Review of Oral Rabies Vaccination of Dogs and Its Application in India
Abstract
:1. Introduction
2. The Need of ORV of Dogs in India
2.1. Achieving Herd Immunity in an Inaccessible Population
2.2. Competing Priorities for Dog Population Management
3. Types of ORV
3.1. Modified Live Vaccines (MLVs)
3.2. Vector-Based Vaccines (VBVs)
4. Oral Rabies Vaccination of Dogs
5. Evaluation of Available ORVs for Use in Dogs
5.1. Safety Risk Analysis
5.2. Candidate ORV for India
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rupprecht, C.E.; Freuling, C.M.; Mani, R.S.; Palacios, C.; Sabeta, C.T.; Ward, M. A History of Rabies—The Foundation for Global Canine Rabies Elimination. In Rabies, Scientific Basis of the Disease and Its Management, 4th ed.; Fooks, A.R., Jackson, A.C., Eds.; Academic Press: Cambridge, MA, USA, 2020; Chapter 1; pp. 1–44. ISBN 978-0-12-818705-0. [Google Scholar] [CrossRef]
- Hampson, K.; Coudeville, L.; Lembo, T.; Sambo, M.; Kieffer, A.; Attlan, M.; Barrat, J.; Blanton, J.D.; Briggs, D.J.; Cleaveland, S.; et al. Estimating the Global Burden of Endemic Canine Rabies. PLoS Negl. Trop. Dis. 2015, 9, e0003709. [Google Scholar]
- Sudarshan, M.K.; Narayana, D.H.A. Appraisal of surveillance of human rabies and animal bites in seven states of India. Indian J. Public Health 2019, 63, S3–S8. [Google Scholar] [PubMed]
- Rupprecht, C.E.; Abela-Ridder, B.; Abila, R.; Amparo, A.C.; Banyard, A.; Blanton, J.; Chanachai, K.; Dallmeier, K.; De Balogh, K.; Vilas, V.D.R.; et al. Towards rabies elimination in the Asia-Pacific region: From theory to practice. Biologicals 2020, 64, 83–95. [Google Scholar] [CrossRef] [PubMed]
- Wallace, R.M.; Undurraga, E.A.; Blanton, J.D.; Cleaton, J.; Franka, R. Elimination of dog-mediated human rabies deaths by 2030: Needs assessment and alternatives for progress based on dog vaccination. Front. Vet. Sci. 2017, 4, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization (WHO); World Organization for Animal Health (OIE); Food and Agriculture Organization of the United Nations (FAO); Global Alliance for Rabies Control (GARC). Zero By 30: The Global Strategic Plan; World Health Organization (WHO): Geneva, Switzerland; World Organization for Animal Health (OIE): Paris, France; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy; Global Alliance for Rabies Control (GARC): Manhattan, KA, USA, 2018. [Google Scholar]
- Tiwari, H.K.; Robertson, I.; O’Dea, M.; Vanak, A. Demographic characteristics of free-roaming dogs (FRD) in rural and urban India following a photographic sight-resight survey. Sci. Rep. 2019, 9, 16562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization (WHO). 2nd WHO Consultation on Oral Immunization of Dogs Against Rabies; World Health Organization (WHO): Geneva, Switzerland, 1988; pp. 1–21. [Google Scholar]
- Freuling, C.M.; Hampson, K.; Selhorst, T.; Schröder, R.; Meslin, F.X.; Mettenleiter, T.C.; Müller, T. The elimination of fox rabies from Europe: Determinants of success and lessons for the future. Philos. Trans. R. Soc. B: Biol. Sci. 2013, 368, 20120142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyer, K.F. Can man be protected against rabies? Bull. World Health Organ. 1954, 10, 845–866. [Google Scholar]
- Wallace, R.M.; Cliquet, F.; Fehlner-Gardiner, C.; Fooks, A.R.; Sabeta, C.T.; Setién, A.A.; Tu, C.; Vuta, V.; Yakobson, B.; Yang, D.-K.; et al. Role of Oral Rabies Vaccines in the Elimination of Dog-Mediated Human Rabies Deaths. Emerg. Infect. Dis. 2020, 26, 1–9. [Google Scholar] [CrossRef]
- Undurraga, E.A.; Millien, M.F.; Allel, K.; Etheart, M.D.; Cleaton, J.; Ross, Y.; Wallace, R.M.; Crowdis, K.; Medley, A.; Vos, A.; et al. Costs and effectiveness of alternative dog vaccination strategies to improve dog population coverage in rural and urban settings during a rabies outbreak. Vaccine 2020, 38, 6162–6173. [Google Scholar] [CrossRef]
- Wallace, R.M.; Undurraga, E.A.; Gibson, A.; Boone, J.; Pieracci, E.G.; Gamble, L.; Blanton, J.D. Estimating the effectiveness of vaccine programs in dog populations. Epidemiol. Infect. 2019, 147, e247. [Google Scholar] [CrossRef] [Green Version]
- Velasco-Villa, A.; Escobar, L.E.; Sanchez, A.; Shi, M.; Streicker, D.G.; Gallardo-Romero, N.F.; Vargas-Pino, F.; Gutierrez-Cedillo, V.; Damon, I.; Emerson, G. Successful strategies implemented towards the elimination of canine rabies in the Western Hemi-sphere. Antiviral Res. 2017, 143, 1–12. [Google Scholar] [CrossRef]
- De Carvalho, M.F.; Vigilato, M.A.N.; Pompei, J.A.; Rocha, F.; Vokaty, A.; Molina-Flores, B.; Cosivi, O.; Vilas, V.D.R. Rabies in the Americas: 1998–2014. PLOS Neglected Trop. Dis. 2018, 12, e0006271. [Google Scholar] [CrossRef] [Green Version]
- Mazeri, S.; Bailey, J.L.B.; Mayer, D.; Chikungwa, P.; Chulu, J.; Grossman, P.O.; Lohr, F.; Gibson, A.D.; Handel, I.G.; Bronsvoort, B.M.D.; et al. Using data-driven approaches to improve delivery of animal health care interventions for public health. Proc. Natl. Acad. Sci. USA 2021, 118, e2003722118. [Google Scholar] [CrossRef]
- Léchenne, M.; Oussiguere, A.; Naissengar, K.; Mindekem, R.; Mosimann, L.; Rives, G.; Hattendorf, J.; Moto, D.D.; Alfaroukh, I.O.; Zinsstag, J. Operational performance and analysis of two rabies vaccination campaigns in N’Djamena, Chad. Vaccine 2016, 34, 571–577. [Google Scholar] [CrossRef] [Green Version]
- Gibson, A.D.; Handel, I.G.; Shervell, K.; Roux, T.; Mayer, D.; Muyila, S.; Maruwo, G.B.; Nkhulungo, E.M.S.; Foster, R.A.; Chikungwa, P.; et al. The Vaccination of 35,000 Dogs in 20 Working Days Using Combined Static Point and Door-to-Door Methods in Blantyre, Malawi. PLOS Neglected Trop. Dis. 2016, 10, e0004824. [Google Scholar] [CrossRef] [Green Version]
- Gibson, A.D.; Ohal, P.; Shervell, K.; Handel, I.G.; Bronsvoort, B.M.; Mellanby, R.J.; Gamble, L. Vaccinate-assess-move method of mass canine rabies vaccination utilising mobile technology data collection in Ranchi, India. BMC Infect. Dis. 2015, 15, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Gibson, A.D.; Yale, G.; Vos, A.; Corfmat, J.; Airikkala-Otter, I.; King, A.; Wallace, R.M.; Gamble, L.; Handel, I.G.; Mellanby, R.J.; et al. Oral bait handout as a method to access roaming dogs for rabies vaccination in Goa, India: A proof of principle study. Vaccine: X 2019, 1, 100015. [Google Scholar] [CrossRef]
- Colombi, D.; Poletto, C.; Nakouné, E.; Bourhy, H.; Colizza, V. Long-range movements coupled with heterogeneous incubation period sustain dog rabies at the national scale in Africa. PLOS Neglected Trop. Dis. 2020, 14, e0008317. [Google Scholar] [CrossRef]
- Srinivasan, K.; Kurz, T.; Kuttuva, P.; Pearson, C. Reorienting rabies research and practice: Lessons from India. Palgrave Commun. 2019, 5, 1–11. [Google Scholar] [CrossRef]
- Townsend, S.E.; Sumantra, I.P.; Pudjiatmoko; Bagus, G.N.; Brum, E.; Cleaveland, S.; Crafter, S.; Dewi, A.P.M.; Dharma, D.M.N.; Dushoff, J.; et al. Designing Programs for Eliminating Canine Rabies from Islands: Bali, Indonesia as a Case Study. PLoS Negl. Trop. Dis. 2013, 7, e2372. [Google Scholar] [CrossRef]
- Windiyaningsih, C.; Wilde, H.; Meslin, F.X.; Suroso, T.; Widarso, H.S. The rabies epidemic on Flores Island, Indonesia (1998-2003). J. Med. Assoc. Thail. 2004, 87, 1389–1393. [Google Scholar]
- ICAM Coalition Are We Making a Difference? 2015, pp. 1–34. Available online: https://www.icam-coalition.org/wp-content/uploads/2017/03/Are-we-making-a-difference.pdf (accessed on 17 August 2021).
- Taylor, L.H.; Wallace, R.M.; Balaram, D.; Lindenmayer, J.M.; Eckery, D.C.; Mutonono-Watkiss, B.; Parravani, E.; Nel, L. The Role of Dog Population Management in Rabies Elimination—A Review of Current Approaches and Future Opportunities. Front. Vet. Sci. 2017, 4, 109. [Google Scholar] [CrossRef]
- Steck, F.; Wandeler, A.; Bichsel, P.; Capt, S.; Schneider, L. Oral Immunisation of Foxes against Rabies: A Field Study. J. Vet. 1982, 29, 372–396. [Google Scholar] [CrossRef]
- Müller, T.; Freuling, C.M. Rabies Vaccines for Wildlife. In Rabies and Rabies Vaccines; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 45–70. [Google Scholar]
- Müller, T.F.; Schröder, R.; Wysocki, P.; Mettenleiter, T.C.; Freuling, C.M. Spatio-temporal Use of Oral Rabies Vaccines in Fox Rabies Elimination Programmes in Europe. PLOS Neglected Trop. Dis. 2015, 9, e0003953. [Google Scholar] [CrossRef] [Green Version]
- Kamp, V.T.; Friedrichs, V.; Freuling, C.; Vos, A.; Potratz, M.; Klein, A.; Zaeck, L.; Eggerbauer, E.; Schuster, P.; Kaiser, C.; et al. Comparable Long-Term Rabies Immunity in Foxes after IntraMuscular and Oral Application Using a Third-Generation Oral Rabies Virus Vaccine. Vaccines 2021, 9, 49. [Google Scholar] [CrossRef]
- Dietzschold, B.; Wunner, W.H.; Wiktor, T.J.; Lopes, A.D.; Lafon, M.; Smith, C.L.; Koprowski, H. Characterization of an antigenic determinant of the glycoprotein that correlates with pathogenicity of rabies virus. Proc. Natl. Acad. Sci. USA 1983, 80, 70–74. [Google Scholar] [CrossRef] [Green Version]
- Faber, M.; Pulmanausahakul, R.; Hodawadekar, S.S.; Spitsin, S.; McGettigan, J.P.; Schnell, M.J.; Dietzschold, B. Overexpression of the Rabies Virus Glycoprotein Results in Enhancement of Apoptosis and Antiviral Immune Response. J. Virol. 2002, 76, 3374–3381. [Google Scholar] [CrossRef] [Green Version]
- Mebatsion, T.; Weiland, F.; Conzelmann, K.-K. Matrix Protein of Rabies Virus Is Responsible for the Assembly and Budding of Bullet-Shaped Particles and Interacts with the Transmembrane Spike Glycoprotein G. J. Virol. 1999, 73, 242–250. [Google Scholar] [CrossRef] [Green Version]
- Kamp, V.; Freuling, C.M.; Vos, A.; Schuster, P.; Kaiser, C.; Ortmann, S.; Kretzschmar, A.; Nemitz, S.; Eggerbauer, E.; Ulrich, R.; et al. Responsiveness of various reservoir species to oral rabies vaccination correlates with differences in vaccine uptake of mucosa associated lymphoid tissues. Sci. Rep. 2020, 10, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maki, J.; Guiot, A.L.; Aubert, M.; Brochier, B.; Cliquet, F.; Hanlon, C.A.; King, R.; Oertli, E.H.; Rupprecht, C.E.; Schumacher, C.; et al. Oral vaccination of wildlife using a vaccinia—rabies—glycoprotein recombinant virus vaccine (RABORAL V—RG ® ): A global review. Vet. Res. 2017, 48, 1–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vos, A.; Freuling, C.; Ortmann, S.; Kretzschmar, A.; Mayer, D.; Schliephake, A.; Müller, T. An assessment of shedding with the oral rabies virus vaccine strain SPBN GASGAS in target and non-target species. Vaccine 2018, 36, 811–817. [Google Scholar] [CrossRef] [PubMed]
- Pfaff, F.; Müller, T.; Freuling, C.M.; Fehlner-Gardiner, C.; Nadin-Davis, S.; Robardet, E.; Cliquet, F.; Vuta, V.; Hostnik, P.; Mettenleiter, T.C.; et al. In-depth genome analyses of viruses from vaccine-derived rabies cases and corresponding live-attenuated oral rabies vaccines. Vaccine 2019, 37, 4758–4765. [Google Scholar] [CrossRef] [PubMed]
- Alleman, M.M.; Jorba, J.; Greene, S.A.; Diop, O.M.; Iber, J.; Tallis, G.; Goel, A.; Wiesen, E.; Wassilak, S.G.F.; Burns, C.C. Update on Vaccine-Derived Poliovirus Outbreaks—Worldwide, July 2019–February 2020. MMWR. Morb. Mortal. Wkly. Rep. 2020, 69, 489–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lodmell, D.L.; Ewalt, L.C. Pathogenesis of street rabies virus infections in resistant and susceptible strains of mice. J. Virol. 1985, 55, 788–795. [Google Scholar] [CrossRef] [Green Version]
- Artois, M.; Guittré, C.; Thomas, I.; Leblois, H.; Brochier, B.; Barrat, J. Potential pathogenicity for rodents of vaccines intended for oral vaccination against rabies: A comparison. Vaccine 1992, 10, 524–528. [Google Scholar] [CrossRef]
- Müller, T.; Bätza, H.-J.; Beckert, A.; Bunzenthal, C.; Cox, J.H.; Freuling, C.M.; Fooks, A.R.; Frost, J.; Geue, L.; Hoeflechner, A.; et al. Analysis of vaccine-virus-associated rabies cases in red foxes (Vulpes vulpes) after oral rabies vaccination campaigns in Germany and Austria. Arch. Virol. 2009, 154, 1081–1091. [Google Scholar] [CrossRef]
- Esposito, J.; Brechling, K.; Baer, G.; Moss, B. Vaccinia virus recombinants expressing rabiesvirus glycoprotein protect against rabies. Virus Genes 1987, 1, 7–21. [Google Scholar] [CrossRef]
- Brown, L.; Rosatte, R.; Fehlner-Gardiner, C.; Ellison, J.; Jackson, F.; Bachmann, P.; Taylor, J.; Franka, R.; Donovan, D. Oral vaccination and protection of striped skunks (Mephitis mephitis) against rabies using ONRAB®. Vaccine 2014, 32, 3675–3679. [Google Scholar] [CrossRef]
- Rosatte, R.C.; Donovan, D.; Davies, J.C.; Allan, M.; Bachmann, P.; Stevenson, B.; Sobey, K.; Brown, L.; Silver, A.; Bennett, K.; et al. Aerial distribution of ONRAB®baits as a tactic to control rabies in RACCOONS and striped skunks in Ontario, Canada. J. Wildl. Dis. 2009, 45, 363–374. [Google Scholar] [CrossRef] [Green Version]
- Roess, A.A.; Rea, N.; Lederman, E.; Dato, V.; Chipman, R.; Slate, D.; Reynolds, M.; Damon, I.K.; Rupprecht, C.E. National surveillance for human and pet contact with oral rabies vaccine baits, 2001–2009. J. Am. Vet. Med. 2012, 240, 163–168. [Google Scholar] [CrossRef] [Green Version]
- Rupprecht, C.E.; Blass, L.; Smith, K.; Orciari, L.A.; Niezgoda, M.; Whitfield, S.G.; Gibbons, R.V.; Guerra, M.; Hanlon, C.A. Human Infection Due to Recombinant Vaccinia–Rabies Glycoprotein Virus. N. Engl. J. Med. 2001, 345, 582–586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rupprecht, C.E.; Hanlon, C.A.; Blanton, J.; Manangan, J.; Morrill, P.; Murphy, S.; Niezgoda, M.; Orciari, L.A.; Schumacher, C.L.; Dietzschold, B. Oral vaccination of dogs with recombinant rabies virus vaccines. Virus Res. 2005, 111, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Root, J.J.; McLean, R.G.; Slate, D.; MacCarthy, K.A.; Osorio, J.E. Potential effect of prior raccoonpox virus infection in raccoons on vaccinia-based rabies immunization. BMC Immunol. 2008, 9, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wandeler, A.I.; Capt, S.; Kappeler, A.; Hauser, R. Oral immunization of wildlife against rabies: Concept and first field ex-periments. Rev. Infect. Dis. 1988, 10, S649–S653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vitasek, J. A review of rabies elimination in Europe. Vet. Med. 2012, 49, 171–185. [Google Scholar] [CrossRef] [Green Version]
- Müller, F.T.; Freuling, C.M. Rabies control in Europe: An overview of past, current and future strategies. Rev. Sci. Tech. 2018, 37, 409–419. [Google Scholar] [CrossRef] [PubMed]
- Müller, T.; Freuling, C.M.; Wysocki, P.; Roumiantzeff, M.; Freney, J.; Mettenleiter, T.C.; Vos, A. Terrestrial rabies control in the European Union: Historical achievements and challenges ahead. Vet. J. 2014, 203, 10–17. [Google Scholar] [CrossRef]
- MacInnes, C.D.; Smith, S.M.; Tinline, R.R.; Ayers, N.R.; Bachmann, P.; Ball, D.G.A.; Calder, L.A.; Crosgrey, S.J.; Fielding, C.; Hauschildt, P.; et al. ELIMINATION OF RABIES FROM RED FOXES IN EASTERN ONTARIO. J. Wildl. Dis. 2001, 37, 119–132. [Google Scholar] [CrossRef]
- Ma, X.; Monroe, B.P.; Wallace, R.M.; Orciari, L.A.; Gigante, C.M.; Kirby, J.D.; Chipman, R.B.; Fehlner-Gardiner, C.; Cedillo, V.G.; Petersen, B.W. Rabies surveillance in the United States during 2019 Xiaoyue. J. Am. Anim. Hosp. Assoc. 2021, 258, 1205–1220. [Google Scholar]
- Rupprecht, C.E.; Wiktor, T.J.; Johnston, D.H.; Hamir, A.N.; Dietzschold, B.; Wunner, W.H.; Glickman, L.T.; Koprowski, H. Oral immunization and protection of raccoons (Procyon lotor) with a vaccinia-rabies glycoprotein recombinant virus vaccine. Proc. Natl. Acad. Sci. USA 1986, 83, 7947–7950. [Google Scholar] [CrossRef] [Green Version]
- Rupprecht, C.E.; Dietzschold, B.; Cox, J.H.; Schneider, L.G. Oral vaccination of raccoons (Procyon lotor) with an attenuated (SAD-B19) rabies virus vaccine. J. Wildl. Dis. 1989, 25, 548–554. [Google Scholar] [CrossRef]
- Brochier, B.; Kieny, M.P.; Costy, F.; Coppens, P.; Bauduin, B.; Lecocq, J.P.; Languet, B.; Chappuis, G.; Desmettre, P.; Afiademanyo, K.; et al. Large-scale eradication of rabies using recombinant vaccinia-rabies vaccine. Nature 1991, 354, 520–522. [Google Scholar] [CrossRef]
- Knobel, D.L.; Du Toit, J.T.; Bingham, J. Development of a bait and baiting system for delivery of oral rabies vaccine to free-ranging african wild dogs (Lycaon pictus). J. Wildl. Dis. 2002, 38, 352–362. [Google Scholar] [CrossRef] [Green Version]
- Bonwitt, J.; Bonaparte, S.; Blanton, J.; Gibson, A.D.; Hoque, M.; Kennedy, E.; Islam, K.; Siddiqi, U.R.; Wallace, R.M.; Azam, S. Oral bait preferences and feasibility of oral rabies vaccination in Bangladeshi dogs. Vaccine 2020, 38, 5021–5026. [Google Scholar] [CrossRef]
- Berentsen, A.R.; Bender, S.; Bender, P.; Bergman, D.; Hausig, K.; VerCauteren, K.C. Preference among 7 bait flavors delivered to domestic dogs in Arizona: Implications for oral rabies vaccination on the Navajo Nation. J. Vet. Behav. 2014, 9, 169–171. [Google Scholar] [CrossRef] [Green Version]
- Berentsen, A.R.; Bender, S.; Bender, P.; Bergman, D.; Gilbert, A.T.; Rowland, H.M.; Vercauteren, K.C.; Information, P.E.K.F.C. Bait flavor preference and immunogenicity of ONRAB baits in domestic dogs on the Navajo Nation, Arizona. J. Vet. Behav. 2016, 15, 20–24. [Google Scholar] [CrossRef] [Green Version]
- Bender, S.; Bergman, D.; Vos, A.; Martin, A.; Chipman, R. Field Studies Evaluating Bait Acceptance and Handling by Dogs in Navajo Nation, USA. Trop. Med. Infect. Dis. 2017, 2, 17. [Google Scholar] [CrossRef] [Green Version]
- Gibson, A.D.; Mazeri, S.; Yale, G.; Desai, S.; Naik, V.; Corfmat, J.; Ortmann, S.; King, A.; Müller, T.; Handel, I.; et al. Development of a Non-Meat-Based, Mass Producible and Effective Bait for Oral Vaccination of Dogs against Rabies in Goa State, India. Trop. Med. Infect. Dis. 2019, 4, 118. [Google Scholar] [CrossRef] [Green Version]
- Matter, H.C.; Kharmachi, H.; Haddad, N.; Ben Youssef, S.; Sghaier, C.; Ben Khelifa, R.; Jemli, J.; Mrabet, L.; Meslin, F.X.; Wandeler, A.I. Test of Three Bait Types for Oral Immunization of Dogs against Rabies in Tunisia. Am. J. Trop. Med. Hyg. 1995, 52, 489–495. [Google Scholar] [CrossRef]
- Yakobson, B.A.; King, R.; Sheichat, N.; Eventov, B.; David, D. Assessment of the efficacy of oral vaccination of livestock guardian dogs in the framework of oral rabies vaccination of wild canids in Israel. Dev. Biol. 2008, 131, 151–156. [Google Scholar]
- Kasemsuwan, S.; Chanachai, K.; Pinyopummintr, T.; Leelalapongsathon, K.; Sujit, K.; Vos, A. Field Studies Evaluating Bait Acceptance and Handling by Free-Roaming Dogs in Thailand. Vet. Sci. 2018, 5, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, T.G.; Millien, M.; Vos, A.; Fracciterne, F.A.; Crowdis, K.; Chirodea, C.; Medley, A.; Chipman, R.; Qin, Y.; Blanton, J.; et al. Evaluation of immune responses in dogs to oral rabies vaccine under field conditions. Vaccine 2017, 37, 4743–4749. [Google Scholar] [CrossRef] [PubMed]
- Darkaoui, S.; Boue, F.; Demerson, J.M.; Fassi Fihri, O.; Yahia, K.I.S.; Cliquet, F. First trials of oral vaccination with rabies SAG2 dog baits in Morocco. Clin. Exp. Vaccine Res. 2014, 3, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Matter, H.C.; Schumacher, C.L.; Kharmachi, H.; Hammami, S.; Tlatli, A.; Jemli, J.; Marabet, L.; Meslin, F.X.; Aubert, M.F.; Neuenschwander, B.E.; et al. Field evaluation of two bait delivery systems for the oral immunization of dogs against rabies in Tunisia. Vaccine 1998, 16, 657–665. [Google Scholar] [CrossRef]
- Kharmachi, H.; Haddad, N.; Matter, H. Tests of four baits for oral vaccination of dogs against rabies in Tunisia. Vet. Rec. 1992, 130, 494. [Google Scholar] [CrossRef]
- Schuster, P.; Gülsen, N.; Neubert, A.; Vos, A. Field trials evaluating bait uptake by an urban dog population in Turkey. J. Etlik Vet. Microbiol. 1998, 9, 73–81. [Google Scholar]
- Estrada, R.; Vos, A.; De Leon, R. Acceptability of local made baits for oral vaccination of dogs against rabies in the Philippines. BMC Infect. Dis. 2001, 1, 19. [Google Scholar] [CrossRef] [Green Version]
- Corn, J.L.; Catalán, E.E.; Méndez, J.R. Evaluation of Baits for Delivery of Oral Rabies Vaccine to Dogs in Guatemala. Am. J. Trop. Med. Hyg. 2003, 69, 155–158. [Google Scholar] [CrossRef]
- World Health Organization. Field Application of Oral Rabies Vaccines for Dogs: Report of a WHO Consultation Organized with the Participation of the Office International of Epizooties; World Health Organization: Geneva, Switzerland, 1998. [Google Scholar]
- Haddad, N.; Khelifa, R.; Matter, H.; Kharmachi, H.; Aubert, M.; Wandeler, A.; Blancou, J. Assay of oral vaccination of dogs against rabies in Tunisia with the vaccinal strain SADBern. Vaccine 1994, 12, 307–309. [Google Scholar] [CrossRef]
- Aylan, O.; Vos, A. Efficacy of oral rabies vaccine baits in indigenous Turkish dogs. Rev. Infect. Dis. 2000, 2, 74–77. [Google Scholar]
- Metlin, A.; Paulin, L.; Suomalainen, S.; Neuvonen, E.; Rybakov, S.; Mikhalishin, V.; Huovilainen, A. Characterization of Rus-sian rabies virus vaccine strain RV-97. Virus Res. 2008, 132, 242–247. [Google Scholar] [CrossRef]
- Zhugunissov, K.; Bulatov, Y.; Taranov, D.; Yershebulov, Z.; Koshemetov, Z.; Abduraimov, Y.; Kondibayeva, Z.; Samoltyrova, A.; Amanova, Z.; Khairullin, B.; et al. Protective immune response of oral rabies vaccine in stray dogs, corsacs and steppe wolves after a single immunization. Arch. Virol. 2017, 162, 3363–3370. [Google Scholar] [CrossRef]
- Buchukury, J.V.; Kovaliov, N.A.; Usenia, M.M. Epizootic efficiency of the rabies strain Kmiev 94 for oral immunization of wild carnivores against rabies. Proc. Natl. Acad. Sci. Belarus Agrar. Ser. 2009, 3, 86–91. [Google Scholar]
- Mähl, P.; Cliquet, F.; Guiot, A.-L.; Niin, E.; Fournials, E.; Saint-Jean, N.; Aubert, M.; Rupprecht, C.E.; Gueguen, S. Twenty year experience of the oral rabies vaccine SAG2 in wildlife: A global review. Vet. Res. 2014, 45, 1–17. [Google Scholar] [CrossRef]
- Cliquet, F.; Gurbuxani, J.P.; Pradhan, H.K.; Pattnaik, B.; Patil, S.S.; Regnault, A.; Begouen, H.; Guiot, A.L.; Sood, R.; Mahl, P.; et al. The safety and efficacy of the oral rabies vaccine SAG2 in Indian stray dogs. Vaccine 2007, 25, 3409–3418. [Google Scholar] [CrossRef]
- Hammami, S.; Schumacher, C.L.; Cliquet, F.; Barrat, J.; Tlatli, A.; Ben Osman, R.; Aouina, T.; Aubert, A.; Aubert, M. Safety evaluation of the SAG2 rabies virus mutant in Tunisian dogs and several non-target species. Vet. Res. 1999, 30, 353–362. [Google Scholar]
- Freuling, C.M.; Eggerbauer, E.; Finke, S.; Kaiser, C.; Kretzschmar, A.; Nolden, T.; Ortmann, S.; Schröder, C.; Teifke, J.P.; Schuster, P.; et al. Efficacy of the oral rabies virus vaccine strain SPBN GASGAS in foxes and raccoon dogs. Vaccine 2017, 37, 4750–4757. [Google Scholar] [CrossRef]
- Leelahapongsathon, K.; Kasemsuwan, S.; Pinyopummintr, T.; Boodde, O.; Phawaphutayanchai, P.; Aiyara, N.; Bobe, K.; Vos, A.; Friedrichs, V.; Müller, T.; et al. Humoral Immune Response of Thai Dogs after Oral Vaccination against Rabies with the SPBN GASGAS Vaccine Strain. Vaccines 2020, 8, 573. [Google Scholar] [CrossRef]
- Bankovskiy, D.; Safonov, G.; Kurilchuk, Y. Immunogenicity of the ERA G 333 rabies virus strain in foxes and raccoon dogs. Dev. Boil. 2008, 131, 461–466. [Google Scholar]
- Perera, M.; Harischandra, P.; Wimalaratne, O.; Damboragama, S. Feasibility of canine oral rabies vaccination in Sri Lanka–a preliminary report. Ceylon Med. J. 2000, 45, 61–64. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Liu, Y.; Fooks, A.R.; Zhang, F.; Hu, R. Oral vaccination of dogs (Canis familiaris) with baits containing the recombinant rabies-canine adenovirus type-2 vaccine confers long-lasting immunity against rabies. Vaccine 2008, 26, 345–350. [Google Scholar] [CrossRef]
- Dellepiane, N.; Wood, D. Twenty-five years of the WHO vaccines prequalification programme (1987–2012): Lessons learned and future perspectives. Vaccine 2013, 33, 52–61. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Guidance for Research on Oral Rabies Vaccines and Field Application of Oral Vaccination of Dogs Against Rabies; World Health Organization: Geneva, Switzerland, 2007. [Google Scholar]
- Neels, P.; Southern, J.; Abramson, J.; Duclos, P.; Hombach, J.; Marti, M.; Fitzgerald-Husek, A.; Fournier-Caruana, J.; Hanquet, G. Off-label use of vaccines. Vaccine 2017, 35, 2329–2337. [Google Scholar] [CrossRef]
- Bioveta Bioveta Company Profile. Available online: https://www.bioveta.eu/en/company-profile/ (accessed on 8 August 2021).
- CEVA Animal Health. CEVA Company Profile. Available online: https://www.ceva.com/en/Who-are-we/Company-overview (accessed on 8 August 2021).
- Federal Service for Veterinary and Phytosanitary Surveillance ARRIAH. Available online: https://en.arriah.ru/main/ (accessed on 8 August 2021).
- Virbac About Virbac. Available online: https://corporate.virbac.com/home/discover-virbac/about-virbac.html (accessed on 8 August 2021).
- Boehringer Ingelheim Company Profile. Available online: https://www.boehringer-ingelheim.com/corporate-profile/our-company (accessed on 8 August 2021).
- Bioveta Lysvilpen Por. Ad Us. Vet. Available online: https://www.bioveta.eu/en/products/veterinary-products/lysvulpen-por-ad-us-vet-1.html (accessed on 10 August 2021).
- Baer, G.M.; Abelseth, M.K.; Debbie, J.G. Oral vaccination of foxes against rabies. Am. J. Epidemiology 1971, 93, 487–490. [Google Scholar] [CrossRef]
- Steck, F.; Wandeler, A.; Bichsel, P.; Capt, S.; Häfliger, U.; Schneider, L. Oral immunization of foxes against rabies laboratory and field studies. Comp. Immunol. Microbiol. Infect. Dis. 1982, 5, 165–171. [Google Scholar] [CrossRef]
- European Medicines Agency. Rabigen SAG2. Available online: https://www.ema.europa.eu/en/medicines/veterinary/EPAR/rabigen-sag2 (accessed on 10 August 2021).
- European Medicines Agency; Committee for Medicinal Products for Veterinary Use. CVMP Assessment Report for Rabitec (EMEA/V/C/004387/0000). European Medicines Agency: London, UK, 2017; pp. 44. [Google Scholar]
- Yarosh, O.K.; Wandeler, A.I.; Graham, F.L.; Campbell, J.B.; Prevec, L. Human adenovirus type 5 vectors expressing rabies glycoprotein. Vaccine 1996, 14, 1257–1264. [Google Scholar] [CrossRef]
- Government of Canada Rabies Vaccine. Live Adenovirus Vector (AdRG1.3 Baits), Trade Name: ONRAB—Environmental Assessment. Available online: https://inspection.canada.ca/animal-health/veterinary-biologics/environmental-assessments/rabies-vaccine-onrab/eng/1351609458287/1351609994816 (accessed on 10 August 2021).
- Vos, A.; Neubert, A.; Aylan, O.; Schuster, P.; Pommerening, E.; Müller, T.; Chivatsi, D.C. An update on safety studies of SAD B19 rabies virus vaccine in target and non-target species. Epidemiology Infect. 1999, 123, 165–175. [Google Scholar] [CrossRef]
- Orciari, L.A.; Niezgoda, M.; Hanlon, C.A.; Shaddock, J.H.; Sanderlin, D.W.; Yager, P.A.; Rupprecht, C.E. Rapid clearance of SAG-2 rabies virus from dogs after oral vaccination. Vaccine 2001, 19, 4511–4518. [Google Scholar] [CrossRef]
- Chanachai, K.; Wongphruksasoong, V.; Vos, A.; Leelahapongsathon, K.; Tangwangvivat, R.; Sagarasaeranee, O.; Lekcharoen, P.; Trinuson, P.; Kasemsuwan, S. Feasibility and Effectiveness Studies with Oral Vaccination of Free-Roaming Dogs against Rabies in Thailand. Viruses 2021, 13, 571. [Google Scholar] [CrossRef] [PubMed]
- Knowles, M.K.; Nadin-davis, S.A.; Sheen, M.; Rosatte, R.; Mueller, R.; Beresford, A. Safety studies on an adenovirus recom-binant vaccine for rabies (AdRG1.3-ONRAB ®) in target and non-target species. Vaccine 2009, 27, 6619–6626. [Google Scholar] [CrossRef] [PubMed]
- Bingham, J.; Kappeler, A.; Hill, F.W.G.; King, A.A.; Perry, B.D.; Foggin, C.M. Efficacy of SAD (Berne) Rabies Vaccine Given by the Oral Route in Two Species of Jackal (Canis mesomelas and Canis adustus). J. Wildl. Dis. 1995, 31, 416–419. [Google Scholar] [CrossRef] [Green Version]
- Masson, E.; Cliquet, F.; Aubert, M.; Barrat, J.; Aubert, A.; Artois, M.; Schumacher, C.L. Safety study of the SAG2 rabies virus mutant in several non-target species with a view to its future use for the immunization of foxes in Europe. Vaccine 1996, 14, 1506–1510. [Google Scholar] [CrossRef]
- Ortmann, S.; Vos, A.; Kretzschmar, A.; Walther, N.; Kaiser, C.; Freuling, C.; Lojkic, I.; Müller, T. Safety studies with the oral rabies virus vaccine strain SPBN GASGAS in the small Indian mongoose (Herpestes auropunctatus). BMC Vet. Res. 2018, 14, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Ortmann, S.; Kretzschmar, A.; Kaiser, C.; Lindner, T.; Freuling, C.; Kaiser, C.; Schuster, P.; Mueller, T.; Vos, A. In vivo safety studies with SPBN GASGAS in the frame of oral vaccination of foxes and raccoon dogs against rabies. Front. Vet. Sci. 2018, 5, 1–8. [Google Scholar]
- Fry, T.L.; VanDalen, K.K.; Duncan, C.; VerCauteren, K. The safety of ONRAB® in select non-target wildlife. Vaccine 2013, 31, 3839–3842. [Google Scholar] [CrossRef] [Green Version]
- Vrzal, V. Safety study of the Bio-10-SAD Bern strain of the rabies virus on the rhesus macaque monkey species. Acta Vet. Brno 2013, 82, 13–17. [Google Scholar] [CrossRef] [Green Version]
- Bingham, J.; Foggin, C.; Gerber, H.; Hill, F.; Kappeler, A.; King, A.; Perry, B.; Wandeler, A. Pathogenicity of SAD rabies vaccine given orally in chacma baboons (Papio ursinus). Vet. Rec. 1992, 131, 55–56. [Google Scholar] [CrossRef]
- Bingham, J.; Schumacher, C.; Aubert, M.; Hill, F.; Aubert, A. Innocuity studies of SAG-2 oral rabies vaccine in various Zimbabwean wild non-target species. Vaccine 1997, 15, 937–943. [Google Scholar] [CrossRef]
- Rupprecht, C.E.; Hanlon, C.A.; Cummins, L.B.; Koprowski, H. Primate responses to a vaccinia-rabies glycoprotein recombinant virus vaccine. Vaccine 1992, 10, 368–374. [Google Scholar] [CrossRef]
- Fekadu, M. Immunogenicity, efficacy and safety of an oral rabies vaccine (SAG-2) in dogs. Vaccine 1996, 14, 465–468. [Google Scholar] [CrossRef]
- Bingham, J.; Perry, B.D.; King, A.A.; Schumacher, C.L.; Aubert, M.; Kappeler, A.; Foggin, C.M.; Hill, F.W.; Aubert, A. Oral rabies vaccination of jackals: Progress in Zimbabwe. Onderstepoort J. Vet. Res. 1993, 60, 477–478. [Google Scholar]
- Vrzal, V.; Matouch, O. Annual testing of immunity in foxes after oral rabies immunization. Vet. Med. 1996, 41, 107–111. [Google Scholar]
- Neubert, A.; Schuster, P.; Muller, T.; Vos, A.; Pommerening, E. Immunogenicity and efficacy of the oral rabies vaccine SAD B19 in foxes. J. Vet. Med. Ser. B 2001, 48, 179–183. [Google Scholar] [CrossRef]
- Cliquet, F.; Guiot, A.; Munier, M.; Bailly, J.; Rupprecht, C.; Barrat, J. Safety and efficacy of the oral rabies vaccine SAG2 in raccoon dogs. Vaccine 2006, 24, 4386–4392. [Google Scholar] [CrossRef]
- Freuling, C.M.; Kamp, V.t.; Klein, A.; Günther, M.; Zaeck, L.; Potratz, M.; Eggerbauer, E.; Bobe, K.; Kaiser, C.; Kretzschmar, A.; et al. Long-Term Immunogenicity and Efficacy of the Oral Rabies Virus Vaccine Strain SPBN GASGAS in Foxes. Viruses 2019, 11, 790. [Google Scholar] [CrossRef] [Green Version]
- Cliquet, F.; Guiot, A.L.; Schumacher, C.; Maki, J.; Cael, N.; Barrat, J. Efficacy of a square presentation of V-RG vaccine baits in red fox, domestic dog and raccoon dog. Dev. Biol. 2008, 131, 257–264. [Google Scholar]
- Thomas, I.; Brochier, B.; Languet, B.; Blancou, J.; Peharpre, D.; Kieny, M.P.; Desmettre, P.; Chappuis, G.; Pastoret, P.-P. Primary Multiplication Site of the Vaccinia-rabies Glycoprotein Recombinant Virus Administered to Foxes by the Oral Route. J. Gen. Virol. 1990, 71, 37–42. [Google Scholar] [CrossRef]
- Sobey, K.G.; Jamieson, S.E.; Walpole, A.A.; Rosatte, R.C.; Donovan, D.; Fehlner-gardiner, C.; Nadin-davis, S.A.; Davies, J.C.; Kyle, C.J. ONRAB oral rabies vaccine is shed from, but does not persist in, captive mammals. Vaccine 2019, 37, 4310–4317. [Google Scholar] [CrossRef]
- Cliquet, F. Oral vaccines used for rabies control programmes: Types, storage, quality control and performance in different species. 2006. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.577.8853&rep=rep1&type=pdf (accessed on 8 August 2021).
- Vos, A.; Neubert, A. Thermo-stability of the oral rabies virus vaccines SAD B19 and SAD P5/88. Dtsch. Tierarztl. Wochenschr. 2002, 109, 428–432. [Google Scholar]
- Kovalev, N.; Gusev, A.; Bachukuri, D.; Usenya, M.; Krasochko, P. Development of a liquid cultural inactivated sorbing vaccine Parvorab against rabies and canine parvovirus enteritis. Epizoot. Immunobiol. Pharmacol. Sanit. Sci. Int. Sci. Pract. J. 2011, 1, 19–26. [Google Scholar]
- Bingham, J.; Schumacher, C.; Hill, F.; Aubert, A. Efficacy of SAG-2 oral rabies vaccine in two species of jackal (Canis adustus and Canis mesomelas). Vaccine 1999, 17, 551–558. [Google Scholar] [CrossRef]
- Pastoret, P.; Brochier, B.; Languet, B.; Duret, C.; Chappuis, G.; Desmettre, P. Stability of recombinant vaccinia-rabies vaccine in veterinary use. Dev. Biol. Stand. 1996, 87, 245–249. [Google Scholar] [PubMed]
- Masson, E.; Bruyère-masson, V.; Vuillaume, P.; Lemoyne, S.; Masson, E.; Bruyère-masson, V.; Vuillaume, P.; Lemoyne, S.; Rabies, M.A.; Masson, E.; et al. Rabies oral vaccination of foxes during the summer with the VRG vaccine bait. Vet. Res. Bio-Med Cent. 1999, 30, 595–605. [Google Scholar]
- Slate, D.; Chipman, R.B.; Algeo, T.P.; Mills, S.A.; Nelson, K.M.; Croson, C.K.; Dubovi, E.J.; Vercauteren, K.; Renshaw, R.W.; Atwood, T.; et al. Safety and immunogenicity of Ontario Rabies Vaccine Bait (Onrab) in the first US field trial in racoons (Procyon lotor). J. Wildl. Dis. 2014, 50, 582–595. [Google Scholar] [CrossRef] [Green Version]
- Vuta, V.; Barbuceanu, F.; Predoi, G.; Vlagioiu, C. Vaccines and vaccination programmes used to eradicate and control rabies in wildlife. Vet. Med. 2018, LXIV, 123–129. [Google Scholar]
- Brochier, B.; Aubert, M.; Pastoret, P.-P.; Masson, E.; Schon, J.; Lombard, M.; Chappuis, G.; Languet, B.; Desmettre, P. Field use of vaccinia-rabies recombinant vaccine for the control of sylvatic rabies in Europe and North America. Rev. Sci. et Tech. de l’OIE 1996, 15, 947–970. [Google Scholar] [CrossRef]
- European Medicines Agency Rabitec—Rabies Vaccine (Live, Oral) for Foxes and Raccoon Dogs. Available online: https://www.ema.europa.eu/en/medicines/veterinary/EPAR/rabitec#overview-section (accessed on 8 August 2021).
- Head, J.R.; Vos, A.; Blanton, J.; Müller, T.; Chipman, R.; Pieracci, E.G.; Cleaton, J.; Wallace, R. Environmental distribution of certain modified live-virus vaccines with a high safety profile presents a low-risk, high-reward to control zoonotic diseases. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Faber, M.; Faber, M.; Papaneri, A.; Weihe, E.; Dietzschold, B.; Schnell, J.; Bette, M.; Schnell, M.J. A Single Amino Acid Change in Rabies Virus Glycoprotein Increases Virus Spread and Enhances Virus Pathogenicity a Single Amino Acid Change in Rabies Virus Glycoprotein Increases Virus Spread and Enhances Virus Pathogenicity. J Virol. 2005, 79, 14141–14148. [Google Scholar] [CrossRef] [Green Version]
- Faber, M.; Faber, M.-L.; Li, J.; Preuss, M.A.R.; Schnell, M.; Dietzschold, B. Dominance of a Nonpathogenic Glycoprotein Gene over a Pathogenic Glycoprotein Gene in Rabies Virus. J. Virol. 2007, 81, 7041–7047. [Google Scholar] [CrossRef] [Green Version]
- Tao, L.; Ge, J.; Wang, X.; Zhai, H.; Hua, T.; Zhao, B.; Kong, D.; Yang, C.; Chen, H.; Bu, Z. Molecular Basis of Neurovirulence of Flury Rabies Virus Vaccine Strains: Importance of the Polymerase and the Glycoprotein R333Q Mutation. J. Virol. 2010, 84, 8926–8936. [Google Scholar] [CrossRef] [Green Version]
- Faber, M.; Dietzschold, B.; Li, J. Immunogenicity and Safety of Recombinant Rabies Viruses Used for Oral Vaccination of Stray Dogs and Wildlife. Zoonoses Public Heal. 2009, 56, 262–269. [Google Scholar] [CrossRef]
- Vos, A.; Kretzschmar, A.; Ortmann, S.; Lojkic, I.; Habla, C.; Müller, T.; Kaiser, C.; Hundt, B.; Schuster, P. Oral Vaccination of Captive Small Indian Mongoose (Herpestes auropunctatus) against Rabies. J. Wildl. Dis. 2013, 49, 1033–1036. [Google Scholar] [CrossRef]
- Dietzschold, M.; Faber, M.; Mattis, J.; Pak, K.; Schnell, M.; Dietzschold, B. In vitro growth and stability of recombinant rabies viruses designed for vaccination of wildlife. Vaccine 2004, 23, 518–524. [Google Scholar] [CrossRef]
Type | Vaccine Strain | Vaccine Name and Manufacturer | WILDLIFE | DOG | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Species | Years In Use | Doses Distributed | Countries In Which Distribution Took Place | References | Year | Countries in Which Trials Have Taken Place | References | |||
Modified Live (1st generation) | SAD Bern | Lysvulpen, Bioveta, Czech Republic | Red Fox, racoon dog | 1979–1980 | 211,000,000 | Europe | [29] | 1994 | Tunisia | [75] |
SAD B19 | Fuchsoral, Ceva, France | Red fox | 1978–2014 | 268,000,000 | Europe | [29] | 2001 | Philippines | [72] | |
1998 | Turkey | [76] | ||||||||
RV-97 | Sinrab, FGBI ARRIAH, Russia | Racoon dogs | 2002–current | 4200,000 | Kazakhstan, Ukraine, Belarus, Russia | [29,77] | - | - | - | |
VRC-RZ2 | Kazakhstan laboratory | Corsac fox, steppe wolf | 2017 | Laboratory | Kazakhstan | [78] | 2017 | Kazakhstan (laboratory) | [78] | |
KMIEV-94 | Institute of Experimental Veterinary, Belarus | Red fox | 2009 | 10,300,000 | Belarus | [29,79] | - | - | - | |
Modified Live (2nd generation) | SAG 2 | RABIGEN® Virbac, France | Red fox, raccoon dog | 199 –2012 | 28,000,000 | France, Switzerland, Finland, Estonia, Italy, Germany, Belgium | [29,80] | 2007 | India | [81] |
1998 | Tunisia | [82] | ||||||||
2012 | Morocco | [68] | ||||||||
Modified Live (3rd generation) | SPBN GASGAS | Rabitec® Ceva, France | Red fox, raccoon dog | 201 -2019 | Laboratory | Germany | [83] | 2017 | Haiti | [67] |
2020 | Thailand | [84] | ||||||||
ERA G333 | Prokov, Russia | Red fox, raccoon dog | 2017 | Laboratory | Russia | [85] | - | - | - | |
Vector–based (Vaccinia virus) | V-RG | Raboral V-RG® Boehringer Ingelheim, Germany | Raccoon, coyote, grey fox, red fox, golden jackal, raccoon dog | 1987–2017 | 250,000,000 | USA, Canada, France, Belgium, Luxembourg, Ukraine, Israel, South Korea | [35] | 2000 | Sri Lanka | [86] |
2005 | USA (laboratory) | [47] | ||||||||
Vector-based (Adenovirus) | AdRG1.3 | ONRAB® Artemis Technologies Inc., Canada | Striped skunk, red fox, raccoon | 2007–2017 | 28,500,000 | Canada, USA | [28,44] | 2016 | USA (laboratory) | [61] |
2007 | China (laboratory) | [87] |
No. | Major Categories for Assessment of an Oral Rabies Vaccine Candidate | Modified Live Vaccines | Vector-Based Vaccines | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SAD Berne | SAD B19 | RV-97 | VRC-RZ2 | KMIEV-94 | SAG 2 | SPBN GASGAS | ERA G333 | V-RG | AdRG1.3 | ||
1 | Description of the manufacturer | [91] | [92] | [93] | - | - | [94] | [92] | - | [95] | - |
2 | Description of the vaccine construct | [96,97] | [98] | [77] | - | [79] | [99] | [100] | - | - | [101,102] |
3 | Is the vaccine safe for the target animal? | [75] | [103] | - | [78] | - | [82,104] | [67,105] | - | [47] | [106] |
4 | Has safety been assessed for potential non-target animals? | Jackals [107] | [103] | - | - | - | [108] | [83,109,110] | [85] | [35] | [106,111] |
5 | Has safety been assessed in nonhuman primates? | [112] | [113] | - | - | - | [114] | Conducted in parent vaccine SAD-B19 [113] | - | [115] | - |
6 | Does the vaccine elicit an immune response in target animals (dogs)? | [75] | [76] | - | [78] | - | [81,116] | [67,84,105] | - | [47] | [60,61,106] |
7 | Have virulent challenge studies been conducted to assess duration of immunity? | [117,118] | Foxes [119] | - | [78] | - | [116,120] | Foxes [121] | Foxes and raccoon dogs [85] | [35,122] | [106] |
8 | Does the vaccine replicate in host tissues and is replicating virus excreted from animals? | - | [103] | - | - | - | [104] | [36] | - | [123] | [106,124] |
9 | Is the bait composition attractive to the target animal, and does it convey delivery of the vaccine to the target host-anatomy? | - | - | - | - | - | [68] | [63,105] | - | - | - |
10 | Have bait contact rates been described for the bait distribution method you are considering? | - | - | - | - | - | - | [20,67,105] | - | - | - |
11 | Has the vaccine been evaluated under field conditions and are storage requirements known? | [125] | [126] | - | - | [127] | [128] | [67,105] | - | [129,130] | [131] |
12 | Has an economic cost-benefit assessment been conducted? | - | -- | - | - | - | - | [20] | - | - | - |
13 | Is the product currently acknowledged by an international public health agency for field use? | [132] | _ | _ | _ | _ | _ | [67,105] | _ | [133] | _ |
14 | Is the product currently licensed in any countries for field use?* | Europe | Europe | Russia | Kazakhstan | Belarus | [99] Europe | [134] Europe | Russia | Europe, USA | [102] Canada |
Value | Total Exposures | Total Health Care Visits | Total Human Deaths | |
---|---|---|---|---|
Standard analysis | Mean (95% CI) per 40,000 baits | 5.06 (0, 14) | 3.98 (0, 11) | 0 (0, 0) |
Rate per 10 million baits | 1264 | 995 | 0 | |
Range per 40,000 baits | 0–20 | 0–16 | 0–0 | |
Sensitivity analysis | Mean (95% CI) per 40,000 baits | 4.9 (0, 14) | 3.4 (0, 12) | 0 (0, 0) |
Range per 40,000 baits | 0–24 | 0–22 | 0–0 |
Contact with Baits | Interaction with Recently Vaccinated Animals (Dogs) | ||||||
---|---|---|---|---|---|---|---|
Value | Mucosal Contact | Transdermal Contact | Licks | Bites | Severe Bites | Bites from Rabid Animal | |
Standard analysis | Mean (95% CI) per 40,000 baits | 0 (0, 0) | 0 (0, 0) | 0 (0, 1) | 5.05 (0, 14) | 0 (0, 1) | 0 (0, 0) |
Rate per 10 million baits | 0 | 0 | 1.25 | 1262.5 | 0.25 | 0 | |
Range per 40,000 baits | 0–0 | 0–0 | 0–1 | 0–20 | 0–1 | 0–0 | |
Sensitivity analysis | Mean (95% CI) per 40,000 baits | 0 (0, 0) | 0 (0, 0) | 0.21 (0, 1) | 4.98 (0, 11) | 0 (0, 1) | 0 (0, 0) |
Range per 40,000 baits | 0–0 | 0–0 | 0–4 | 0–24 | 0–1 | 0–0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yale, G.; Lopes, M.; Isloor, S.; Head, J.R.; Mazeri, S.; Gamble, L.; Dukpa, K.; Gongal, G.; Gibson, A.D. Review of Oral Rabies Vaccination of Dogs and Its Application in India. Viruses 2022, 14, 155. https://doi.org/10.3390/v14010155
Yale G, Lopes M, Isloor S, Head JR, Mazeri S, Gamble L, Dukpa K, Gongal G, Gibson AD. Review of Oral Rabies Vaccination of Dogs and Its Application in India. Viruses. 2022; 14(1):155. https://doi.org/10.3390/v14010155
Chicago/Turabian StyleYale, Gowri, Marwin Lopes, Shrikrishna Isloor, Jennifer R. Head, Stella Mazeri, Luke Gamble, Kinzang Dukpa, Gyanendra Gongal, and Andrew D. Gibson. 2022. "Review of Oral Rabies Vaccination of Dogs and Its Application in India" Viruses 14, no. 1: 155. https://doi.org/10.3390/v14010155
APA StyleYale, G., Lopes, M., Isloor, S., Head, J. R., Mazeri, S., Gamble, L., Dukpa, K., Gongal, G., & Gibson, A. D. (2022). Review of Oral Rabies Vaccination of Dogs and Its Application in India. Viruses, 14(1), 155. https://doi.org/10.3390/v14010155