization, and pH optima. Arch. Biochem. Biophys. 1973, 159, 113–122. [Google Scholar] [CrossRef]
- Liu, J.; Wu, L.; Chen, D.; Yu, Z.; Wei, C. Development of a soil quality index for Camellia oleifera forestland yield under three different parent materials in Southern China. Soil Tillage Res. 2018, 176, 45–50. [Google Scholar] [CrossRef]
- Tegeder, M.; Masclaux-Daubresse, C. Source and sink mechanisms of nitrogen transport and use. New Phytol. 2018, 217, 35–53. [Google Scholar] [CrossRef]
- Hachiya, T.; Sakakibara, H. Interactions between nitrate and ammonium in their uptake, allocation, assimilation, and signaling in plants. J. Exp. Bot. 2016, 68, 2501–2512. [Google Scholar] [CrossRef]
- Ruan, J.; Gerendás, J.; Härdter, R.; Sattelmacher, B. Effect of nitrogen form and root-zone pH on growth and nitrogen uptake of tea (Camellia sinensis) plants. Ann. Bot. 2007, 99, 301–310. [Google Scholar] [CrossRef]
- Vaast, P.; Zasoski, R.J. Effects of VA-mycorrhizae and nitrogen sources on rhizosphere soil characteristics, growth and nutrient acquisition of coffee seedlings (Coffea arabica L.). Plant Soil 1992, 147, 31–39. [Google Scholar] [CrossRef]
- Lima, J.E.; Kojima, S.; Takahashi, H.; von Wirén, N. Ammonium triggers lateral root branching in Arabidopsis in an AMMONIUM TRANSPORTER1; 3-dependent manner. Plant Cell 2010, 22, 3621–3633. [Google Scholar] [CrossRef]
- Kronzucker, H.J.; Siddiqi, M.Y.; Glass, A.D.; Kirk, G.J. Nitrate-ammonium synergism in rice. A subcellular flux analysis. Plant Physiol. 1999, 119, 1041–1046. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, J.A.; Vega, A.; Bouguyon, E.; Krouk, G.; Gojon, A.; Coruzzi, G.; Gutiérrez, R.A. Nitrate transport, sensing, and responses in plants. Mol. Plant 2016, 9, 837–856. [Google Scholar] [CrossRef]
- Singh, S.; Pandey, A.; Kumar, B.; Palni, L.M.S. Enhancement in growth and quality parameters of tea (Camellia sinensis (L.) O. Kuntze) through inoculation with arbuscular mycorrhizal fungi in an acid soil. Biol. Fertil. Soils 2010, 46, 427–433. [Google Scholar] [CrossRef]
- Wei, X.; Chen, J.; Zhang, C.; Pan, D. A new Oidiodendron maius strain isolated from Rhododendron fortunei and its effects on nitrogen uptake and plant growth. Front. Microbiol. 2016, 7, 1327. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Chen, J.; Pan, D.; Zhang, C. Differential gene expression in Rhododendron fortunei roots colonized by an ericoid mycorrhizal fungus and increased nitrogen absorption and plant growth. Front. Plant Sci. 2016, 7, 1594. [Google Scholar] [CrossRef] [PubMed]
Treatment | NO3−:NH4+ Ratio | Total N Concentration (mM) | NaNO3 (mM) | (NH4)2SO4 (mM) |
---|---|---|---|---|
T0 | 0:0 | 0.0 | 0.0 | 0.0 |
T1 | 1:0 | 8.0 | 8.0 | 0.0 |
T2 | 7:3 | 8.0 | 5.6 | 1.2 |
T3 | 1:1 | 8.0 | 4.0 | 2.0 |
T4 | 3:7 | 8.0 | 2.4 | 2.8 |
T5 | 0:1 | 8.0 | 0.0 | 4.0 |
Treatment | Canopy Height Increase (cm) | Stem Diameter Increase (mm) | Shoot Dry Weight (g) | Root Dry Weight (g) | Total Dry Weight (g) |
---|---|---|---|---|---|
T0 (0:0) | 5.20 ± 0.52 c | 1.43 ± 0.04 c | 0.83 ± 0.01 e | 0.68 ± 0.03 d | 1.52 ± 0.03 e |
T1 (1:0) | 7.83 ± 1.07 b | 1.67 ± 0.12 b | 1.11 ± 0.06 d | 0.82 ± 0.05 c | 1.93 ± 0.11 d |
T2 (7:3) | 9.03 ± 0.23 ab | 1.86 ± 0.06 ab | 1.25 ± 0.06 c | 0.90 ± 0.06 b | 2.16 ± 0.10 c |
T3 (1:1) | 10.53 ± 0.55 a | 2.00 ± 0.18 a | 1.49 ± 0.05 a | 1.05 ± 0.05 a | 2.54 ± 0.10 a |
T4 (3:7) | 8.97 ± 1.72 ab | 1.71 ± 0.08 b | 1.35 ± 0.04 b | 0.99 ± 0.01 a | 2.34 ± 0.05 b |
T5 (0:1) | 7.10 ± 1.22 b | 1.58 ± 0.17 bc | 1.17 ± 0.07 cd | 0.83 ± 0.02 c | 2.00 ± 0.09 cd |
Treatment | Chl a (mg·g−1 FW) | Chl b (mg·g−1 FW) | Total chl (mg·g−1 FW) |
---|---|---|---|
T0 (0:0) | 0.95 ± 0.11 b * | 0.31 ± 0.03 d | 1.26 ± 0.14 b |
T1 (1:0) | 0.99 ± 0.09 b | 0.35 ± 0.02 abc | 1.34 ± 0.09 b |
T2 (7:3) | 0.97 ± 0.03 b | 0.33 ± 0.02 bcd | 1.30 ± 0.05 b |
T3 (1:1) | 1.41 ± 0.17 a | 0.36 ± 0.01 a | 1.76 ± 0.17 a |
T4 (3:7) | 1.08 ± 0.04 ab | 0.36 ± 0.01 a | 1.44 ± 0.05 ab |
T5 (0:1) | 0.97 ± 0.03 b | 0.32 ± 0.01 cd | 1.29 ± 0.04 b |
Treatment | SOD (U·g−1 FW) | POD (U·g−1 FW·min−1) |
---|---|---|
T0 (0:0) | 314.64 ± 14.37 b | 754.29 ± 248.79 b |
T1 (1:0) | 334.09 ± 12.02 ab | 950.04 ± 252.69 b |
T2 (7:3) | 356.66 ± 6.54 ab | 1195.94 ± 385.13 ab |
T3 (1:1) | 367.01 ± 15.63 a | 1579.03 ± 341.98 a |
T4 (3:7) | 359.07 ± 0.80 ab | 982.99 ± 108.93 b |
T5 (0:1) | 334.50 ± 28.31 ab | 814.91 ± 224.00 b |
Treatment | NR (μg NO3− g−1 FW h−1) | GS (μmol·g−1 FW h−1) | GOGAT (μmol·g−1 FW h−1) |
---|---|---|---|
T0 (0:0) | 29.43 ± 1.75 c | 32.97 ± 0.75 d | 13.80 ± 0.64 d |
T1 (1:0) | 36.12 ± 4.49 ab | 44.77 ± 2.88 c | 17.60 ± 1.24 c |
T2 (7:3) | 39.06 ± 1.67 ab | 61.84 ± 2.98 a | 21.26 ± 2.23 b |
T3 (1:1) | 42.51 ± 4.95 a | 57.65 ± 2.28 b | 25.48 ± 1.10 a |
T4 (3:7) | 32.98 ± 4.82 bc | 54.43 ± 0.68 b | 26.65 ± 1.11 a |
T5 (0:1) | 29.05 ± 2.53 c | 48.02 ± 1.31 c | 25.50 ± 0.75 a |
Treatment | Saccharides (% FW) | Soluble Proteins (mg·g−1 FW) |
---|---|---|
T0 (0:0) | 3.92 ± 0.33 c | 7.34 ± 0.81 d |
T1 (1:0) | 4.62 ± 0.30 b | 9.99 ± 0.65 c |
T2 (7:3) | 4.96 ± 0.43 b | 11.57 ± 0.90 b |
T3 (1:1) | 5.68 ± 0.32 a | 14.27 ± 0.32 a |
T4 (3:7) | 5.05 ± 0.26 b | 13.72 ± 0.83 a |
T5 (0:1) | 4.65 ± 0.24 b | 11.18 ± 0.54 bc |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Chen, L.; Chen, J.; Chen, Y.; Zhang, Z.; Wang, X.; Peng, Y.; Peng, S.; Li, A.; Wei, X. Different Nitrate and Ammonium Ratios Affect Growth and Physiological Characteristics of Camellia oleifera Abel. Seedlings. Forests 2018, 9, 784. https://doi.org/10.3390/f9120784
Wang R, Chen L, Chen J, Chen Y, Zhang Z, Wang X, Peng Y, Peng S, Li A, Wei X. Different Nitrate and Ammonium Ratios Affect Growth and Physiological Characteristics of Camellia oleifera Abel. Seedlings. Forests. 2018; 9(12):784. https://doi.org/10.3390/f9120784
Chicago/Turabian StyleWang, Rui, Longsheng Chen, Jianjun Chen, Yongzhong Chen, Zhen Zhang, Xiangnan Wang, Yinghe Peng, Shaofeng Peng, Anliang Li, and Xiangying Wei. 2018. "Different Nitrate and Ammonium Ratios Affect Growth and Physiological Characteristics of Camellia oleifera Abel. Seedlings" Forests 9, no. 12: 784. https://doi.org/10.3390/f9120784
APA StyleWang, R., Chen, L., Chen, J., Chen, Y., Zhang, Z., Wang, X., Peng, Y., Peng, S., Li, A., & Wei, X. (2018). Different Nitrate and Ammonium Ratios Affect Growth and Physiological Characteristics of Camellia oleifera Abel. Seedlings. Forests, 9(12), 784. https://doi.org/10.3390/f9120784