Transmission of Diverse Variants of Strawberry Viruses Is Governed by a Vector Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Aphid Cultures
2.3. Transmission Assays
2.4. RNA Isolation
2.5. cDNA Synthesis
2.6. Genotype-Specific RT-qPCR
2.7. Determination of Ratios between Viral RNA Strands
2.8. High-Throughput Sequencing
2.9. Data Analysis
3. Results
3.1. Stability of Genomic Sequences of Individual Variants
3.2. Viruses and Their Variants Were Present in All Leaves, Leaf Parts and Runners
3.3. Graft Transmission
3.4. Absence of Cross-Protection between StrV-1A and B Variants
3.5. Absence of Cross-Protection between SMoV Variants
3.6. Virus Detection in Aphids
3.7. Statistical Analyses of Presence of Viruses and Their Variants in the Three Aphid Species
3.8. Single Aphid Virus Transmission Experiments
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raccah, B.; Fereres, A. Plant Virus Transmission by Insects. In eLS; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2009; ISBN 978-0-470-01617-6. [Google Scholar]
- Stobbe, A.H.; Roossinck, M.J. Plant Virus Metagenomics: What We Know and Why We Need to Know More. Front. Plant Sci. 2014, 5, 150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maclot, F.; Candresse, T.; Filloux, D.; Malmstrom, C.M.; Roumagnac, P.; van der Vlugt, R.; Massart, S. Illuminating an Ecological Blackbox: Using High Throughput Sequencing to Characterize the Plant Virome Across Scales. Front. Microbiol. 2020, 11, 578064. [Google Scholar] [CrossRef] [PubMed]
- Moreno, A.B.; López-Moya, J.J. When Viruses Play Team Sports: Mixed Infections in Plants. Phytopathology 2020, 110, 29–48. [Google Scholar] [CrossRef] [PubMed]
- Syller, J. Facilitative and Antagonistic Interactions between Plant Viruses in Mixed Infections: Plant Virus Interactions in Mixed Infections. Mol. Plant Pathol. 2012, 13, 204–216. [Google Scholar] [CrossRef] [PubMed]
- Martin, V.; Domingo, E. Influence of the Mutant Spectrum in Viral Evolution: Focused Selection of Antigenic Variants in a Reconstructed Viral Quasispecies. Mol. Biol. Evol. 2008, 25, 1544–1554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roossinck, M.J. Mutant Clouds and Bottleneck Events in Plant Virus Evolution. In Origin and Evolution of Viruses; Elsevier: Amsterdam, The Netherlands, 2008; pp. 251–258. ISBN 978-0-12-374153-0. [Google Scholar]
- Domingo, E.; Perales, C. Viral Quasispecies. PLoS Genet. 2019, 15, e1008271. [Google Scholar] [CrossRef] [Green Version]
- Maliogka, V.; Minafra, A.; Saldarelli, P.; Ruiz-García, A.; Glasa, M.; Katis, N.; Olmos, A. Recent Advances on Detection and Characterization of Fruit Tree Viruses Using High-Throughput Sequencing Technologies. Viruses 2018, 10, 436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia, S.; Hily, J.-M.; Komar, V.; Gertz, C.; Demangeat, G.; Lemaire, O.; Vigne, E. Detection of Multiple Variants of Grapevine Fanleaf Virus in Single Xiphinema Index Nematodes. Viruses 2019, 11, 1139. [Google Scholar] [CrossRef] [Green Version]
- Bergua, M.; Kang, S.-H.; Folimonova, S.Y. Understanding Superinfection Exclusion by Complex Populations of Citrus Tristeza Virus. Virology 2016, 499, 331–339. [Google Scholar] [CrossRef]
- Kleynhans, J.; Pietersen, G. Comparison of Multiple Viral Population Characterization Methods on a Candidate Cross-Protection Citrus Tristeza Virus (CTV) Source. J. Virol. Methods 2016, 237, 92–100. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.-F.; Zhang, S.; Guo, Q.; Sun, R.; Wei, T.; Qu, F. A New Mechanistic Model for Viral Cross Protection and Superinfection Exclusion. Front. Plant Sci. 2018, 9, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, A.M.A.; Gopal, D.V.R.S.; Sudhakar, C. GM Crops for Plant Virus Resistance: A Review. In Genetically Modified Crops; Kavi Kishor, P.B., Rajam, M.V., Pullaiah, T., Eds.; Springer: Singapore, 2021; pp. 257–337. ISBN 9789811559310. [Google Scholar]
- Harper, S.J.; Cowell, S.J.; Dawson, W.O. Bottlenecks and Complementation in the Aphid Transmission of Citrus Tristeza Virus Populations. Arch. Virol. 2018, 163, 3373–3376. [Google Scholar] [CrossRef] [PubMed]
- Piche, L.M.; Singh, R.P.; Nie, X.; Gudmestad, N.C. Diversity Among Potato Virus Y Isolates Obtained from Potatoes Grown in the United States. Phytopathology 2004, 94, 1368–1375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Della Bartola, M.; Byrne, S.; Mullins, E. Characterization of Potato Virus Y Isolates and Assessment of Nanopore Sequencing to Detect and Genotype Potato Viruses. Viruses 2020, 12, 478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, J.C.; Zhou, J.S. Insect Vector–Plant Virus Interactions Associated with Non-Circulative, Semi-Persistent Transmission: Current Perspectives and Future Challenges. Curr. Opin. Virol. 2015, 15, 48–55. [Google Scholar] [CrossRef] [Green Version]
- Hogenhout, S.A.; Ammar, E.-D.; Whitfield, A.E.; Redinbaugh, M.G. Insect Vector Interactions with Persistently Transmitted Viruses. Annu. Rev. Phytopathol. 2008, 46, 327–359. [Google Scholar] [CrossRef] [Green Version]
- Ng, J.C.K.; Perry, K.L. Transmission of Plant Viruses by Aphid Vectors. Mol. Plant Pathol. 2004, 5, 505–511. [Google Scholar] [CrossRef]
- Allen, L.J.S.; Bokil, V.A.; Cunniffe, N.J.; Hamelin, F.M.; Hilker, F.M.; Jeger, M.J. Modelling Vector Transmission and Epidemiology of Co-Infecting Plant Viruses. Viruses 2019, 11, 1153. [Google Scholar] [CrossRef] [Green Version]
- Jackson, A.O.; Dietzgen, R.G.; Goodin, M.M.; Bragg, J.N.; Deng, M. Biology of Plant Rhabdoviruses. Annu. Rev. Phytopathol. 2005, 43, 623–660. [Google Scholar] [CrossRef]
- Whitfield, A.E.; Huot, O.B.; Martin, K.M.; Kondo, H.; Dietzgen, R.G. Plant Rhabdoviruses—Their Origins and Vector Interactions. Curr. Opin. Virol. 2018, 33, 198–207. [Google Scholar] [CrossRef]
- Gallet, R.; Michalakis, Y.; Blanc, S. Vector-Transmission of Plant Viruses and Constraints Imposed by Virus–Vector Interactions. Curr. Opin. Virol. 2018, 33, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Moury, B.; Fabre, F.; Senoussi, R. Estimation of the Number of Virus Particles Transmitted by an Insect Vector. Proc. Natl. Acad. Sci. USA 2007, 104, 17891–17896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, A.; Li, H.; Schneider, W.L.; Sherman, D.J.; Gray, S.; Smith, D.; Roossinck, M.J. Analysis of Genetic Bottlenecks during Horizontal Transmission of Cucumber mosaic Virus. J. Virol. 2006, 80, 8345–8350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, R.R.; Tzanetakis, I.E. Characterization and Recent Advances in Detection of Strawberry Viruses. Plant Dis. 2006, 90, 384–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bragard, C.; Dehnen-Schmutz, K.; Gonthier, P.; Jacques, M.; Jaques Miret, J.A.; Justesen, A.F.; MacLeod, A.; Magnusson, C.S.; Milonas, P.; EFSA Panel on Plant Health (PLH); et al. Pest Categorisation of Non-EU Viruses of Fragaria L. EFSA J. 2019, 17, e05766. [Google Scholar] [CrossRef] [PubMed]
- Fránová, J.; Přibylová, J.; Koloniuk, I. Molecular and Biological Characterization of a New Strawberry Cytorhabdovirus. Viruses 2019, 11, 982. [Google Scholar] [CrossRef] [Green Version]
- Diaz-Lara, A.; Stevens, K.A.; Klaassen, V.; Hwang, M.S.; Al Rwahnih, M. Sequencing a Strawberry Germplasm Collection Reveals New Viral Genetic Diversity and the Basis for New RT-QPCR Assays. Viruses 2021, 13, 1442. [Google Scholar] [CrossRef]
- Koloniuk, I.; Přibylová, J.; Čmejla, R.; Valentová, L.; Fránová, J. Identification and Characterization of a Novel Umbra-like Virus, Strawberry Virus A, Infecting Strawberry Plants. Plants 2022, 11, 643. [Google Scholar] [CrossRef]
- Barritt, B.H.; Loo, H.Y.S. Effects of Mottle, Crinkle, and Mild Yellow-Edge Viruses on Growth and Yield of Hood and Northwest Strawberries. Can. J. Plant Sci. 1973, 53, 605–607. [Google Scholar] [CrossRef]
- Xiang, Y.; Bernardy, M.; Bhagwat, B.; Wiersma, P.A.; DeYoung, R.; Bouthillier, M. The Complete Genome Sequence of a New Polerovirus in Strawberry Plants from Eastern Canada Showing Strawberry Decline Symptoms. Arch. Virol. 2015, 160, 553–556. [Google Scholar] [CrossRef]
- Ding, X.; Chen, D.; Du, Z.; Zhang, J.; Wu, Z. The Complete Genome Sequence of a Novel Cytorhabdovirus Identified in Strawberry (Fragaria Ananassa Duch.). Arch. Virol. 2019, 164, 3127–3131. [Google Scholar] [CrossRef]
- Dara, S.K. Virus Decline of Strawberry in California and the Role of Insect Vectors and Associated Viruses. Plant Health Prog. 2015, 16, 211–215. [Google Scholar] [CrossRef] [Green Version]
- Koloniuk, I.; Fránová, J.; Sarkisova, T.; Přibylová, J. Complete Genome Sequences of Two Divergent Isolates of Strawberry Crinkle Virus Coinfecting a Single Strawberry Plant. Arch. Virol. 2018, 163, 2539–2542. [Google Scholar] [CrossRef] [PubMed]
- Harry, M.; Solignac, M.; Lachaise, D. Molecular Evidence for Parallel Evolution of Adaptive Syndromes in Fig-Breeding Lissocephala (Drosophilidae). Mol. Phylogenet. Evol. 1998, 9, 542–551. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.; Song, J.; Liu, C.; Luo, K.; Han, J.; Li, Y.; Pang, X.; Xu, H.; Zhu, Y.; Xiao, P.; et al. Use of ITS2 Region as the Universal DNA Barcode for Plants and Animals. PLoS ONE 2010, 5, e13102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, J.R.; Wetzel, S.; Klerks, M.M.; Vašková, D.; Schoen, C.D.; Špak, J.; Jelkmann, W. Multiplex RT-PCR Detection of Four Aphid-Borne Strawberry Viruses in Fragaria Spp. in Combination with a Plant MRNA Specific Internal Control. J. Virol. Methods 2003, 111, 85–93. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2014. [Google Scholar]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. [Google Scholar]
- Koonin, E.V.; Dolja, V.V.; Krupovic, M.; Varsani, A.; Wolf, Y.I.; Yutin, N.; Zerbini, F.M.; Kuhn, J.H. Global Organization and Proposed Megataxonomy of the Virus World. Microbiol. Mol. Biol. Rev. 2020, 84, e00061-19. [Google Scholar] [CrossRef]
- Bruyere, A.; Wantroba, M.; Flasinski, S.; Dzianott, A.; Bujarski, J.J. Frequent Homologous Recombination Events between Molecules of One RNA Component in a Multipartite RNA Virus. J. Virol. 2000, 74, 4214–4219. [Google Scholar] [CrossRef] [Green Version]
- Vives, M.C.; Rubio, L.; Sambade, A.; Mirkov, T.E.; Moreno, P.; Guerri, J. Evidence of Multiple Recombination Events between Two RNA Sequence Variants within a Citrus Tristeza Virus Isolate. Virology 2005, 331, 232–237. [Google Scholar] [CrossRef]
- Payne, S. Virus Evolution and Genetics. In Viruses: From Understanding to Investigation; Elsevier: Amsterdam, The Netherlands, 2017; pp. 81–86. ISBN 978-0-12-803109-4. [Google Scholar]
- Chare, E.R.; Gould, E.A.; Holmes, E.C. Phylogenetic Analysis Reveals a Low Rate of Homologous Recombination in Negative-Sense RNA Viruses. J. Gen. Virol. 2003, 84, 2691–2703. [Google Scholar] [CrossRef]
- Longdon, B.; Day, J.P.; Schulz, N.; Leftwich, P.T.; de Jong, M.A.; Breuker, C.J.; Gibbs, M.; Obbard, D.J.; Wilfert, L.; Smith, S.C.L.; et al. Vertically Transmitted Rhabdoviruses Are Found across Three Insect Families and Have Dynamic Interactions with Their Hosts. Proc. R. Soc. B Biol. Sci. 2017, 284, 20162381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Budzyńska, D.; Minicka, J.; Hasiów-Jaroszewska, B.; Elena, S.F. Molecular Evolution of Tomato Black Ring Virus and de Novo Generation of a New Type of Defective RNAs during Long-term Passaging in Different Hosts. Plant Pathol. 2020, 69, 1767–1776. [Google Scholar] [CrossRef]
- Syller, J.; Grupa, A. Antagonistic Within-Host Interactions between Plant Viruses: Molecular Basis and Impact on Viral and Host Fitness: Antagonistic Interactions between Plant Viruses. Mol. Plant Pathol. 2016, 17, 769–782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eastop, V. Worldwide Importance Of Aphids As Virus Vectors. In Aphids as Virus Vectors; Harris, K., Maramorosch, K., Eds.; Elsevier: New York, NY, USA, 1977; pp. 3–62. ISBN 978-0-12-327550-9. [Google Scholar]
- Harper, S.J.; Cowell, S.J.; Dawson, W.O. Isolate Fitness and Tissue-Tropism Determine Superinfection Success. Virology 2017, 511, 222–228. [Google Scholar] [CrossRef] [PubMed]
Aphid Species | Virus and Variant | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SCV | StrV-1 | SMoV | |||||||||
A | B | A | B | C | RNA1A | RNA1B | RNA1C | RNA2A | RNA2B | RNA2C | |
A. forbesi | 39 | 65 | 77 | 71 | 16 | 58 | 77 | 77 | 97 | 100 | 100 |
A. gossypii | 3 | 0 | 0 | 3 | 0 | 100 | 100 | 97 | 100 | 100 | 90 |
C. fragaefolii | 0 | 17 | 0 | 0 | 0 | 43 | 63 | 66 | 97 | 97 | 86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koloniuk, I.; Matyášová, A.; Brázdová, S.; Veselá, J.; Přibylová, J.; Fránová, J.; Elena, S.F. Transmission of Diverse Variants of Strawberry Viruses Is Governed by a Vector Species. Viruses 2022, 14, 1362. https://doi.org/10.3390/v14071362
Koloniuk I, Matyášová A, Brázdová S, Veselá J, Přibylová J, Fránová J, Elena SF. Transmission of Diverse Variants of Strawberry Viruses Is Governed by a Vector Species. Viruses. 2022; 14(7):1362. https://doi.org/10.3390/v14071362
Chicago/Turabian StyleKoloniuk, Igor, Alena Matyášová, Sára Brázdová, Jana Veselá, Jaroslava Přibylová, Jana Fránová, and Santiago F. Elena. 2022. "Transmission of Diverse Variants of Strawberry Viruses Is Governed by a Vector Species" Viruses 14, no. 7: 1362. https://doi.org/10.3390/v14071362