Rational Use of Monoclonal Antibodies as Therapeutic Treatment in an Oncologic Patient with Long COVID
Abstract
:1. Introduction:
2. Methods
2.1. Patient History
2.2. SARS-CoV-2 IgG Antibody Detection
2.3. SARS-CoV-2 Microneutralization Test
2.4. SARS-CoV-2 Whole Genome Sequencing
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, Z.; Zhu, Y.; Chu, M. Role of COVID-19 Vaccines in SARS-CoV-2 Variants. Front. Immunol. 2022, 13, 2273. [Google Scholar] [CrossRef]
- Bin Lee, A.R.Y.; Wong, S.Y.; Chai, L.Y.A.; Lee, S.C.; Lee, M.X.; Muthiah, M.D.; Tay, S.H.; Teo, C.B.; Tan, B.K.J.; Chan, Y.H.; et al. Efficacy of COVID-19 vaccines in immunocompromised patients: Systematic review and meta-analysis. BMJ 2022, 376, e068632. [Google Scholar]
- Scherer, E.M.; Babiker, A.; Adelman, M.W.; Allman, B.; Key, A.; Kleinhenz, J.M.; Piantadosi, A. SARS-CoV-2 Evolution and Immune Escape in Immunocompromised Patients. N. Engl. J. Med. 2022, 386, 2436–2438. [Google Scholar] [CrossRef] [PubMed]
- Sonnleitner, S.T.; Prelog, M.; Sonnleitner, S.; Hinterbichler, E.; Halbfurter, H.; Kopecky, D.B.C.; Walder, G. Cumulative SARS-CoV-2 mutations and corresponding changes in immunity in an immunocompromised patient indicate viral evolution within the host. Nat. Commun. 2022, 13, 2560. [Google Scholar] [CrossRef] [PubMed]
- Corey, L.; Beyrer, C.; Cohen, M.S.; Michael, N.L.; Bedford, T.; Rolland, M. SARS-CoV-2 Variants in Patients with Immunosuppression. N. Engl. J. Med. 2021, 385, 562–566. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention, Pre-Exposure Prophylaxis with EVUSHELD. Available online: https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-care/pre-exposure-prophylaxis.html (accessed on 19 October 2022).
- Reed, L.J.; Muench, H. A simple method of estimating fifty per cent endpoints. Am. J. Epidemiol. 1938, 27, 493–497. [Google Scholar] [CrossRef]
- Anichini, G.; Terrosi, C.; Gandolfo, C.; GoriSavellini, G.; Fabrizi, S.; Miceli, G.B.; Franchi, F.; Cusi, M.G. Omicron Infection Evokes Cross-Protection against SARS-CoV-2 Variants in Vaccinees. Vaccines 2022, 10, 808. [Google Scholar] [CrossRef]
- Anichini, G.; Terrosi, C.; Gandolfo, C.; GoriSavellini, G.; Fabrizi, S.; Miceli, G.B.; Cusi, M.G. SARS-CoV-2 Antibody Response in Persons with Past Natural Infection. N. Engl. J. Med. 2021, 385, 90–92. [Google Scholar] [CrossRef]
- Pinto, D.; Park, Y.J.; Beltramello, M.; Walls, A.C.; Tortorici, M.A.; Bianchi, S.; Corti, D. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature 2020, 583, 290–295. [Google Scholar] [CrossRef]
- Destras, G.; Bal, A.; Simon, B.; Lina, B.; Josset, L. Sotrovimab drives SARS-CoV-2 omicron variant evolution in immunocompromised patients. Lancet Microbe. 2022, 3, e559. [Google Scholar] [CrossRef]
- Rockett, R.; Basile, K.; Maddocks, S.; Fong, W.; Agius, J.E.; Johnson-Mackinnon, J.; Sintchenko, V. Resistance Mutations in SARS-CoV-2 Delta Variant after Sotrovimab Use. N. Engl. J. Med. 2022, 386, 1477–1479. [Google Scholar] [CrossRef] [PubMed]
- Mishra, T.; Dalavi, R.; Joshi, G.; Kumar, A.; Pandey, P.; Shukla, S.; Chande, A. SARS-CoV-2 spike E156G/Δ157-158 mutations contribute to increased infectivity and immune escape. Life Sci. Alliance 2022, 5, e202201415. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, K.R.; Rennick, L.J.; Nambulli, S.; Robinson-McCarthy, L.R.; Bain, W.G.; Haidar, G.; Duprex, W.P. Recurrent deletions in the SARS-CoV-2 spike glycoprotein drive antibody escape. Science 2021, 371, 1139–1142. [Google Scholar] [CrossRef] [PubMed]
- Abeer, A.; Iqra, I.; Mohammad, A.; Sadaf, S.; Muhammad, M.; Arif, M. The Comparison of Mutational Progression in SARS-CoV-2: A Short Updated Overview. J. Mol. Pathol. 2022, 3, 201–218. [Google Scholar]
- Touret, F.; Baronti, C.; Bouzidi, H.S.; de Lamballerie, X. In vitro evaluation of therapeutic antibodies against a SARS-CoV-2 Omicron B.1.1.529 isolate. Sci. Rep. 2022, 12, 4683. [Google Scholar] [CrossRef]
- Levin, M.J.; Ustianowski, A.; De Wit, S.; Launay, O.; Avila, M.; Templeton, A.; Eetsser, M.T. Intramuscular AZD7442 (Tixagevimab-Cilgavimab) for Prevention of COVID-19. N. Engl. J. Med. 2022, 386, 2188–2200. [Google Scholar] [CrossRef]
- Raveendran, A.V.; Jayadevan, R.; Sashidharan, S. Long COVID: An overview. Diabetes Metab. Syndr. 2021, 15, 869–875. [Google Scholar] [CrossRef]
- Tian, Y.; Qiu, X.; Wang, C.; Zhao, J.; Jiang, X.; Niu, W.; Zhang, F. Cancer associates with risk and severe events of COVID-19: A systematic review and meta-analysis. Int. J. Cancer 2021, 148, 363–374. [Google Scholar] [CrossRef]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 mRNA COVID-19 Vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef]
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Zaks, T.; COVE Study Group. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2021, 384, 403–416. [Google Scholar] [CrossRef]
- Tran, S.; Truong, T.H.; Narendran, A. Evaluation of COVID-19 vaccine response in patients with cancer: An interim analysis. Eur. J. Cancer 2021, 159, 259–274. [Google Scholar] [CrossRef] [PubMed]
- Fendler, A.; de Vries, E.G.E.; GeurtsvanKessel, C.H.; Haanen, J.B.; Wörmann, B.; Turajlic, S.; von Lilienfeld-Toal, M. COVID-19 vaccines in patients with cancer: Immunogenicity, efficacy and safety. Nat. Rev. Clin. Oncol. 2022, 19, 385–401. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.; Wei, Z.; Wu, X. Impaired serological response to COVID-19 vaccination following anticancer therapy: A systematic review and meta-analysis. J. Med. Virol. 2022, 94, 4860–4868. [Google Scholar] [CrossRef] [PubMed]
- Wen, W.; Chen, C.; Tang, J.; Wang, C.; Zhou, M.; Cheng, Y.; Mao, Q. Efficacy and safety of three new oral antiviral treatment (molnupiravir, fluvoxamine and Paxlovid) for COVID-19: A meta-analysis. Ann. Med. 2022, 54, 516–523. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.T.; McCreary, E.K.; Bariola, J.R.; Minnier, T.E.; Wadas, R.J.; Shovel, J.A.; Seymour, C.W. Effectiveness of Casirivimab-Imdevimab and Sotrovimab During a SARS-CoV-2 Delta Variant Surge: A Cohort Study and Randomized Comparative Effectiveness Trial. JAMA Netw. Open. 2022, 5, e2220957. [Google Scholar] [CrossRef]
- Amani, B.; Amani, B. Efficacy and safety of sotrovimab in patients with COVID-19: A rapid review and meta-analysis. Rev. Med. Virol. 2022, 32, e2402. [Google Scholar] [CrossRef]
Day 37 | Day 114 | Day 131 (Isolate 1) | Day 170 (Isolate 2) | Day 226 (Isolate 3) | |
---|---|---|---|---|---|
Spike: P25L | 100% | ||||
Spike: T95I | 100% | 100% | 100% | 100% | |
Spike: T95S | 100% | ||||
Spike: Y144H | 100% | 100% | |||
Spike: del 241–243 | 100% | 100% | 100% | 100% | |
Spike: E340A | 25% | 100% | |||
Spike: T478K | 100% | 100% | 100% | 100% | |
Spike: T478I | I 32% | ||||
Spike: N501Y | 100% | ||||
Spike: E484G | 100% | 100% | 100% | ||
Spike: Q613H | 100% | 100% | |||
Spike: P681R | 100% | ||||
Spike: A684V | 100% |
Neutralizing Antibody Titer (GMT) vs. Viral Isolates | ||||
---|---|---|---|---|
Human Polyclonal Serum | Patient Sera | |||
Virus isolate | Delta (B.1.617.2) (IgG 5900.7 AU/mL) | Post Sotrovimab (IgG 4814.5 AU/mL) | 14 days post Evusheld (IgG 32,241.0 AU/mL) | 30 days post Evusheld (IgG 21,513.4 AU/mL) |
Delta (B.1.617.2) | 1/512 | / | / | / |
Isolate 1 Pre-Sotrovimab | 1/362 | 1/45 | 1/512 | 1/203 |
Isolate 2 Post-Sotrovimab | 1/362 | <1/8 *** | 1/362 * | 1/181 |
Isolate 3 Pre-Evusheld | 1/23 *** | <1/8 *** | 1/161 *** | 1/102 ** |
Monoclonal Antibody Tested | ||
---|---|---|
Virus Isolate | Sotrovimab (EC50, ng/µL) | Evusheld (EC50, ng/µL) |
Delta (B.1.617.2) | 37.5 | 9.3 |
Isolate 1 Pre-Sotrovimab | >300 | 9.3 |
Isolate 2 Post-Sotrovimab | >300 | 9.3 |
Isolate 3 Pre-Evusheld | >300 | 9.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cusi, M.G.; Di Giacomo, A.M.; Anichini, G.; Gori Savellini, G.; Terrosi, C.; Gandolfo, C.; Maio, M. Rational Use of Monoclonal Antibodies as Therapeutic Treatment in an Oncologic Patient with Long COVID. Viruses 2023, 15, 614. https://doi.org/10.3390/v15030614
Cusi MG, Di Giacomo AM, Anichini G, Gori Savellini G, Terrosi C, Gandolfo C, Maio M. Rational Use of Monoclonal Antibodies as Therapeutic Treatment in an Oncologic Patient with Long COVID. Viruses. 2023; 15(3):614. https://doi.org/10.3390/v15030614
Chicago/Turabian StyleCusi, Maria Grazia, Anna Maria Di Giacomo, Gabriele Anichini, Gianni Gori Savellini, Chiara Terrosi, Claudia Gandolfo, and Michele Maio. 2023. "Rational Use of Monoclonal Antibodies as Therapeutic Treatment in an Oncologic Patient with Long COVID" Viruses 15, no. 3: 614. https://doi.org/10.3390/v15030614
APA StyleCusi, M. G., Di Giacomo, A. M., Anichini, G., Gori Savellini, G., Terrosi, C., Gandolfo, C., & Maio, M. (2023). Rational Use of Monoclonal Antibodies as Therapeutic Treatment in an Oncologic Patient with Long COVID. Viruses, 15(3), 614. https://doi.org/10.3390/v15030614