Convalescent Plasma Therapy for COVID-19: A Systematic Review and Meta-Analysis on Randomized Controlled Trials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy and Eligibility of Studies
2.2. Data Abstraction and Effect Estimates
2.3. Statistical Analyses
2.4. Assessment of Study Quality and Risk of Bias
3. Results
3.1. Description of Eligible Studies
3.2. Meta-Analysis
3.2.1. 28-Day Results
3.2.2. 14-Day Results
3.3. Meta-Regression Analysis
3.4. Quality Assessment and Risk of Bias
- Six studies (17.7%) raised some concerns on their randomization process, mostly due to lack of information on allocation concealment;
- Five studies (14.7%) raised some concerns on whether there were deviations from the intended interventions;
- Only one study raised concerns on potential selection of the reported result;
- One study had a high risk of bias due to vital randomization process concerns.
3.5. Publication Bias
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kenneth McIntosh. COVID-19: Clinical Features. Available online: https://www.uptodate.com/contents/covid-19-clinical-features (accessed on 30 December 2022).
- Mair-Jenkins, J.; Saavedra-Campos, M.; Baillie, J.K.; Cleary, P.; Khaw, F.M.; Lim, W.S.; Makki, S.; Rooney, K.D.; Nguyen-Van-Tam, J.S.; Beck, C.R.; et al. The Effectiveness of Convalescent Plasma and Hyperimmune Immunoglobulin for the Treatment of Severe Acute Respiratory Infections of Viral Etiology: A Systematic Review and Exploratory Meta-analysis. J. Infect. Dis. 2015, 211, 80–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Griensven, J.; De Weiggheleire, A.; Delamou, A.; Smith, P.G.; Edwards, T.; Vandekerckhove, P.; Bah, E.I.; Colebunders, R.; Herve, I.; Lazaygues, C.; et al. The Use of Ebola Convalescent Plasma to Treat Ebola Virus Disease in Resource-Constrained Settings: A Perspective from the Field. Clin. Infect. Dis. 2016, 62, 69–74. [Google Scholar] [CrossRef]
- Barone, P.; DeSimone, R.A. Convalescent plasma to treat coronavirus disease 2019 (COVID-19): Considerations for clinical trial design. Transfusion 2020, 60, 1123–1127. [Google Scholar] [CrossRef]
- Rojas, M.; Rodríguez, Y.; Monsalve, D.M.; Acosta-Ampudia, Y.; Camacho, B.; Gallo, J.E.; Rojas-Villarraga, A.; Ramírez-Santana, C.; Díaz-Coronado, J.C.; Manrique, R.; et al. Convalescent plasma in COVID-19: Possible mechanisms of action. Autoimmun. Rev. 2020, 19, 102554. [Google Scholar] [CrossRef] [PubMed]
- Psaltopoulou, T.; Sergentanis, T.N.; Pappa, V.; Politou, M.; Terpos, E.; Tsiodras, S.; Pavlakis, G.N.; Dimopoulos, M.A. The Emerging Role of Convalescent Plasma in the Treatment of COVID-19. HemaSphere 2020, 4, e409. [Google Scholar] [CrossRef]
- Rosati, M.; Terpos, E.; Ntanasis-Stathopoulos, I.; Agarwal, M.; Bear, J.; Burns, R.; Hu, X.; Korompoki, E.; Donohue, D.; Venzon, D.J.; et al. Sequential Analysis of Binding and Neutralizing Antibody in COVID-19 Convalescent Patients at 14 Months After SARS-CoV-2 Infection. Front. Immunol. 2021, 12, 793953. [Google Scholar] [CrossRef] [PubMed]
- WHO. 7th Update of WHO’s Living Guidelines on COVID-19 Therapeutics; WHO: Geneva, Switzerland, 2022. [Google Scholar]
- Pappa, V.; Bouchla, A.; Terpos, E.; Thomopoulos, T.P.; Rosati, M.; Stellas, D.; Antoniadou, A.; Mentis, A.; Papageorgiou, S.G.; Politou, M.; et al. A Phase II Study on the Use of Convalescent Plasma for the Treatment of Severe COVID-19—A Propensity Score-Matched Control Analysis. Microorganisms 2021, 9, 806. [Google Scholar] [CrossRef]
- Estcourt, L.; Callum, J. Convalescent Plasma for COVID-19—Making Sense of the Inconsistencies. N. Engl. J. Med. 2022, 386, 1753–1754. [Google Scholar] [CrossRef]
- Sullivan, D.J.; Gebo, K.A.; Hanley, D.F. Correspondence: Convalescent Plasma for COVID-19—Making Sense of the Inconsistencies. N. Engl. J. Med. 2022, 387, 955–956. [Google Scholar] [CrossRef]
- Higgins, J.P.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. Cochrane Handbook for Systematic Reviews of Interventions Version 6.3; Cochrane: Oxford, UK, 2022. [Google Scholar]
- Sterne, J.A.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef] [Green Version]
- Egger, M.; Smith, G.D.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sterne, J.A.C.; Egger, M. Funnel plots for detecting bias in meta-analysis: Guidelines on choice of axis. J. Clin. Epidemiol. 2001, 54, 1046–1055. [Google Scholar] [CrossRef]
- RECOVERY Collaborative Group. Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): A randomised controlled, open-label, platform trial. Lancet 2021, 397, 2049–2059. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Mukherjee, A.; Kumar, G.; Chatterjee, P.; Bhatnagar, T.; Malhotra, P. Convalescent plasma in the management of moderate COVID-19 in adults in India: Open label phase II multicentre randomized controlled trial (PLACID Trial). BMJ 2020, 371, m3939. [Google Scholar] [CrossRef] [PubMed]
- Alemany, A.; Millat-Martinez, P.; Corbacho-Monné, M.; Malchair, P.; Ouchi, D.; Ruiz-Comellas, A.; Ramírez-Morros, A.; Codina, J.R.; Simon, R.A.; Videla, S.; et al. High-titre methylene blue-treated convalescent plasma as an early treatment for outpatients with COVID-19: A randomised, placebo-controlled trial. Lancet 2022, 10, 278–288. [Google Scholar] [CrossRef]
- AlQahtani, M.; Abdulrahman, A.; Almadani, A.; Alali, S.Y.; Al Zamrooni, A.M.; Hejab, A.H.; Conroy, R.M.; Wasif, P.; Otoom, S.; Atkin, S.L.; et al. Randomized controlled trial of convalescent plasma therapy against standard therapy in patients with severe COVID-19 disease. Sci. Rep. 2021, 11, 9927. [Google Scholar] [CrossRef] [PubMed]
- Avendaño-Solá, C.; Ramos-Martínez, A.; Muñez-Rubio, E.; Ruiz-Antorán, B.; de Molina, R.M.; Torres, F.; Fernández-Cruz, A.; Calderón-Parra, J.; Payares-Herrera, C.; de Santiago, A.D.; et al. A multicenter randomized open-label clinical trial for convalescent plasma in patients hospitalized with COVID-19 pneumonia. J. Clin. Investig. 2021, 131, e152740. [Google Scholar] [CrossRef] [PubMed]
- Bajpai, M.; Maheshwari, A.; Kumar, S.; Chhabra, K.; Kale, P.; Narayanan, A.; Gupta, A.; Gupta, E.; Trehanpati, N.; Agarwal, R.; et al. Comparison of safety and efficacy of convalescent plasma with fresh frozen plasma in severe COVID-19 patients. SciELO 2020. [Google Scholar] [CrossRef] [PubMed]
- Bajpai, M.; Maheshwari, A.; Dogra, V.; Kumar, S.; Gupta, E.; Kale, P.; Saluja, V.; Thomas, S.S.; Trehanpati, N.; Bihari, C.; et al. Efficacy of convalescent plasma therapy in the patient with COVID-19: A randomised control trial (COPLA-II trial). BMJ Open 2022, 12, e055189. [Google Scholar] [CrossRef]
- Baldeón, M.E.; Maldonado, A.; Ochoa-Andrade, M.; Largo, C.; Pesantez, M.; Herdoiza, M.; Granja, G.; Bonifaz, M.; Espejo, H.; Mora, F.; et al. Effect of convalescent plasma as complementary treatment in patients with moderate COVID-19 infection. Transfus. Med. 2022, 32, 153–161. [Google Scholar] [CrossRef]
- Bar, K.J.; Shaw, P.A.; Choi, G.H.; Aqui, N.; Fesnak, A.; Yang, J.B.; Soto-Calderon, H.; Grajales, L.; Starr, J.; Andronov, M.; et al. A randomized controlled study of convalescent plasma for individuals hospitalized with COVID-19 pneumonia. J. Clin. Investig. 2021, 131, e155114. [Google Scholar] [CrossRef]
- Bégin, P.; Callum, J.; Jamula, E.; Cook, R.; Heddle, N.M.; Tinmouth, A.; Zeller, M.P.; Beaudoin-Bussières, G.; Amorim, L.; Bazin, R.; et al. Convalescent plasma for hospitalized patients with COVID-19: An open-label, randomized controlled trial. Nat. Med. 2021, 27, 2012–2024. [Google Scholar] [CrossRef]
- Bennett-Guerrero, E.; Romeiser, J.L.; Talbot, L.R.; Ahmed, T.; Mamone, L.J.; Singh, S.M.; Hearing, J.C.; Salman, H.; Holiprosad, D.D.; Freedenberg, A.T.; et al. Severe Acute Respiratory Syndrome Coronavirus 2 Convalescent Plasma Versus Standard Plasma in Coronavirus Disease 2019 Infected Hospitalized Patients in New York: A Double-Blind Randomized Trial. Crit. Care Med. 2021, 49, 1015–1025. [Google Scholar] [CrossRef]
- Devos, T.; Van Thillo, Q.; Compernolle, V.; Najdovski, T.; Romano, M.; Dauby, N.; Jadot, L.; Leys, M.; Maillart, E.; Loof, S.; et al. Early high antibody titre convalescent plasma for hospitalised COVID-19 patients: DAWn-plasma. Eur. Respir. J. 2022, 59, 2101724. [Google Scholar] [CrossRef]
- Writing Committee for the REMAP-CAP Investigators. Effect of Convalescent Plasma on Organ Support-Free Days in Critically Ill Patients with COVID-19: A Randomized Clinical Trial. JAMA 2021, 326, 1690–1702. [Google Scholar] [CrossRef]
- Gharbharan, A.; Jordans, C.C.E.; GeurtsvanKessel, C.; Hollander, J.G.D.; Karim, F.; Mollema, F.P.N.; Schukken, J.E.S.; Dofferhoff, A.; Ludwig, I.; Koster, A.; et al. Effects of potent neutralizing antibodies from convalescent plasma in patients hospitalized for severe SARS-CoV-2 infection. Nat. Commun. 2021, 12, 3189. [Google Scholar] [CrossRef]
- Gharbharan, A.; Jordans, C.; Zwaginga, L.; Papageorgiou, G.; van Geloven, N.; van Wijngaarden, P.; Hollander, J.D.; Karim, F.; van Leeuwen-Segarceanu, E.; Soetekouw, R.; et al. Outpatient convalescent plasma therapy for high-risk patients with early COVID-19: A randomized placebo-controlled trial. Clin. Microbiol. Infect. 2023, 29, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Holm, K.; Lundgren, M.N.; Kjeldsen-Kragh, J.; Ljungquist, O.; Böttiger, B.; Wikén, C.; Öberg, J.; Fernström, N.; Rosendal, E.; Överby, A.K.; et al. Convalescence plasma treatment of COVID-19: Results from a prematurely terminated randomized controlled open-label study in Southern Sweden. BMC Res. Notes 2021, 14, 440. [Google Scholar] [CrossRef] [PubMed]
- Kirenga, B.; Byakika-Kibwika, P.; Muttamba, W.; Kayongo, A.; Loryndah, N.O.; Mugenyi, L.; Kiwanuka, N.; Lusiba, J.; Atukunda, A.; Mugume, R.; et al. Efficacy of convalescent plasma for treatment of COVID-19 in Uganda. BMJ Open Respir. Res. 2021, 8, e001017. [Google Scholar] [CrossRef] [PubMed]
- Korley, F.K.; Durkalski-Mauldin, V.; Yeatts, S.D.; Schulman, K.; Davenport, R.D.; Dumont, L.J.; El Kassar, N.; Foster, L.D.; Hah, J.M.; Jaiswal, S.; et al. Early Convalescent Plasma for High-Risk Outpatients with COVID-19. N. Engl. J. Med. 2021, 385, 1951–1960. [Google Scholar] [CrossRef]
- Li, L.; Zhang, W.; Hu, Y.; Tong, X.; Zheng, S.; Yang, J.; Kong, Y.; Ren, L.; Wei, Q.; Mei, H. Effect of Convalescent Plasma Therapy on Time to Clinical Improvement in Patients With Severe and Life-threatening COVID-19: A Randomized Clinical Trial. JAMA 2020, 324, 460–470. [Google Scholar] [CrossRef] [PubMed]
- Libster, R.; Marc, G.P.; Wappner, D.; Coviello, S.; Bianchi, A.; Braem, V.; Esteban, I.; Caballero, M.T.; Wood, C.; Berrueta, M.; et al. Early High-Titer Plasma Therapy to Prevent Severe COVID-19 in Older Adults. N. Engl. J. Med. 2021, 384, 610–618. [Google Scholar] [CrossRef]
- Manzini, P.M.; Ciccone, G.; De Rosa, F.G.; Cavallo, R.; Ghisetti, V.; D’Antico, S.; Galassi, C.; Saccona, F.; Castiglione, A.; Birocco, N.; et al. Convalescent or standard plasma versus standard of care in the treatment of COVID-19 patients with respiratory impairment: Short and long-term effects. A three-arm randomized controlled clinical trial. BMC Infect. Dis. 2022, 22, 879. [Google Scholar] [CrossRef]
- Menichetti, F.; Popoli, P.; Puopolo, M.; Alegiani, S.S.; Tiseo, G.; Bartoloni, A.; De Socio, G.V.; Luchi, S.; Blanc, P.; Puoti, M.; et al. Effect of High-Titer Convalescent Plasma on Progression to Severe Respiratory Failure or Death in Hospitalized Patients with COVID-19 Pneumonia: A Randomized Clinical Trial. JAMA Netw. Open 2021, 4, e2136246. [Google Scholar] [CrossRef]
- O’Donnell, M.R.; Grinsztejn, B.; Cummings, M.J.; Justman, J.E.; Lamb, M.R.; Eckhardt, C.M.; Philip, N.M.; Cheung, Y.K.; Gupta, V.; João, E.; et al. A randomized double-blind controlled trial of convalescent plasma in adults with severe COVID-19. J. Clin. Investig. 2021, 131, e150646. [Google Scholar] [CrossRef] [PubMed]
- Ortigoza, M.B.; Yoon, H.; Goldfeld, K.S.; Troxel, A.B.; Daily, J.P.; Wu, Y.; Li, Y.; Wu, D.; Cobb, G.F.; Baptiste, G.; et al. Efficacy and Safety of COVID-19 Convalescent Plasma in Hospitalized Patients: A Randomized Clinical Trial. JAMA Intern. Med. 2022, 182, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Ray, Y.; Paul, S.R.; Bandopadhyay, P.; D’Rozario, R.; Sarif, J.; Raychaudhuri, D.; Bhowmik, D.; Lahiri, A.; Vasudevan, J.S.; Maurya, R.; et al. A phase 2 single center open label randomised control trial for convalescent plasma therapy in patients with severe COVID-19. Nat. Commun. 2022, 13, 383. [Google Scholar] [CrossRef]
- Rojas, M.; Rodríguez, Y.; Hernández, J.C.; Díaz-Coronado, J.C.; Vergara, J.A.D.; Vélez, V.P.; Mancilla, J.P.; Araujo, I.; Yepes, J.T.; Ricaurte, O.B.; et al. Safety and efficacy of convalescent plasma for severe COVID-19: A randomized, single blinded, parallel, controlled clinical study. BMC Infect. Dis. 2022, 22, 575. [Google Scholar] [CrossRef]
- De Santis, G.C.; Oliveira, L.C.; Garibaldi, P.M.; Almado, C.E.; Croda, J.; Arcanjo, G.G.; Oliveira, A.; Tonacio, A.C.; Langhi, D.M.; Bordin, J.O.; et al. High-Dose Convalescent Plasma for Treatment of Severe COVID-19. Emerg. Infect. Dis. 2022, 28, 548–555. [Google Scholar] [CrossRef]
- Sekine, L.; Arns, B.; Fabro, B.R.; Cipolatt, M.M.; Machado, R.R.G.; Durigon, E.L.; Parolo, E.; Pellegrini, J.A.S.; Viana, M.V.; Schwarz, P.; et al. Convalescent plasma for COVID-19 in hospitalised patients: An open-label, randomized clinical trial. Eur. Respir. J. 2022, 59, 2101471. [Google Scholar] [CrossRef]
- Self, W.H.; Wheeler, A.P.; Stewart, T.G.; Schrager, H.; Mallada, J.; Thomas, C.B.; Cataldo, V.D.; O’Neal, H.R., Jr.; Shapiro, N.I.; Higgins, C.; et al. Neutralizing COVID-19 Convalescent Plasma in Adults Hospitalized with COVID-19 A Blinded, Randomized, Placebo-Controlled Trial. Chest Infect. Orig. Res. 2022, 162, 982–994. [Google Scholar]
- Simonovich, V.A.; Pratx, L.D.B.; Scibona, P.; Beruto, M.V.; Vallone, M.G.; Vázquez, C.; Savoy, N.; Giunta, D.H.; Pérez, L.G.; Sánchez, M.D.L.; et al. A Randomized Trial of Convalescent Plasma in COVID-19 Severe Pneumonia. N. Engl. J. Med. 2021, 384, 619–629. [Google Scholar] [CrossRef]
- Sullivan, D.J.; Gebo, K.A.; Shoham, S.; Bloch, E.M.; Lau, B.; Shenoy, A.G.; Mosnaim, G.S.; Gniadek, T.J.; Fukuta, Y.; Patel, B.; et al. Early Outpatient Treatment for COVID-19 with Convalescent Plasma. N. Engl. J. Med. 2022, 386, 1700–1711. [Google Scholar] [CrossRef]
- Thorlacius-Ussing, L.; Brooks, P.T.; Nielsen, H.; Jensen, B.A.; Wiese, L.; Sækmose, S.G.; Johnsen, S.; Gybel-Brask, M.; Johansen, I.S.; Bruun, M.T.; et al. A randomized placebo-controlled trial of convalescent plasma for adults hospitalized with COVID-19 pneumonia. Sci. Rep. 2022, 12, 16385. [Google Scholar] [CrossRef] [PubMed]
- van den Berg, K.; Glatt, T.N.; Vermeulen, M.; Little, F.; Swanevelder, R.; Barrett, C.; Court, R.; Bremer, M.; Nyoni, C.; Swarts, A.; et al. Convalescent plasma in the treatment of moderate to severe COVID-19 pneumonia: A randomized controlled trial (PROTECT-Patient Trial). Sci. Rep. 2022, 12, 2552. [Google Scholar] [CrossRef]
- Denkinger, C.M.; Janssen, M.; Schäkel, U.; Gall, J.; Leo, A.; Stelmach, P.; Weber, S.F.; Krisam, J.; Baumann, L.; Stermann, J.; et al. Anti-SARS-CoV-2 antibody-containing plasma improves outcome in patients with hematologic or solid cancer and severe COVID-19: A randomized clinical trial. Nat. Cancer 2022. [Google Scholar] [CrossRef] [PubMed]
- Piscoya, A.; Ng-Sueng, L.F.; del Riego, A.P.; Cerna-Viacava, R.; Pasupuleti, V.; Thota, P.; Roman, Y.M.; Hernandez, A.V. Efficacy and harms of convalescent plasma for treatment of hospitalized COVID-19 patients: A systematic review and meta-analysis. Arch. Med. Sci. 2021, 17, 1251–1261. [Google Scholar] [CrossRef] [PubMed]
- Snow, T.A.C.; Saleem, N.; Ambler, G.; Nastouli, E.; McCoy, L.E.; Singer, M.; Arulkumaran, N. Convalescent plasma for COVID-19: A meta-analysis, trial sequential analysis, and meta-regression. Br. J. Anaesth. 2021, 127, 834–844. [Google Scholar] [CrossRef]
- Kloypan, C.; Saesong, M.; Sangsuemoon, J.; Chantharit, P.; Mongkhon, P. CONVALESCENT plasma for COVID-19: A meta-analysis of clinical trials and real-world evidence. Eur. J. Clin. Investig. 2021, 51, e13663. [Google Scholar] [CrossRef]
- Rasheed, A.M.; Fatak, D.F.; Hashim, H.A.; Maulood, M.F.; Kabah, K.K.; Almusawi, Y.A.; Abdulamir, A.S. The therapeutic potential of convalescent plasma therapy on treating critically-ill COVID-19 patients residing in respiratory care units in hospitals in Baghdad, Iraq. Infez. Med. 2020, 28, 357–366. [Google Scholar]
- Axfors, C.; Janiaud, P.; Schmitt, A.M.; Hooft, J.V.; Smith, E.R.; Haber, N.A.; Abayomi, A.; Abduljalil, M.; Abdulrahman, A.; Acosta-Ampudia, Y.; et al. Association between convalescent plasma treatment and mortality in COVID-19: A collaborative systematic review and meta-analysis of randomized clinical trials. BMC Infect. Dis. 2021, 21, 1170. [Google Scholar] [CrossRef] [PubMed]
- Janiaud, P.; Axfors, C.; Schmitt, A.M.; Gloy, V.; Ebrahimi, F.; Hepprich, M.; Smith, E.R.; Haber, N.A.; Khanna, N.; Moher, D.; et al. Association of Convalescent Plasma Treatment with Clinical Outcomes in Patients With COVID-19: A Systematic Review and Meta-analysis. JAMA 2021, 325, 1185–1195. [Google Scholar] [CrossRef] [PubMed]
- Rosati, M.; Terpos, E.; Bear, J.; Burns, R.; Devasundaram, S.; Ntanasis-Stathopoulos, I.; Gavriatopoulou, M.; Kastritis, E.; Dimopoulos, M.-A.; Pavlakis, G.N.; et al. Low Spike Antibody Levels and Impaired BA.4/5 Neutralization in Patients with Multiple Myeloma or Waldenstrom’s Macroglobulinemia after BNT162b2 Booster Vaccination. Cancers 2022, 14, 5816. [Google Scholar] [CrossRef] [PubMed]
- Terpos, E.; Fotiou, D.; Karalis, V.; Ntanasis-Stathopoulos, I.; Sklirou, A.D.; Gavriatopoulou, M.; Malandrakis, P.; Iconomidou, V.A.; Kastritis, E.; Trougakos, I.P.; et al. SARS-CoV-2 humoral responses following booster BNT162b2 vaccination in patients with B-cell malignancies. Am. J. Hematol. 2022, 97, 1300–1308. [Google Scholar] [CrossRef] [PubMed]
- Ntanasis-Stathopoulos, I.; Karalis, V.; Gavriatopoulou, M.; Malandrakis, P.; Sklirou, A.D.; Eleutherakis-Papaiakovou, E.; Migkou, M.; Roussou, M.; Fotiou, D.; Alexopoulos, H.; et al. Second Booster BNT162b2 Restores SARS-CoV-2 Humoral Response in Patients With Multiple Myeloma, Excluding Those Under Anti-BCMA Therapy. HemaSphere 2022, 6, e764. [Google Scholar] [CrossRef]
- Levine, A.C.; Fukuta, Y.; Huaman, M.; Ou, J.; Meisenberg, B.; Patel, B.; Paxton, J.; Hanley, D.F.; Rijnders, B.; Gharbharan, A.; et al. COVID-19 Convalescent Plasma Outpatient Therapy to Prevent Outpatient Hospitalization: A Meta-analysis of Individual Participant Data From Five Randomized Trials. medRxiv 2022. [Google Scholar] [CrossRef]
- Senefeld, J.W.; Franchini, M.; Mengoli, C.; Cruciani, M.; Zani, M.; Gorman, E.K.; Focosi, D.; Casadevall, A.; Joyner, M.J. COVID-19 Convalescent Plasma for the Treatment of Immunocompromised Patients: A Systematic Review and Meta-analysis. JAMA Netw. Open 2023, 6, e2250647. [Google Scholar] [CrossRef]
- Thompson, M.A.; Henderson, J.P.; Shah, P.K.; Rubinstein, S.M.; Joyner, M.J.; Choueiri, T.K.; Flora, D.B.; Griffiths, E.A.; Gulati, A.P.; Hwang, C.; et al. Association of Convalescent Plasma Therapy With Survival in Patients With Hematologic Cancers and COVID-19. JAMA Oncol. 2021, 7, 1167–1175. [Google Scholar] [CrossRef]
Author and Year | Setting | Geographic Region | Multicenter | Blinded | Control |
---|---|---|---|---|---|
Abani (2021) | Hospitalized | More than one area | Yes | No | SoC |
Agarwal (2020) | Hospitalized | India | Yes | No | SoC |
Alemany (2022) | Outpatients | Europe | Yes | Yes | Placebo |
AlQahtani (2021) | Hospitalized | Middle East | No | No | SoC |
Avendaño-Solá (2021) | Hospitalized | Europe | Yes | No | SoC |
Bajpai (2020) | Hospitalized | India | No | No | SoC |
Bajpai (2022) | Hospitalized | India | Yes | No | SoC |
Baldeón (2022) | Hospitalized | Latin America | Yes | Yes | Placebo |
Bar (2021) | Hospitalized | USA | No | No | SoC |
Bégin (2021) | Hospitalized | More than one area | Yes | No | SoC |
Bennett-Guerrero (2021) | Hospitalized | USA | No | Yes | Placebo |
Dekinger (2022) | Hospitalized | Europe | Yes | No | SoC |
Devos (2022) | Hospitalized | Europe | Yes | No | SoC |
Estcourt (2021) | Hospitalized | More than one area | Yes | No | SoC |
Gharbharan (2021) | Hospitalized | Europe | Yes | No | SoC |
Gharbharan (2022) | Outpatients | Europe | Yes | Yes | Placebo |
Holm (2021) | Hospitalized | Europe | No | No | SoC |
Kirenga (2021) | Mixed | Africa | No | No | SoC |
Korley (2021) | Outpatients | USA | Yes | Yes | SoC |
Li (2020) | Hospitalized | East Asia | Yes | No | SoC |
Libster (2021) | Outpatients | Latin America | Yes | Yes | Placebo |
Manzini (2022) | Hospitalized | Europe | No | Yes | SoC |
Menichetti (2021) | Hospitalized | Europe | Yes | No | SoC |
O’Donnell (2021) | Hospitalized | More than one area | Yes | Yes | Placebo |
Ortigoza (2022) | Hospitalized | USA | Yes | Yes | Placebo |
Ray (2022) | Hospitalized | India | No | No | SoC |
Rojas (2022) | Hospitalized | Latin America | Yes | Yes | SoC |
Santis (2022) | Hospitalized | Latin America | Yes | No | SoC |
Sekine (2022) | Hospitalized | Latin America | No | Yes | SoC |
Self (2022) | Hospitalized | USA | Yes | Yes | Placebo |
Simonovich (2021) | Hospitalized | Latin America | No | Yes | Placebo |
Sullivan (2022) | Outpatients | USA | Yes | Yes | Placebo |
Thorlacius-Ussing (2022) | Hospitalized | Europe | Yes | No | Placebo |
van de Berg (2022) | Hospitalized | Africa | No | Yes | Placebo |
Author and Year | CP (n) | Control (n) | Male % | Age (μ ± σ) | Time from Symptom Onset to Intervention (μ ± σ) | CP Dose (mL) |
---|---|---|---|---|---|---|
Abani (2021) | 5795 | 5763 | 64% | 63.50 ± 14.70 | 9.00 ± 4.45 | 550 |
Agarwal (2020) | 235 | 229 | 76% | 51.13 ± 19.53 | 8.35 ± 3.73 | 400 |
Alemany (2022) | 188 | 188 | 54% | 56.70 ± 7.44 | 4.40 ± 1.40 | 275 |
AlQahtani (2021) | 20 | 20 | 80% | 51.65 ± 19.45 | 10.00 | 400 |
Avendaño-Solá (2021) | 179 | 171 | 65% | 63.00 ± 15.30 | 5.65 ± 2.23 | 275 |
Bajpai (2020) | 14 | 15 | 73% | 48.20 ± 9.80 | 3.00 | 500 |
Bajpai (2022) | 200 | 200 | 67% | 55.52 ± 1.17 | - | 500 |
Baldeón (2022) | 63 | 95 | 68% | 74.34 ± 18.39 | 10.60 ± 4.90 | - |
Bar (2021) | 40 | 39 | 46% | - | 7.71 ± 4.53 | - |
Bégin (2021) | 625 | 313 | 59% | 67.50 ± 15.60 | 7.90 ± 3.70 | 500 |
Bennett-Guerrero (2021) | 59 | 15 | 60% | 65.70 ± 23.50 | 11.12 ± 9.12 | 480 |
Denkinger (2022) | 68 | 66 | 68% | 68.50 ± 11.30 | 7.00 ± 4.50 | 575 |
Devos (2022) | 320 | 163 | 69% | 62.00 ± 14.00 | 7.00 ± 4.46 | 450 |
Estcourt (2021) | 1078 | 909 | 68% | 60.77 ± 18.38 | - | 550 |
Gharbharan (2021) | 43 | 43 | 72% | 64.40 ± 13.45 | 10.35 ± 6.72 | 300 |
Gharbharan (2022) | 207 | 209 | 78% | 60.00 ± 7.44 | 5.00 ± 1.49 | 400 |
Holm (2021) | 17 | 14 | 61% | 69.95 ± 40.64 | 7.00 ± 3.23 | 675 |
Kirenga (2021) | 69 | 67 | 71% | 50.18 ± 17.61 | 6.30 ± 3.00 | - |
Korley (2021) | 257 | 254 | 46% | 51.90 ± 16.35 | 3.65 ± 2.24 | 250 |
Li (2020) | 52 | 51 | 58% | 70.00 ± 12.03 | 29.65 ± 14.29 | - |
Libster (2021) | 80 | 80 | 38% | 77.20 ± 8.60 | 1.65 ± 0.58 | 250 |
Manzini (2022) | 60 | 60 | 72% | 65.48 ± 11.96 | 8.35 ± 5.23 | 600 |
Menichetti (2021) | 232 | 241 | 64% | 64.00 ± 14.87 | 7.21 ± 2.98 | 400 |
O’Donnell (2021) | 150 | 73 | 66% | 60.30 ± 17.91 | 10 ± 4.49 | - |
Ortigoza (2022) | 468 | 473 | 59% | 62.65 ± 15.59 | 6.65 ± 3.71 | 250 |
Ray (2022) | 40 | 40 | 71% | - | 4.20 ± 2.21 | 400 |
Rojas (2022) | 46 | 45 | 70% | 51.76 ± 18.68 | 10.65 ± 2.96 | 500 |
Santis (2022) | 36 | 71 | 72% | 56.00 ± 16.16 | 9.00 ± 1.50 | 1800 |
Sekine (2022) | 80 | 80 | 41% | 58.74 ± 14.96 | 10.00 ± 3.00 | 300 |
Self (2022) | 487 | 473 | 57% | 59.65 ± 15.59 | 7.65 ± 3.72 | 300 |
Simonovich (2021) | 228 | 105 | 67% | 62.00 ± 14.89 | 7.65 ± 3.72 | 500 |
Sullivan (2022) | 592 | 589 | 57% | 43.35 ± 23.12 | 5.65 ± 2.23 | 250 |
Thorlacius-Ussing (2022) | 98 | 46 | 72% | 65.00 ± 14.98 | 10.65 ± 3.76 | 600 |
van de Berg (2022) | 52 | 51 | 41% | 77.20 ± 8.60 | 8.65 ± 3.76 | 250 |
n | RR | Heterogeneity I2, p | |
---|---|---|---|
Overall analysis | 33 | 0.98 (0.91, 1.06) | 0.0%, 0.709 |
Subgroups by adjustment | |||
Multivariate | 13 | 0.99 (0.91, 1.07) | 8.5%, 0.361 |
Univariate | 20 | 1.05 (0.95, 1.06) | 0.0%, 0.803 |
Subgroups by multicenter status | |||
Multicenter | 22 | 1.00 (0.95, 1.06) | 0.0%, 0.703 |
Single-center | 11 | 0.95 (0.74, 1.24) | 0.0, 0.451 |
Subgroups by blinding status | |||
Blinded | 15 | 0.97 (0.82, 1.15) | 0.0%, 0.524 |
Open label | 18 | 1.01 (0.95, 1.07) | 0.0%, 0.667 |
Subgroups by geographic region | |||
Africa | 2 | 0.96 (0.56, 1.67) | 0.0%, 0.509 |
East Asia | 1 | 0.80 (0.36, 1.76) | Not calculable |
Europe | 9 | 0.89 (0.67, 1.19) | 0.0%, 0.778 |
India | 4 | 1.06 (0.82, 1.38) | 0.0%, 0.493 |
Latin America | 6 | 1.10 (0.77, 1.57) | 0.0%, 0.623 |
Middle East | 1 | 0.50 (0.05, 5.04) | Not calculable |
USA | 6 | 0.85 (0.55, 1.31) | 47.1%, 0.092 |
More than one area | 4 | 1.02 (0.93, 1.12) | 26.8%, 0.251 |
n | RR | Heterogeneity I2, p | |
---|---|---|---|
Overall analysis | 9 | 0.99 (0.96, 1.03) | 0.0%, 0.955 |
Subgroups by adjustment | |||
Multivariate | 2 | 0.98 (0.94, 1.03) | 0.0%, 0.455 |
Univariate | 7 | 1.01 (0.96, 1.05) | 0.0%, 0.949 |
Subgroups by multicenter status | |||
Multicenter | 7 | 1.00 (0.96, 1.03) | 0.0%, 0.859 |
Single-center | 2 | 0.95 (0.74, 1.24) | 0.0, 0.451 |
Subgroups by blinding status | |||
Blinded | 15 | 0.97 (0.82, 1.15) | 0.0%, 0.524 |
Open label | 18 | 0.98 (0.87, 1.11) | 0.0%, 1.000 |
Subgroups by geographic region | |||
Africa | 1 | 0.98 (0.72, 1.34) | Not calculable |
Europe | 1 | 1.06 (0.87, 1.30) | Not calculable |
India | 1 | 1.03 (0.88, 1.21) | Not calculable |
Latin America | 2 | 1.00 (0.92, 1.09) | 0.0%, 0.652 |
USA | 2 | 0.99 (0.94, 1.06) | 0.0%, 0.529 |
More than one area | 2 | 1.00 (0.92 1.08) | 21.5%, 0.259 |
n | RR | Heterogeneity I2, p | |
---|---|---|---|
Overall analysis | 7 | 1.06 (0.97, 1.16) | 17.2%, 0.299 |
Subgroups by adjustment | |||
Multivariate | 2 | 1.25 (0.87, 1.78) | 61.0%, 0.110 |
Univariate | 5 | 1.01 (0.94, 1.09) | 0.0%, 0.601 |
Subgroups by multicenter status | |||
Multicenter | 4 | 1.15 (1.02, 1.29) | 0.0%, 0.451 |
Single-center | 3 | 0.99 (0.91, 1.07) | 0.0%, 0.854 |
Subgroups by blinding status | |||
Blinded | 4 | 1.12 (0.98, 1.27) | 0.0%, 0.394 |
Open label | 3 | 1.03 (0.92, 1.17) | 21.5%, 0.280 |
Subgroups by geographic region | |||
Africa | 2 | 0.98 (0.90, 1.07) | 0.0%, 0.749 |
East Asia | 1 | 1.20 (0.82, 1.75) | Not calculable |
Europe | 1 | 1.16 (0.91, 1.47) | Not calculable |
Latin America | 1 | 1.60 (1.03, 2.49) | Not calculable |
USA | 1 | 1.33 (0.37, 4.77) | Not calculable |
More than one area | 1 | 1.09 (0.93, 1.27) | Not calculable |
n | RR | Heterogeneity I2, p | |
---|---|---|---|
Overall analysis | 20 | 0.98 (0.93, 1.02) | 0.0%, 0.542 |
Subgroups by adjustment | |||
Multivariate | 3 | 1.00 (0.86, 1.15) | 70.7%, 0.033 |
Univariate | 17 | 0.98 (0.93, 1.02) | 0.0%, 0.542 |
Subgroups by multicenter status | |||
Multicenter | 14 | 0.98 (0.93, 1.04) | 8.0%, 0.365 |
Single-center | 6 | 0.84 (0.57, 1.24) | 0.0%, 0.703 |
Subgroups by blinding status | |||
Blinded | 10 | 0.96 (0.71, 1.31) | 8.0%, 0.807 |
Open label | 10 | 0.99 (0.92, 1.06) | 27.4%, 0.192 |
Subgroups by geographic region | |||
Africa | 1 | 0.33 (0.04, 2.88) | Not calculable |
Europe | 7 | 0.92 (0.85, 0.99) | 0.0%, 0.897 |
India | 1 | 0.88 (0.63, 1.23) | Not calculable |
Latin America | 3 | 0.77 (0.46, 1.29) | 0.0%, 0.529 |
Middle East | 1 | 0.67 (0.22, 2.03) | Not calculable |
USA | 3 | 0.84 (0.43, 1.64) | 0.0%, 0.460 |
More than one area | 4 | 1.05 (0.96, 1.15) | 32.8%, 0.215 |
Subgroups by ICU-related outcome | |||
ICU admission | 4 | 0.97 (0.74, 1.26) | 0.0%, 0.501 |
IMV or ECMO or death | 1 | 1.10 (0.98, 1.24) | Not calculable |
Intubation or death | 1 | 1.16 (0.94, 1.43) | Not calculable |
IMV | 1 | 0.33 (0.04, 2.88) | Not calculable |
Invasive ventilatory support | 1 | 0.88 (0.42, 1.83) | Not calculable |
MV | 1 | 0.50 (0.09, 2.74) | Not calculable |
MV or ICU admission | 1 | 0.75 (0.17, 3.31) | Not calculable |
MV or death | 1 | 1.10 (0.62, 1.97) | Not calculable |
MV or ECMO | 1 | 0.49 (0.15, 1.58) | Not calculable |
NIV or high flow O2 or IMV or ECMO or death | 1 | 0.91 (0.84, 0.99) | Not calculable |
PaO2/FiO2 of <150 mm Hg or death | 1 | 0.91 (0.67, 1.23) | Not calculable |
Ventilation treatment | 6 | 0.98 (0.90, 1.06) | 0.0%, 0.784 |
n | RR | Heterogeneity I2, p | |
---|---|---|---|
Overall analysis | 6 | 0.74 (0.56, 0.99) | 49.8%, 0.076 |
Subgroups by adjustment | |||
Multivariate | 0 | - | - |
Univariate | 6 | 0.74 (0.56, 0.99) | 49.8%, 0.076 |
Subgroups by multicenter status | |||
Multicenter | 5 | 0.72 (0.52, 1.00) | 59.6%, 0.042 |
Single-center | 1 | 0.91 (0.38, 2.17) | Not calculable |
Subgroups by blinding status | |||
Blinded | 5 | 0.72 (0.52, 1.00) | 59.6%, 0.042 |
Open label | 1 | 0.91 (0.38, 2.17) | Not calculable |
Subgroups by geographic region | |||
Africa | 1 | 0.91 (0.38, 2.17) | Not calculable |
Europe | 2 | 0.87 (0.51, 1.48) | 51.2%, 0.152 |
Latin America | 1 | 0.52 (0.29, 0.94) | Not calculable |
USA | 2 | 0.67 (0.35, 1.27) | 75.1%, 0.045 |
n | RR | Heterogeneity I2, p | |
---|---|---|---|
Overall analysis | 8 | 0.95 (0.71, 1.29) | 15.2%, 0.311 |
Subgroups by adjustment | |||
Multivariate | 3 | 0.88 (0.51, 1.54) | 41.1%, 0.183 |
Univariate | 5 | 0.96 (0.60, 1.51) | 6.0%, 0.313 |
Subgroups by multicenter status | |||
Multicenter | 5 | 0.98 (0.75, 1.30) | 1.4%, 0.398 |
Single-center | 3 | 0.89 (0.28, 2.83) | 51.9%, 0.125 |
Subgroups by blinding status | |||
Blinded | 4 | 1.03 (0.68, 1.57) | 43.1%, 0.153 |
Open label | 4 | 0.70 (0.38, 1.28) | 0.0%, 0.666 |
Subgroups by geographic region | |||
Europe | 3 | 0.71 (0.31, 1.31) | 0.0%, 0.467 |
Latin America | 2 | 0.96 (0.23, 4.04) | 75.1%, 0.045 |
USA | 3 | 1.06 (0.78, 1.44) | 0.0%, 0.500 |
n | RR | Heterogeneity I2, p | |
---|---|---|---|
Overall analysis | 4 | 0.96 (0.89, 1.03) | 0.0%, 0.995 |
Subgroups by adjustment | |||
Multivariate | - | - | - |
Univariate | 4 | 0.96 (0.89, 1.03) | 0.0%, 0.995 |
Subgroups by multicenter status | |||
Multicenter | 2 | 0.96 (0.88, 1.04) | 0.0%, 0.795 |
Single-center | 2 | 0.96 (0.81, 1.14) | 0.0%, 0.964 |
Subgroups by blinding status | |||
Blinded | 3 | 0.96 (0.88, 1.04) | 0.0%, 0.999 |
Open label | 1 | 0.93 (0.75, 1.16) | Not calculable |
Subgroups by geographic region | |||
Europe | 1 | 0.93 (0.75, 1.16) | Not calculable |
Latin America | 2 | 0.96 (0.81, 1.14) | 0.0%, 0.964 |
USA | 1 | 0.96 (0.87, 1.05) | Not calculable |
Variables | Increment | n | Exponentiated Coefficient | p |
---|---|---|---|---|
Male% | 10% increase | 33 | 1.06 (0.93, 1.21) | 0.368 |
Mean age | 10 y increase | 31 | 0.92 (0.76, 1.12) | 0.405 |
Time from symptom onset to intervention | 1 day more | 31 | 1.00 (0.97, 1.04) | 0.945 |
Total CP dose | 100 mL more | 27 | 1.01 (0.96, 1.07) | 0.691 |
Variables | Increment | n | Exponentiated Coefficient | p |
---|---|---|---|---|
Male% | 10% increase | 20 | 1.02 (0.85, 1.23) | 0.789 |
Mean age | 10 y increase | 19 | 1.07 (0.86, 1.35) | 0.514 |
Time from symptom onset to intervention | 1 day more | 19 | 1.03 (0.99, 1.06) | 0.157 |
Total CP dose | 100 mL more | 18 | 1.05 (1.00, 1.11) | 0.064 |
Randomization Process | Deviations from Intended Interventions | Missing Outcome Data | Measurement of the Outcome | Selection of the Reported Result | Overall | |
---|---|---|---|---|---|---|
Abani (2021) | Low risk | Some concerns | Low risk | Low risk | Low risk | Some concerns |
Agarwal (2020) | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk |
Alemany (2022) | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk |
AlQahtani (2021) | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk |
Avendaño-Solá (2021) | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk |
Bajpai (2020) | Some concerns | Low risk | Low risk | Low risk | Low risk | Some concerns |
Bajpai (2022) | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk |
Baldeón (2022) | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk |
Bar (2021) | Some concerns | Low risk | Low risk | Low risk | Low risk | Some concerns |
Bégin (2021) | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk |
Bennett-Guerrero (2021) | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk |
Denkinger (2022) | Some concerns | Low risk | Low risk | Low risk | Low risk | Some concerns |
Devos (2022) | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk |
Estcourt (2021) | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk |
Gharbharan (2021) | Low risk | Some concerns | Low risk | Low risk | Low risk | Some concerns |
Gharbharan (2022) | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk |
Holm (2021) | Some concerns | Some concerns | Low risk | Low risk | Low risk | Some concerns |
Kirenga (2021) | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk |
Korley (2021) | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk |
Li (2020) | Some concerns | Low risk | Low risk | Low risk | Low risk | Some concerns |
Libster (2021) | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk |
Manzini (2022) | Some concerns | Low risk | Low risk | Low risk | Low risk | Some concerns |
Menichetti (2021) | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk |
O’Donnell (2021) | Low risk | Low risk | Low risk | Low risk | Some concerns | Some concerns |
Ortigoza (2022) | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk |
Ray (2022) | High risk | Some concerns | Low risk | Low risk | Low risk | High risk |
Rojas (2022) | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk |
Santis (2022) | Low risk | Some concerns | Some concerns | Low risk | Low risk | Some concerns |
Sekine (2022) | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk |
Self (2022) | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk |
Simonovich (2021) | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk |
Sullivan (2021) | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk |
Thorlacius-Ussing (2022) | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk |
van de Berg (2022) | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filippatos, C.; Ntanasis-Stathopoulos, I.; Sekeri, K.; Ntanasis-Stathopoulos, A.; Gavriatopoulou, M.; Psaltopoulou, T.; Dounias, G.; Sergentanis, T.N.; Terpos, E. Convalescent Plasma Therapy for COVID-19: A Systematic Review and Meta-Analysis on Randomized Controlled Trials. Viruses 2023, 15, 765. https://doi.org/10.3390/v15030765
Filippatos C, Ntanasis-Stathopoulos I, Sekeri K, Ntanasis-Stathopoulos A, Gavriatopoulou M, Psaltopoulou T, Dounias G, Sergentanis TN, Terpos E. Convalescent Plasma Therapy for COVID-19: A Systematic Review and Meta-Analysis on Randomized Controlled Trials. Viruses. 2023; 15(3):765. https://doi.org/10.3390/v15030765
Chicago/Turabian StyleFilippatos, Charalampos, Ioannis Ntanasis-Stathopoulos, Kalliopi Sekeri, Anastasios Ntanasis-Stathopoulos, Maria Gavriatopoulou, Theodora Psaltopoulou, George Dounias, Theodoros N. Sergentanis, and Evangelos Terpos. 2023. "Convalescent Plasma Therapy for COVID-19: A Systematic Review and Meta-Analysis on Randomized Controlled Trials" Viruses 15, no. 3: 765. https://doi.org/10.3390/v15030765
APA StyleFilippatos, C., Ntanasis-Stathopoulos, I., Sekeri, K., Ntanasis-Stathopoulos, A., Gavriatopoulou, M., Psaltopoulou, T., Dounias, G., Sergentanis, T. N., & Terpos, E. (2023). Convalescent Plasma Therapy for COVID-19: A Systematic Review and Meta-Analysis on Randomized Controlled Trials. Viruses, 15(3), 765. https://doi.org/10.3390/v15030765