Synthesis and Characterization of a Full-Length Infectious cDNA Clone of Tomato Mottle Mosaic Virus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Virus Sources and RNA Extraction
2.2. Sequencing of Complete Nucleotide Sequence and Phylogenetic Analysis
2.3. Construction of Infectious Clone of ToMMV by Homologous Recombination Approach
2.4. Agroinfiltration of ToMMV Infectious cDNA Clone on Nicotiana benthamiana, Tomato and Pepper
2.5. Detection of ToMMV by RT-PCR and Northern Blots
2.6. Virus Purification and Morphological Observation using Transmission Electron Microscopy (TEM)
3. Results
3.1. Genome Organization and Phylogenetic Analysis of ToMMV-LN
3.2. Synthesis of ToMMV Infectious Clone and Infection Assays on N. benthamiana
3.3. Pathogenicity and Infectivity on Tomato and Pepper Agroinfiltrated with pToMMV
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hortidaily Overview Global Tomato Market. Available online: https://www.hortidaily.com/article/6040370/overview-global-tomato-market/ (accessed on 12 January 2018).
- Hanssen, I.M.; Lapidot, M.; Thomma, B.P.H.J. Emerging Viral Diseases of Tomato Crops. Mol. Plant. Microbe Interact. 2010, 23, 539–548. [Google Scholar] [CrossRef] [Green Version]
- Rendina, N.; Nuzzaci, M.; Sofo, A.; Campiglia, P.; Scopa, A.; Sommella, E.; Pepe, G.; De Nisco, M.; Basilicata, M.G.; Manfra, M. Yield parameters and antioxidant compounds of tomato fruit: The role of plant defence inducers with or without Cucumber mosaic virus infection. J. Sci. Food Agric. 2019, 99, 5541–5549. [Google Scholar] [CrossRef]
- Prasad, A.; Sharma, N.; Hari-Gowthem, G.; Muthamilarasan, M.; Prasad, M. Tomato yellow leaf curl virus: Impact, challenges, and management. Trends Plant. Sci. 2020, 25, 897–911. [Google Scholar] [CrossRef] [PubMed]
- Ruark-Seward, C.L.; Bonville, B.; Kennedy, G.; Rasmussen, D.A. Evolutionary dynamics of Tomato spotted wilt virus within and between alternate plant hosts and thrips. Sci. Rep. 2020, 10, 15797. [Google Scholar] [CrossRef] [PubMed]
- Abdelkhalek, A.; Ismail, I.A.; Dessoky, E.S.; El-Hallous, E.I.; Hafez, E. A tomato kinesin-like protein is associated with Tobacco mosaic virus infection. Biotechnol. Biotech. Eq. 2019, 33, 1424–1433. [Google Scholar] [CrossRef] [Green Version]
- Velasco, L.; Simon, B.; Janssen, D.; Cenis, J.L. Incidences and progression of tomato chlorosis virus disease and tomato yellow leaf curl virus disease in tomato under different greenhouse covers in southeast Spain. Ann. Appl. Biol. 2008, 153, 335–344. [Google Scholar] [CrossRef]
- Soler, S.; Prohens, J.; Lopez, C.; Aramburu, J.; Galipienso, L.; Nuez, F. Viruses Infecting Tomato in Valencia, Spain: Occurrence, Distribution and Effect of Seed Origin. J. Phytopathol. 2010, 158, 797–805. [Google Scholar] [CrossRef]
- Moodley, V.; Gubba, A.; Mafongoya, P.L. A survey of whitefly-transmitted viruses on tomato crops in South Africa. Crop. Prot. 2019, 123, 21–29. [Google Scholar] [CrossRef]
- Li, R.; Gao, S.; Fei, Z.; Ling, K.-S. Complete genome sequence of a new tobamovirus naturally infecting tomatoes in Mexico. Genome Announc. 2013, 1, e00794-13. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.Y.; Wang, C.L.; Xiang, D.; Li, R.H.; Liu, Y.; Li, F. First report of tomato mottle mosaic virus infection of pepper in China. Plant. Dis. 2014, 98, 1447. [Google Scholar] [CrossRef]
- Che, H.Y.; Luo, D.Q.; Cao, X.R. First report of Tomato mottle mosaic virus in tomato crops in China. Plant. Dis. 2018, 102, 2051. [Google Scholar] [CrossRef] [PubMed]
- Fillmer, K.; Adkins, S.; Pongam, P.; D’Elia, T. Complete Genome sequence of a Tomato mottle mosaic virus isolate from the United States. Genome Announc. 2015, 3, e00167-15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagai, A.; Duarte, L.M.L.; Chaves, A.L.R.; Alexandre, M.A.V.; Ramos-Gonzalez, P.L.; Chabi-Jesus, C.; Harakava, R.; dos Santos, D.Y.A.C. First Complete Genome Sequence of an Isolate of Tomato Mottle Mosaic Virus Infecting Plants of Solanum lycopersicum in South America. Genome Announc. 2018, 6, e00427-18. [Google Scholar] [CrossRef] [Green Version]
- Ambros, S.; Martinez, F.; Ivars, P.; Hernandez, C.; de la Iglesia, F.; Elena, S.F. Molecular and biological characterization of an isolate of Tomato mottle mosaic virus (ToMMV) infecting tomato and other experimental hosts in eastern Spain. Eur. J. Plant. Pathol. 2017, 149, 261–268. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wang, Y.; Hu, J.; Xiao, L.; Tan, G.; Lan, P.; Liu, Y.; Li, F. The complete genome sequence, occurrence and host range of Tomato mottle mosaic virus Chinese isolate. Virol. J. 2017, 14, 15. [Google Scholar] [CrossRef] [Green Version]
- Sheshukova, E.V.; Ershova, N.M.; Kamarova, K.A.; Dorokhov, Y.L.; Komarova, T.V. The Tobamoviral movement protein: A “conditioner” to create a favorable environment for intercellular spread of infection. Front. Plant. Sci. 2020, 11, 959. [Google Scholar] [CrossRef] [PubMed]
- Callaway, A.; Giesman-Cookmeyer, D.; Gillock, E.T.; Sit, T.L.; Lommel, S.A. The multifunctional capsid proteins of plant RNA viruses. Annu. Rev. Phytopathol. 2001, 39, 419–460. [Google Scholar] [CrossRef]
- Fukuda, M.; Ohno, T.; Okada, Y.; Otsuki, Y.; Takebe, I. Kinetics of biphasic reconstitution of tobacco mosaic virus in vitro. Proc. Natl. Acad. Sci. USA 1978, 75, 1727–1730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, T.; Feng, W.; Ye, J.; Li, Z.; Zhou, G. Metabolomic Changes in Sogatella furcifera under Southern rice black-streaked dwarf virus Infection and Temperature Stress. Viruses 2018, 10, 344. [Google Scholar] [CrossRef] [Green Version]
- Marano, J.M.; Chuong, C.; Weger-Lucarelli, J. Rolling circle amplification: A high fidelity and efficient alternative to plasmid preparation for the rescue of infectious clones. Virology 2020, 551, 58–63. [Google Scholar] [CrossRef]
- Tercero, B.; Makino, S. Reverse genetics approaches for the development of bunyavirus vaccines. Curr. Opin. Virol. 2020, 44, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; He, W.; Li, Q.; Xie, X.; Qin, N.; Wang, H.; Huang, J.; Lin, S.; Ouyang, K.; Chen, Y. Generation of a porcine reproductive and respiratory syndrome virus expressing a marker gene inserted between ORF4 and ORF5a. Arch. Virol. 2020, 165, 1803–1813. [Google Scholar] [CrossRef] [PubMed]
- Rice, C.M.; Levis, R.; Strauss, J.H.; Huang, H.V. Production of infectious RNA transcripts from sindbis virus cDNA clones-mapping of lethal mutations, rescue of a temperature-sensitive marker, and invitro mutagenesis to generate defined mutants. J. Virol. 1987, 61, 3809–3819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, B.J.; Ding, S.W.; Symons, R.H. Plasmid vector for cloning infectious cDNAs from plant RNA viruses: High infectivity of cDNA clones of tomato aspermy cucumovirus. J. Gen. Virol. 1997, 78, 1181–1185. [Google Scholar] [CrossRef] [Green Version]
- Meulenberg, J.J.M.; BosDeRuijter, J.N.A.; vandeGraaf, R.; Wensvoort, G.; Moormann, R.J.M. Infectious transcripts from cloned genome-length cDNA of porcine reproductive and respiratory syndrome virus. J. Virol. 1998, 72, 380–387. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Dan, H.; Zhao, X.; Chen, H.; Chen, Y.; Zhang, N.; Mo, Z.; Liu, H. Construction and characterization of an infectious cDNA clone of coxsackievirus A 10. Virol. J. 2019, 16, 98–107. [Google Scholar] [CrossRef] [Green Version]
- Vanderwerf, S.; Bradley, J.; Wimmer, E.; Studier, F.W.; Dunn, J.J. Synthesis of infectious poliovirus rna by purified T7 RNA-polymerase. Proc. Natl. Acad. Sci. USA 1986, 83, 2330–2334. [Google Scholar] [CrossRef] [Green Version]
- Janda, M.; French, R.; Ahlquist, P. High-efficiency T7-polymerase synthesis of infectious RNA from cloned brome mosaic-virus cdna and effects of 5′ extensions on transcript infectivity. Virology 1987, 158, 259–262. [Google Scholar] [CrossRef]
- Odell, J.T.; Nagy, F.; Chua, N.H. Identification of DNA-sequences required for activity of the Cauliflower mosaic virus-35s promoter. Nature 1985, 313, 810–812. [Google Scholar] [CrossRef]
- Chen, A.Y.S.; Pavitrin, A.; Ng, J.C.K. Agroinoculation of the cloned infectious cDNAs of Lettuce chlorosis virus results in systemic plant infection and production of whitefly transmissible virions. Virus Res. 2012, 169, 310–315. [Google Scholar] [CrossRef]
- Delfosse, V.C.; Casse, M.F.; Agrofoglio, Y.C.; Bonacic Kresic, I.; Hopp, H.E.; Ziegler-Graff, V.; Distefano, A.J. Agroinoculation of a full-length cDNA clone of cotton leafroll dwarf virus (CLRDV) results in systemic infection in cotton and the model plant Nicotiana benthamiana. Virus Res. 2013, 175, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Xie, K.; Tsekpuia, A.R.; Peng, B.; Liu, M.; Gu, Q. Construction and biological characterization of an Agrobacterium-mediated infectious cDNA of squash mosaic virus. Virus Res. 2019, 274, 197766–197770. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Liu, S.; Zhang, T.; Ye, Z.; Han, X.; Zhong, K.; Yang, J.; Chen, J.; Liu, P. Construction and biological characterization of an infectious full-length cDNA clone of a Chinese isolate of Wheat yellow mosaic virus. Virology 2021, 556, 101–109. [Google Scholar] [CrossRef]
- Bevan, M.W.; Mason, S.E.; Goelet, P. Expression of Tobacco mosaic-virus coat protein by a Cauliflower mosaic-virus promoter in plants transformed by agrobacterium. EMBO J. 1985, 4, 1921–1926. [Google Scholar] [CrossRef]
- Padgett, H.S.; Beachy, R.N. Analysis of a Tobacco mosaic-virus strain capable of overcoming n gene-mediated resistance. Plant. Cell 1993, 5, 577–586. [Google Scholar] [PubMed] [Green Version]
- Weber, H.; Haeckel, P.; Pfitzner, A.J.P. A cDNA clone of Tomato mosaic-virus is infectious in plants. J. Virol. 1992, 66, 3909–3912. [Google Scholar] [CrossRef] [Green Version]
- Agre, A.P.; Bhattacharjee, R.; Dansi, A.; Becerra Lopez-Lavalle, L.A.; Dansi, M.; Sanni, A. Assessment of cassava (Manihot esculenta Crantz) diversity, loss of landraces and farmers preference criteria in southern Benin using farmers’ participatory approach. Genet. Resour. Crop. Ev. 2017, 64, 307–320. [Google Scholar] [CrossRef]
- Liu, J.; Li, X.-D.; Xu, S. Single amino acid substitutions in the coat protein and RNA-dependent RNA polymerase alleviated the virulence of Cucumber green mottle mosaic virus and conferred cross protection against severe infection. Virus Genes 2020, 56, 228–235. [Google Scholar] [CrossRef]
- Yao, M.; Zhang, T.; Tian, Z.; Wang, Y.; Tao, X. Construction of agrobacterium-mediated Cucumber mosaic virus infectious cDNA clones and 2b deletion viral vector. Sci. Agric. Sin. 2011, 44, 3060–3068. [Google Scholar]
- Feng, M.; Cheng, R.; Chen, M.; Guo, R.; Li, L.; Feng, Z.; Wu, J.; Xie, L.; Hong, J.; Zhang, Z. Rescue of tomato spotted wilt virus entirely from complementary DNA clones. Proc. Natl. Acad. Sci. USA 2020, 117, 1181–1190. [Google Scholar] [CrossRef]
- Zhao, W.; Wu, S.; Barton, E.; Fan, Y.; Ji, Y.; Wang, X.; Zhou, Y. Tomato Yellow Leaf Curl Virus V2 Protein Plays a Critical Role in the Nuclear Export of V1 Protein and Viral Systemic Infection. Front. Microbiol. 2020, 11, 1243. [Google Scholar] [CrossRef]
- Lu, G.; Li, S.; Zhou, C.; Qian, X.; Xiang, Q.; Yang, T.; Wu, J.; Zhou, X.; Zhou, Y.; Ding, X.S. Tenuivirus utilizes its glycoprotein as a helper component to overcome insect midgut barriers for its circulative and propagative transmission. PLoS Pathog. 2019, 15, e1007655. [Google Scholar] [CrossRef] [Green Version]
- Chai, A.L.; Chen, L.D.; Li, B.J.; Xie, X.W.; Shi, Y.X. First Report of a Mixed Infection of Tomato mottle mosaic virus and Tobacco mild green mosaic virus on Eggplants in China. Plant. Dis. 2018, 102, 2668. [Google Scholar] [CrossRef]
- Ahlquist, P.; French, R.; Janda, M.; Loesch-Fries, L.S. Multicomponent RNA plant virus infection derived from cloned viral cDNA. Proc. Natl. Acad. Sci. USA 1984, 81, 7066–7070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimsley, N.; Hohn, B.; Hohn, T.; Walden, R. Agroinfection, an alternative route for viral-infection of plants by using the ti plasmid. Proc. Natl. Acad. Sci. USA 1986, 83, 3282–3286. [Google Scholar] [CrossRef] [Green Version]
- Leiser, R.M.; Zieglergraff, V.; Reutenauer, A.; Herrbach, E.; Lemaire, O.; Guilley, H.; Richards, K.; Jonard, G. Agroinfection as an alternative to insects for infecting plants with Beet western yellows luteovirus. Proc. Natl. Acad. Sci. USA 1992, 89, 9136–9140. [Google Scholar] [CrossRef] [Green Version]
- Kawchuk, L.; Jaag, H.M.; Toohey, K.; Martin, R.; Rohde, W.; Prufer, D. In planta agroinfection by Canadian and German Potato leafroll virus full-length cDNAs. Can. J. Plant Pathol. 2002, 24, 239–243. [Google Scholar] [CrossRef]
- Wang, J.; Turina, M.; Stewart, L.R.; Lindbo, J.A.; Falk, B.W. Agroinoculation of the Crinivirus, Lettuce infectious yellows virus, for systemic plant infection. Virology 2009, 392, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Hataya, T. Construction and characterization of an infectious cDNA clone of potato virus S developed from selected populations that survived genetic bottlenecks. Virol. J. 2019, 16, 18–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhan, B.H.; Cao, N.; Wang, K.-n.; Zhou, X.-p. Detection and characterization of an isolate of Tomato mottle mosaic virus infecting tomato in China. J. Integr. Agric. 2018, 17, 1207–1212. [Google Scholar] [CrossRef] [Green Version]
- Burgyan, J.; Hornyik, C.; Szittya, G.; Silhavy, D.; Bisztray, G. The ORF1 products of tombusviruses play a crucial role in lethal necrosis of virus-infected plants. J. Virol. 2000, 74, 10873–10881. [Google Scholar] [CrossRef] [Green Version]
- Raj, S.K.; Srivastava, A.; Chandra, G.; Singh, B.P. Role of satellite RNA of an Indian isolate of cucumber mosaic virus in inducing lethal necrosis of tobacco plants. Indian J. Exp. Biol. 2000, 38, 613–616. [Google Scholar] [PubMed]
- Deng, Y.; Wang, J.; Tung, J.; Liu, D.; Zhou, Y.; He, S.; Du, Y.; Baker, B.; Li, F. A role for small RNA in regulating innate immunity during plant growth. PLoS Pathog. 2018, 14, e1006756. [Google Scholar] [CrossRef]
- Xie, X.; Lokugamage, K.G.; Zhang, X.; Vu, M.N.; Muruato, A.E.; Menachery, V.D.; Shi, P.Y. Engineering SARS-CoV-2 using a reverse genetic system. Nat. Protoc. 2021, 16, 1761–1784. [Google Scholar] [CrossRef] [PubMed]
- Niu, X.; Hou, Y.J.; Jung, K.; Kong, F.; Saif, L.J.; Wang, Q. Chimeric porcine deltacoronaviruses with Sparrow coronavirus spike protein or the receptor-binding domain infect pigs but lose virulence and intestinal tropism. Viruses 2021, 13, 122. [Google Scholar] [CrossRef] [PubMed]
- Hao, X.; Song, S.; Zhong, Q.; Hajano, J.-U.D.; Guo, J.; Wu, Y. Rescue of an infection clone of Barley yellow dwarf virus -GAV. New Phytopathol. 2021. [Google Scholar] [CrossRef]
- Varallyay, E.; Lichner, Z.; Safrany, J.; Havelda, Z.; Salamon, P.; Bisztray, G.; Burgyan, J. Development of a virus induced gene silencing vector from a legumes infecting tobamovirus. Acta Biol. Hung. 2010, 61, 457–469. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, Y.L.; Zhang, X.F.; Han, C.G.; Yu, J.L.; Li, D.W. Development and optimization of Tobacco necrosis virus A induced gene silencing in Nicotiana benthamiana. Prog. Biochem. Biophys. 2011, 38, 919–928. [Google Scholar] [CrossRef]
Virus Name | Accession Number | Genome a (%) | 126 K b (%) | 183 K b (%) | MP b (%) | CP b (%) |
---|---|---|---|---|---|---|
ToMMV-MX5 | KF477193 | 99.48 | 99.46 | 99.57 | 98.51 | 100 |
ToMMV-SC13-05 | KX898033 | 99.36 | 99.37 | 99.50 | 98.51 | 100 |
ToMMV-NY-13 | KT810183 | 99.34 | 99.37 | 99.50 | 98.88 | 99.37 |
ToMMV-YYMLJ | KR824950 | 99.34 | 99.73 | 99.75 | 98.88 | 100 |
ToMMV-10-100 | KP202857 | 99.33 | 99.55 | 99.57 | 98.51 | 100 |
ToMMV-TiLhaLJ | KR824951 | 99.31 | 99.64 | 99.69 | 98.88 | 100 |
ToMMV-HN | MH381817 | 99.30 | 99.55 | 99.63 | 98.51 | 100 |
ToMMV-Hainan | MG171192 | 99.25 | 99.64 | 99.69 | 98.51 | 100 |
ToMMV-19-02305 | MN654021 | 99.17 | 99.64 | 99.69 | 98.13 | 99.37 |
ToMMV-CpB1 | MH128145 | 99.11 | 99.28 | 99.50 | 98.51 | 100 |
ToMMV-CA16-01 | KX898034 | 99.09 | 99.64 | 99.69 | 98.51 | 100 |
ToMMV-VLC-1 | KU594507 | 99.08 | 99.46 | 99.50 | 98.88 | 100 |
ToMV-SL-1 | KY912162 | 84.79 | 94.27 | 94.68 | 79.10 | 91.19 |
ToMV-AH4 | KU321698 | 84.63 | 94.09 | 94.62 | 78.73 | 91.82 |
TBRFV-Tom1-Jo | KT383474 | 80.64 | 91.58 | 92.20 | 71.27 | 86.16 |
RheMV-Henan | EF375551 | 78.14 | 89.43 | 90.47 | 70.52 | 82.50 |
PMMoV-pMG | KX063611 | 68.25 | 73.37 | 75.79 | 63.43 | 71.07 |
TMGMV-CaJO | MK648158 | 63.71 | 65.05 | 68.32 | 54.85 | 71.07 |
RMV-R14 | HQ667979 | 59.26 | 60.25 | 64.32 | 34.94 | 48.43 |
CMoV | AB261167 | 50.78 | 39.09 | 44.89 | 27.64 | 41.98 |
CGMMV-SH | D12505 | 49.73 | 40.67 | 45.73 | 27.64 | 33.54 |
Replicate | Syringe Agroinfiltration | |||
---|---|---|---|---|
No. of Tomato Plants Infected/Inoculated | Infection Rate (%) | No. of Pepper Plants Infected/Inoculated | Infection Rate (%) | |
I | 15/15 | 100 | 6/15 | 40 |
Control | 0/5 | 0 | 0/5 | 0 |
II | 13/13 | 100 | 6/13 | 46.1 |
Control | 0/5 | 0 | 0/5 | 0 |
III | 15/15 | 100 | 7/15 | 46.7 |
Control | 0/5 | 0 | 0/5 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tu, L.; Wu, S.; Gao, D.; Liu, Y.; Zhu, Y.; Ji, Y. Synthesis and Characterization of a Full-Length Infectious cDNA Clone of Tomato Mottle Mosaic Virus. Viruses 2021, 13, 1050. https://doi.org/10.3390/v13061050
Tu L, Wu S, Gao D, Liu Y, Zhu Y, Ji Y. Synthesis and Characterization of a Full-Length Infectious cDNA Clone of Tomato Mottle Mosaic Virus. Viruses. 2021; 13(6):1050. https://doi.org/10.3390/v13061050
Chicago/Turabian StyleTu, Liqin, Shuhua Wu, Danna Gao, Yong Liu, Yuelin Zhu, and Yinghua Ji. 2021. "Synthesis and Characterization of a Full-Length Infectious cDNA Clone of Tomato Mottle Mosaic Virus" Viruses 13, no. 6: 1050. https://doi.org/10.3390/v13061050
APA StyleTu, L., Wu, S., Gao, D., Liu, Y., Zhu, Y., & Ji, Y. (2021). Synthesis and Characterization of a Full-Length Infectious cDNA Clone of Tomato Mottle Mosaic Virus. Viruses, 13(6), 1050. https://doi.org/10.3390/v13061050