Proteomic Characterization of PAMs with PRRSV-ADE Infection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cells, Virus and Antibodies
2.2. PRRSV-ADE Infection Assay in PAMs
2.3. Sample Processing for TMT-Based Proteomics
2.4. LC-MS/MS Analysis
2.5. Bioinformatics Analysis
2.6. Immunofluorescence Assay (IFA)
2.7. RT-qPCR Assay
2.8. Western Blot Analysis
2.9. Statistical Analysis
3. Results
3.1. Establishment and Verification of a Cell Model with PRRSV-ADE Infection
3.2. Analysis of the Differentially Expressed Proteins in the PAMs with PRRSV-ADE Infection
3.3. Bioinformatics Analysis of the DEPs
3.4. Analysis of the Protein–Protein Interactions (PPI) Network
3.5. Analysis of the DEPs Associated with Antiviral Innate Immunity
3.6. Validation of Results from the DEPs by RT-qPCR or Western Blot
4. Discussion
4.1. PRRSV-ADE Infection Inhibits the Innate Immune Signals
4.2. PRRSV-ADE Infection Down-Regulates the Expression of Antiviral Proteins
4.3. PRRSV-ADE Infection Interferes the Ubiquitin–Proteasome System
4.4. PRRSV-ADE Infection Up-Regulates the Expression of Mitochondrial Respiratory Chain Complexes
4.5. PRRSV-ADE Infection Interferes the Function of the Ribosome
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cancel-Tirado, S.M.; Evans, R.B.; Yoon, K.J. Monoclonal antibody analysis of porcine reproductive and respiratory syndrome virus epitopes associated with antibody-dependent enhancement and neutralization of virus infection. Vet. Immunol. Immunopathol. 2004, 102, 249–262. [Google Scholar] [CrossRef] [PubMed]
- Nan, Y.; Wu, C.; Gu, G.; Sun, W.; Zhang, Y.J.; Zhou, E.M. Improved Vaccine against PRRSV: Current Progress and Future Perspective. Front. Microbiol. 2017, 8, 1635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, K.J.; Wu, L.L.; Zimmerman, J.J.; Hill, H.T.; Platt, K.B. Antibody-dependent enhancement (ADE) of porcine reproductive and respiratory syndrome virus (PRRSV) infection in pigs. Viral Immunol. 1996, 9, 51–63. [Google Scholar] [CrossRef] [PubMed]
- Christianson, W.T.; Choi, C.S.; Collins, J.E.; Molitor, T.W.; Morrison, R.B.; Joo, H.S. Pathogenesis of porcine reproductive and respiratory syndrome virus infection in mid-gestation sows and fetuses. Can. J. Vet. Res. 1993, 57, 262–268. [Google Scholar]
- Yoon, K.J.; Wu, L.L.; Zimmerman, J.J.; Platt, K.B. Field isolates of porcine reproductive and respiratory syndrome virus (PRRSV) vary in their susceptibility to antibody dependent enhancement (ADE) of infection. Vet. Microbiol. 1997, 55, 277–287. [Google Scholar] [CrossRef]
- Shi, P.; Zhang, L.; Wang, J.; Lu, D.; Li, Y.; Ren, J.; Shen, M.; Zhang, L.; Huang, J. Porcine FcepsilonRI Mediates Porcine Reproductive and Respiratory Syndrome Virus Multiplication and Regulates the Inflammatory Reaction. Virol. Sin. 2018, 33, 249–260. [Google Scholar] [CrossRef]
- Wan, B.; Chen, X.; Li, Y.; Pang, M.; Chen, H.; Nie, X.; Pan, Y.; Qiao, S.; Bao, D. Porcine FcgammaRIIb mediated PRRSV ADE infection through inhibiting IFN-beta by cytoplasmic inhibitory signal transduction. Int. J. Biol. Macromol. 2019, 138, 198–206. [Google Scholar] [CrossRef]
- Zhang, L.; Li, W.; Sun, Y.; Kong, L.; Xu, P.; Xia, P.; Zhang, G. Antibody-Mediated Porcine Reproductive and Respiratory Syndrome Virus Infection Downregulates the Production of Interferon-alpha and Tumor Necrosis Factor-alpha in Porcine Alveolar Macrophages via Fc Gamma Receptor I and III. Viruses 2020, 12, 187. [Google Scholar] [CrossRef] [Green Version]
- Chan, C.Y.Y.; Low, J.Z.H.; Gan, E.S.; Ong, E.Z.; Zhang, S.L.; Tan, H.C.; Chai, X.; Ghosh, S.; Ooi, E.E.; Chan, K.R. Antibody-Dependent Dengue Virus Entry Modulates Cell Intrinsic Responses for Enhanced Infection. mSphere 2019, 4, e00528-19. [Google Scholar] [CrossRef] [Green Version]
- Fang, J.; Qiao, S.; Wang, K.; Li, R.; Wang, L.; Li, H.; Zhang, G. Quantitative Proteomic Analysis of Global Protein Acetylation in PRRSV-Infected Pulmonary Alveolar Macrophages. Proteomics 2021, 21, e2000019. [Google Scholar] [CrossRef]
- Luo, R.; Fang, L.; Jin, H.; Wang, D.; An, K.; Xu, N.; Chen, H.; Xiao, S. Label-free quantitative phosphoproteomic analysis reveals differentially regulated proteins and pathway in PRRSV-infected pulmonary alveolar macrophages. J. Proteome Res. 2014, 13, 1270–1280. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Guo, X.; Ge, X.; Chen, Y.; Sun, Q.; Yang, H. Changes in the cellular proteins of pulmonary alveolar macrophage infected with porcine reproductive and respiratory syndrome virus by proteomics analysis. J. Proteome Res. 2009, 8, 3091–3097. [Google Scholar] [CrossRef] [PubMed]
- Gotz, S.; Garcia-Gomez, J.M.; Terol, J.; Williams, T.D.; Nagaraj, S.H.; Nueda, M.J.; Robles, M.; Talon, M.; Dopazo, J.; Conesa, A. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 2008, 36, 3420–3435. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Yang, J.; Zhu, Y.; Wang, H.; Ji, X.; Luo, J.; Shao, Q.; Xu, Y.; Liu, X.; Zheng, W.; et al. Analysis of Porcine RIG-I Like Receptors Revealed the Positive Regulation of RIG-I and MDA5 by LGP2. Front. Immunol. 2021, 12, 609543. [Google Scholar] [CrossRef]
- Ullah, R.; Li, J.; Fang, P.; Xiao, S.; Fang, L. DEAD/H-box helicases:Anti-viral and pro-viral roles during infections. Virus Res. 2022, 309, 198658. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, S.; Jia, X.; Ge, Y.; Ling, T.; Nie, M.; Lan, X.; Chen, S.; Xu, A. Mitochondria-localised ZNFX1 functions as a dsRNA sensor to initiate antiviral responses through MAVS. Nat. Cell Biol. 2019, 21, 1346–1356. [Google Scholar] [CrossRef]
- Winnard, P.T., Jr.; Vesuna, F.; Raman, V. Targeting host DEAD-box RNA helicase DDX3X for treating viral infections. Antiviral Res. 2021, 185, 104994. [Google Scholar] [CrossRef]
- Zhang, Z.; Kim, T.; Bao, M.; Facchinetti, V.; Jung, S.Y.; Ghaffari, A.A.; Qin, J.; Cheng, G.; Liu, Y.J. DDX1, DDX21, and DHX36 helicases form a complex with the adaptor molecule TRIF to sense dsRNA in dendritic cells. Immunity 2011, 34, 866–878. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, J.L.; Coyne, C.B. Mechanisms of MAVS regulation at the mitochondrial membrane. J. Mol. Biol. 2013, 425, 5009–5019. [Google Scholar] [CrossRef] [Green Version]
- Shen, Z.; Wei, L.; Yu, Z.B.; Yao, Z.Y.; Cheng, J.; Wang, Y.T.; Song, X.T.; Li, M. The Roles of TRIMs in Antiviral Innate Immune Signaling. Front. Cell Infect. Microbiol. 2021, 11, 628275. [Google Scholar] [CrossRef]
- Zhang, L.; Li, W.; Sun, Y.; Li, X.; Kong, L.; Xu, P.; Xia, P.; Yue, J. Activation of activating Fc gamma receptors down-regulates the levels of interferon beta, interferon gamma and interferon lambda1 in porcine alveolar macrophages during PRRSV infection. Int. Immunopharmacol. 2020, 81, 106268. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Xu, W.; Chen, Y.; Xie, X.; Zhang, Y.; Ma, C.; Yang, Q.; Han, Y.; Zhu, C.; Xiong, Y.; et al. Matrix Metalloproteinase 9 Facilitates Hepatitis B Virus Replication through Binding with Type I Interferon (IFN) Receptor 1 To Repress IFN/JAK/STAT Signaling. J. Virol. 2017, 91, e01824-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, H.E.; Oh, J.E.; Lee, H.K. Cell-Penetrating Mx1 Enhances Anti-Viral Resistance against Mucosal Influenza Viral Infection. Viruses 2019, 11, 109. [Google Scholar] [CrossRef] [PubMed]
- Di Pietro, A.; Kajaste-Rudnitski, A.; Oteiza, A.; Nicora, L.; Towers, G.J.; Mechti, N.; Vicenzi, E. TRIM22 inhibits influenza A virus infection by targeting the viral nucleoprotein for degradation. J. Virol. 2013, 87, 4523–4533. [Google Scholar] [CrossRef] [Green Version]
- Ohainle, M.; Kim, K.; Komurlu Keceli, S.; Felton, A.; Campbell, E.; Luban, J.; Emerman, M. TRIM34 restricts HIV-1 and SIV capsids in a TRIM5alpha-dependent manner. PLoS Pathog. 2020, 16, e1008507. [Google Scholar] [CrossRef]
- Perng, Y.C.; Lenschow, D.J. ISG15 in antiviral immunity and beyond. Nat. Rev. Microbiol. 2018, 16, 423–439. [Google Scholar] [CrossRef]
- Wang, S.; Yu, M.; Liu, A.; Bao, Y.; Qi, X.; Gao, L.; Chen, Y.; Liu, P.; Wang, Y.; Xing, L.; et al. TRIM25 inhibits infectious bursal disease virus replication by targeting VP3 for ubiquitination and degradation. PLoS Pathog. 2021, 17, e1009900. [Google Scholar] [CrossRef]
- Zhao, J.; Feng, N.; Li, Z.; Wang, P.; Qi, Z.; Liang, W.; Zhou, X.; Xu, X.; Liu, B. 2’,5’-Oligoadenylate synthetase 1(OAS1) inhibits PRRSV replication in Marc-145 cells. Antiviral Res. 2016, 132, 268–273. [Google Scholar] [CrossRef]
- Fensterl, V.; Sen, G.C. Interferon-induced Ifit proteins: Their role in viral pathogenesis. J. Virol. 2015, 89, 2462–2468. [Google Scholar] [CrossRef] [Green Version]
- Imam, H.; Kim, G.W.; Mir, S.A.; Khan, M.; Siddiqui, A. Interferon-stimulated gene 20 (ISG20) selectively degrades N6-methyladenosine modified Hepatitis B Virus transcripts. PLoS Pathog. 2020, 16, e1008338. [Google Scholar] [CrossRef]
- Liu, Y.; Nie, H.; Mao, R.; Mitra, B.; Cai, D.; Yan, R.; Guo, J.T.; Block, T.M.; Mechti, N.; Guo, H. Interferon-inducible ribonuclease ISG20 inhibits hepatitis B virus replication through directly binding to the epsilon stem-loop structure of viral RNA. PLoS Pathog. 2017, 13, e1006296. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Zheng, Z.; Zhang, Z.; Meng, J.; Liu, Y.; Ke, X.; Hu, Q.; Wang, H. IFIT5 positively regulates NF-kappaB signaling through synergizing the recruitment of IkappaB kinase (IKK) to TGF-beta-activated kinase 1 (TAK1). Cell Signal. 2015, 27, 2343–2354. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Wang, H.; Bai, J.; Zhang, Q.; Li, Y.; Liu, F.; Jiang, P. Monkey Viperin Restricts Porcine Reproductive and Respiratory Syndrome Virus Replication. PLoS ONE 2016, 11, e0156513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGillivary, G.; Jordan, Z.B.; Peeples, M.E.; Bakaletz, L.O. Replication of respiratory syncytial virus is inhibited by the host defense molecule viperin. J. Innate Immun. 2013, 5, 60–71. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.Y.; Yaneva, R.; Cresswell, P. Viperin: A multifunctional, interferon-inducible protein that regulates virus replication. Cell Host Microbe 2011, 10, 534–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pang, Y.; Li, M.; Zhou, Y.; Liu, W.; Tao, R.; Zhang, H.; Xiao, S.; Fang, L. The ubiquitin proteasome system is necessary for efficient proliferation of porcine reproductive and respiratory syndrome virus. Vet. Microbiol. 2021, 253, 108947. [Google Scholar] [CrossRef]
- LaMere, M.W.; Lam, H.T.; Moquin, A.; Haynes, L.; Lund, F.E.; Randall, T.D.; Kaminski, D.A. Contributions of antinucleoprotein IgG to heterosubtypic immunity against influenza virus. J. Immunol. 2011, 186, 4331–4339. [Google Scholar] [CrossRef] [Green Version]
- Lecomte, J.; Cainelli-Gebara, V.; Mercier, G.; Mansour, S.; Talbot, P.J.; Lussier, G.; Oth, D. Protection from mouse hepatitis virus type 3-induced acute disease by an anti-nucleoprotein monoclonal antibody. Brief report. Arch. Virol. 1987, 97, 123–130. [Google Scholar] [CrossRef]
- Straub, T.; Schweier, O.; Bruns, M.; Nimmerjahn, F.; Waisman, A.; Pircher, H. Nucleoprotein-specific nonneutralizing antibodies speed up LCMV elimination independently of complement and FcgammaR. Eur. J. Immunol. 2013, 43, 2338–2348. [Google Scholar] [CrossRef]
- Caddy, S.L.; Vaysburd, M.; Papa, G.; Wing, M.; O’Connell, K.; Stoycheva, D.; Foss, S.; Terje Andersen, J.; Oxenius, A.; James, L.C. Viral nucleoprotein antibodies activate TRIM21 and induce T cell immunity. EMBO J. 2021, 40, e106228. [Google Scholar] [CrossRef]
- Qu, C.; Zhang, S.; Wang, W.; Li, M.; Wang, Y.; van der Heijde-Mulder, M.; Shokrollahi, E.; Hakim, M.S.; Raat, N.J.H.; Peppelenbosch, M.P.; et al. Mitochondrial electron transport chain complex III sustains hepatitis E virus replication and represents an antiviral target. FASEB J. 2019, 33, 1008–1019. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.M.; Kleiboeker, S.B. Porcine reproductive and respiratory syndrome virus induces apoptosis through a mitochondria-mediated pathway. Virology 2007, 365, 419–434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S. Regulation of Ribosomal Proteins on Viral Infection. Cells 2019, 8, 508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, S.W.; Kim, S.M.; Jin, D.H.; Kim, Y.S.; Hur, D.Y. RPS27a enhances EBV-encoded LMP1-mediated proliferation and invasion by stabilizing of LMP1. Biochem. Biophys. Res. Commun. 2017, 491, 303–309. [Google Scholar] [CrossRef]
- Guan, J.; Han, S.; Wu, J.; Zhang, Y.; Bai, M.; Abdullah, S.W.; Sun, S.; Guo, H. Ribosomal Protein L13 Participates in Innate Immune Response Induced by Foot-and-Mouth Disease Virus. Front. Immunol. 2021, 12, 616402. [Google Scholar] [CrossRef]
- Zhao, D.; Zhang, L.; Song, M.; Mail, Y.Z. RPS3-induced antiviral cytokines inhibit the proliferation of classical swine fever virus. Acta Virol. 2022, 66, 55–64. [Google Scholar] [CrossRef]
Accession | Protein Name | Gene Name | Fold Change (PRRSV-ICs/PRRSV-NI) | p Value |
---|---|---|---|---|
A0A0B8RS69 | Tripartite motif-containing protein 34 (TRIM34) | TRIM34 | 0.700558702 | 0.008236 |
A0A0B8RT27 | Toll-like receptor 3 (TLR3) | TLR3 | 1.480082142 | 0.000012 |
A0A0B8S066 | Interferon regulatory factor 9 (IRF9) | IRF9 | 0.645852502 | 0.001426 |
A0A286ZN85 | Signal transducer and activator of transcription 1 (STAT-1) | STAT-1 | 0.679089935 | 0.000960 |
A0A287A5V9 | DEAD-box protein 6 (DDX6) | DDX6 | 0.577778435 | 0.002041 |
A0A287AF06 | Interleukin-1 receptor-associated kinase-like 2 (IRAK2) | IRAK2 | 0.707394609 | 0.016606 |
A0A287ANQ6 | Tripartite motif-containing protein 52 (TRIM52) | TRIM52 | 1.579322218 | 0.001208 |
A0A287AVQ1 | DEAD-box protein 3X (DDX3X) | DDX3X | 0.634828774 | 0.000292 |
A0A385XIH5 | 2’-5’ oligoadenylate synthase 1 (OAS1) | OAS1 | 0.643730896 | 0.002701 |
A0A4X1SHM4 | Tripartite motif-containing protein 25 (TRIM25) | TRIM25 | 0.664125491 | 0.002789 |
A0A4X1SM65 | DExH-box protein 29 (DHX29) | DHX29 | 0.722151262 | 0.000626 |
A0A4X1SSZ9 | DExH-box protein 36 (DHX36) | DHX36 | 0.746876328 | 0.010250 |
A0A4X1TQG4 | TNF receptor-associated factor 3 (TRAF3) | TRAF3 | 0.79529251 | 0.010987 |
A0A4X1TZR6 | Signal transducer and activator of transcription 3 (STAT-3) | STAT-3 | 0.588242937 | 0.001812 |
A0A4X1U0W0 | Matrix metalloproteinase-9 (MMP-9) | MMP-9 | 2.034346704 | 0.000695 |
A0A4X1UBG5 | DEAD-box protein 1 (DDX1) | DDX1 | 0.717280944 | 0.000119 |
A0A4X1W175 | Signal transducer and activator of transcription 6 (STAT-6) | STAT-6 | 0.757959754 | 0.000284 |
A0A4X1W5D6 | TANK-binding kinase 1 (TBK-1) | TBK-1 | 0.817144901 | 0.022810 |
A0A4X1W8B3 | Signal transducer and activator of transcription 2 (STAT-2) | STAT-2 | 0.702062421 | 0.000623 |
A0A5G2QC44 | Tripartite motif-containing protein 21 (TRIM21) | TRIM21 | 0.675237803 | 0.000027 |
A0A5G2R0A9 | Interferon-induced protein with tetratricopeptide repeats 5 (IFIT5) | IFIT5 | 0.553411483 | 0.000016 |
A2TF48 | Myeloid differentiation primary response gene 88 (MyD88) | MyD88 | 0.605853551 | 0.022306 |
A9QT42 | Interleukin-1 receptor-associated kinase 4 (IRAK4) | IRAK4 | 0.64810251 | 0.000538 |
B2ZDZ2 | Interferon-stimulated gene 15 (ISG15) | ISG15 | 0.416379988 | 0.000615 |
B3XXC2 | Toll-like receptor 8 (TLR8) | TLR8 | 1.577213769 | 0.000043 |
B6ICV1 | Tripartite motif-containing protein 26 (TRIM26) | TRIM26 | 0.630737025 | 0.007867 |
D4PAR3 | Toll-like receptor 4 (TLR4) | TLR4 | 1.493009896 | 0.003026 |
F1RLV7 | Tripartite motif-containing protein 22 (TRIM22) | LOC733579 | 0.713581442 | 0.000506 |
F1S5A8 | DExH-box protein 15 (DHX15) | DHX15 | 1.234949706 | 0.018624 |
F1SCY2 | Interferon-induced protein with tetratricopeptide repeats 3 (IFIT3)/Interferon-stimulated gene 60 (ISG60) | IFIT3/ISG60 | 0.426091944 | 0.000606 |
I3L5Z9 | Zinc finger NFX1-type containing 1 (ZNFX1) | ZNFX1 | 0.408049746 | 0.000009 |
I3LB04 | Interferon-stimulated gene 20 (ISG20) | ISG20 | 0.519256582 | 0.004996 |
J7FIC7 | Interferon-induced protein with tetratricopeptide repeats 1 (IFIT1)/Interferon-stimulated gene 56 (ISG56) | IFIT1/ISG56 | 0.462410477 | 0.000015 |
J7FJH8 | Interferon-induced protein with tetratricopeptide repeats 2 (IFIT2)/Interferon-stimulated gene 54 (ISG54) | IFIT2/ISG54 | 0.551217726 | 0.004211 |
K7GND3 | DExH-box protein 9 (DHX9) | DHX9 | 1.509146168 | 0.003557 |
K7GS53 | DExH-box protein 58 (DHX58) | DHX58 | 0.428630681 | 0.000008 |
Q59HI8 | Toll-like receptor 2 (TLR2) | TLR2 | 1.24016114 | 0.027161 |
Q5S3G4 | Cytochrome coxidase subunit 5B (COX-5B) | COX-5B | 2.101483516 | 0.000243 |
Q9MZU4 | Radical S-adenosyl methionine domain-containing protein 2 (RSAD2) | RSAD2 | 0.13795664 | 0.000008 |
X2KPB3 | Interferon regulatory factor 7 (IRF7) | IRF7 | 0.373258619 | 0.005359 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, P.; Li, W.; Zhao, S.; Cui, Z.; Chen, Y.; Zhang, Y.-n.; Chen, J.; Xia, P. Proteomic Characterization of PAMs with PRRSV-ADE Infection. Viruses 2023, 15, 36. https://doi.org/10.3390/v15010036
Xu P, Li W, Zhao S, Cui Z, Chen Y, Zhang Y-n, Chen J, Xia P. Proteomic Characterization of PAMs with PRRSV-ADE Infection. Viruses. 2023; 15(1):36. https://doi.org/10.3390/v15010036
Chicago/Turabian StyleXu, Pengli, Wen Li, Shijie Zhao, Zhiying Cui, Yu Chen, Yi-na Zhang, Jing Chen, and Pingan Xia. 2023. "Proteomic Characterization of PAMs with PRRSV-ADE Infection" Viruses 15, no. 1: 36. https://doi.org/10.3390/v15010036
APA StyleXu, P., Li, W., Zhao, S., Cui, Z., Chen, Y., Zhang, Y.-n., Chen, J., & Xia, P. (2023). Proteomic Characterization of PAMs with PRRSV-ADE Infection. Viruses, 15(1), 36. https://doi.org/10.3390/v15010036