Tissue-Specific DNA Methylation Changes in CD8+ T Cells During Chronic Simian Immunodeficiency Virus Infection of Infant Rhesus Macaques
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Genomic DNA Methylation in PBMC, Lymph Node, and Intestinal CD8+ T Cells During SIV Infection
3.2. Methylation of the IFNγ, IL-2, and TNFα Cytokine Promoters in CD8+ T Cells of SIV-Naïve and SIV-Infected Infant Rhesus Macaques
3.3. CpG Site-Specific Methylation at CD8+ T Cell Cytokine Promoters of Different Tissues in SIV-Infected Compared to Uninfected Infant Rhesus Macaques
3.4. Differences in CpG Site-Specific Methylation Patterns at Each Cytokine Promoter in Lymph Node and Intestinal Tissue CD8+ T Cells
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koup, R.A.; Safrit, J.T.; Cao, Y.; Andrews, C.A.; McLeod, G.; Borkowsky, W.; Farthing, C.; Ho, D.D. Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J. Virol. 1994, 68, 4650–4655. [Google Scholar] [CrossRef] [PubMed]
- Borrow, P.; Lewicki, H.; Hahn, B.H.; Shaw, G.M.; Oldstone, M.B. Virus-specific CD8+ cytotoxic T-lymphocyte activity associated with control of viremia in primary human immunodeficiency virus type 1 infection. J. Virol. 1994, 68, 6103–6110. [Google Scholar] [CrossRef]
- Matano, T.; Shibata, R.; Siemon, C.; Connors, M.; Lane, H.C.; Martin, M.A. Administration of an anti-CD8 monoclonal antibody interferes with the clearance of chimeric simian/human immunodeficiency virus during primary infections of rhesus macaques. J. Virol. 1998, 72, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Bauer, D.E.; Tuttleton, S.E.; Lewin, S.; Gettie, A.; Blanchard, J.; Irwin, C.E.; Safrit, J.T.; Mittler, J.; Weinberger, L.; et al. Dramatic rise in plasma viremia after CD8(+) T cell depletion in simian immunodeficiency virus-infected macaques. J. Exp. Med. 1999, 189, 991–998. [Google Scholar] [CrossRef] [PubMed]
- Borrow, P.; Lewicki, H.; Wei, X.; Horwitz, M.S.; Peffer, N.; Meyers, H.; Nelson, J.A.; Gairin, J.E.; Hahn, B.H.; Oldstone, M.B.; et al. Antiviral pressure exerted by HIV-1-specific cytotoxic T lymphocytes (CTLs) during primary infection demonstrated by rapid selection of CTL escape virus. Nat. Med. 1997, 3, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, A.; Hayes, T.L.; Bosinger, S.E.; Lawson, B.O.; Vanderford, T.; Schmitz, J.E.; Paiardini, M.; Betts, M.; Chahroudi, A.; Estes, J.D.; et al. Differential Impact of In Vivo CD8+ T Lymphocyte Depletion in Controller versus Progressor Simian Immunodeficiency Virus-Infected Macaques. J. Virol. 2015, 89, 8677–8686. [Google Scholar] [CrossRef]
- Vanderford, T.H.; Bleckwehl, C.; Engram, J.C.; Dunham, R.M.; Klatt, N.R.; Feinberg, M.B.; Garber, D.A.; Betts, M.R.; Silvestri, G. Viral CTL escape mutants are generated in lymph nodes and subsequently become fixed in plasma and rectal mucosa during acute SIV infection of macaques. PLoS Pathog. 2011, 7, e1002048. [Google Scholar] [CrossRef] [PubMed]
- McBrien, J.B.; Kumar, N.A.; Silvestri, G. Mechanisms of CD8(+) T cell-mediated suppression of HIV/SIV replication. Eur. J. Immunol. 2018, 48, 898–914. [Google Scholar] [CrossRef]
- O’Connell, K.A.; Bailey, J.R.; Blankson, J.N. Elucidating the elite: Mechanisms of control in HIV-1 infection. Trends Pharmacol. Sci. 2009, 30, 631–637. [Google Scholar] [CrossRef]
- Altfeld, M.; Addo, M.M.; Rosenberg, E.S.; Hecht, F.M.; Lee, P.K.; Vogel, M.; Yu, X.G.; Draenert, R.; Johnston, M.N.; Strick, D.; et al. Influence of HLA-B57 on clinical presentation and viral control during acute HIV-1 infection. AIDS 2003, 17, 2581–2591. [Google Scholar] [CrossRef]
- Evans, D.T.; Jing, P.; Allen, T.M.; O’Connor, D.H.; Horton, H.; Venham, J.E.; Piekarczyk, M.; Dzuris, J.; Dykhuzen, M.; Mitchen, J.; et al. Definition of five new simian immunodeficiency virus cytotoxic T-lymphocyte epitopes and their restricting major histocompatibility complex class I molecules: Evidence for an influence on disease progression. J. Virol. 2000, 74, 7400–7410. [Google Scholar] [CrossRef] [PubMed]
- Valentine, L.E.; Watkins, D.I. Relevance of studying T cell responses in SIV-infected rhesus macaques. Trends Microbiol. 2008, 16, 605–611. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, S.; Sada-Japp, A.; Petrovas, C.; Betts, M.R. Jigsaw falling into place: A review and perspective of lymphoid tissue CD8+ T cells and control of HIV. Mol. Immunol. 2020, 124, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Andersson, J.; Kinloch, S.; Sonnerborg, A.; Nilsson, J.; Fehniger, T.E.; Spetz, A.L.; Behbahani, H.; Goh, L.E.; McDade, H.; Gazzard, B.; et al. Low levels of perforin expression in CD8+ T lymphocyte granules in lymphoid tissue during acute human immunodeficiency virus type 1 infection. J. Infect. Dis. 2002, 185, 1355–1358. [Google Scholar] [CrossRef] [PubMed]
- Reuter, M.A.; Del Rio Estrada, P.M.; Buggert, M.; Petrovas, C.; Ferrando-Martinez, S.; Nguyen, S.; Sada Japp, A.; Ablanedo-Terrazas, Y.; Rivero-Arrieta, A.; Kuri-Cervantes, L.; et al. HIV-Specific CD8(+) T Cells Exhibit Reduced and Differentially Regulated Cytolytic Activity in Lymphoid Tissue. Cell Rep. 2017, 21, 3458–3470. [Google Scholar] [CrossRef]
- Kiniry, B.E.; Ganesh, A.; Critchfield, J.W.; Hunt, P.W.; Hecht, F.M.; Somsouk, M.; Deeks, S.G.; Shacklett, B.L. Predominance of weakly cytotoxic, T-bet(Low)Eomes(Neg) CD8(+) T-cells in human gastrointestinal mucosa: Implications for HIV infection. Mucosal Immunol. 2017, 10, 1008–1020. [Google Scholar] [CrossRef]
- Kiniry, B.E.; Hunt, P.W.; Hecht, F.M.; Somsouk, M.; Deeks, S.G.; Shacklett, B.L. Differential Expression of CD8(+) T Cell Cytotoxic Effector Molecules in Blood and Gastrointestinal Mucosa in HIV-1 Infection. J. Immunol. 2018, 200, 1876–1888. [Google Scholar] [CrossRef]
- Kiniry, B.E.; Li, S.; Ganesh, A.; Hunt, P.W.; Somsouk, M.; Skinner, P.J.; Deeks, S.G.; Shacklett, B.L. Detection of HIV-1-specific gastrointestinal tissue resident CD8(+) T-cells in chronic infection. Mucosal Immunol. 2018, 11, 909–920. [Google Scholar] [CrossRef]
- Cao, W.; Mehraj, V.; Kaufmann, D.E.; Li, T.; Routy, J.P. Elevation and persistence of CD8 T-cells in HIV infection: The Achilles heel in the ART era. J. Int. AIDS Soc. 2016, 19, 20697. [Google Scholar] [CrossRef]
- Kuchroo, V.K.; Anderson, A.C.; Petrovas, C. Coinhibitory receptors and CD8 T cell exhaustion in chronic infections. Curr. Opin. HIV AIDS 2014, 9, 439–445. [Google Scholar] [CrossRef]
- Fenwick, C.; Joo, V.; Jacquier, P.; Noto, A.; Banga, R.; Perreau, M.; Pantaleo, G. T-cell exhaustion in HIV infection. Immunol. Rev. 2019, 292, 149–163. [Google Scholar] [CrossRef] [PubMed]
- Georgountzou, A.; Papadopoulos, N.G. Postnatal Innate Immune Development: From Birth to Adulthood. Front. Immunol. 2017, 8, 957. [Google Scholar] [CrossRef] [PubMed]
- Adkins, B.; Leclerc, C.; Marshall-Clarke, S. Neonatal adaptive immunity comes of age. Nat. Rev. Immunol. 2004, 4, 553–564. [Google Scholar] [CrossRef] [PubMed]
- Levy, O. Innate immunity of the human newborn: Distinct cytokine responses to LPS and other Toll-like receptor agonists. J. Endotoxin Res. 2005, 11, 113–116. [Google Scholar] [CrossRef]
- Dowling, D.J.; Levy, O. Ontogeny of early life immunity. Trends Immunol. 2014, 35, 299–310. [Google Scholar] [CrossRef]
- Slyker, J.A.; John-Stewart, G.C.; Dong, T.; Lohman-Payne, B.; Reilly, M.; Atzberger, A.; Taylor, S.; Maleche-Obimbo, E.; Mbori-Ngacha, D.; Rowland-Jones, S.L. Phenotypic characterization of HIV-specific CD8+ T cells during early and chronic infant HIV-1 infection. PLoS ONE 2011, 6, e20375. [Google Scholar] [CrossRef]
- Roider, J.M.; Muenchhoff, M.; Goulder, P.J. Immune activation and paediatric HIV-1 disease outcome. Curr. Opin. HIV AIDS 2016, 11, 146–155. [Google Scholar] [CrossRef]
- Leitman, E.M.; Thobakgale, C.F.; Adland, E.; Ansari, M.A.; Raghwani, J.; Prendergast, A.J.; Tudor-Williams, G.; Kiepiela, P.; Hemelaar, J.; Brener, J.; et al. Role of HIV-specific CD8(+) T cells in pediatric HIV cure strategies after widespread early viral escape. J. Exp. Med. 2017, 214, 3239–3261. [Google Scholar] [CrossRef]
- Adland, E.; Paioni, P.; Thobakgale, C.; Laker, L.; Mori, L.; Muenchhoff, M.; Csala, A.; Clapson, M.; Flynn, J.; Novelli, V.; et al. Discordant Impact of HLA on Viral Replicative Capacity and Disease Progression in Pediatric and Adult HIV Infection. PLoS Pathog. 2015, 11, e1004954. [Google Scholar] [CrossRef]
- Chappell, C.; Beard, C.; Altman, J.; Jaenisch, R.; Jacob, J. DNA methylation by DNA methyltransferase 1 is critical for effector CD8 T cell expansion. J. Immunol. 2006, 176, 4562–4572. [Google Scholar] [CrossRef]
- Nag, M.; De Paris, K.; Fogle, J.E. Epigenetic Modulation of CD8(+) T Cell Function in Lentivirus Infections: A Review. Viruses 2018, 10, 227. [Google Scholar] [CrossRef] [PubMed]
- Correa, L.O.; Jordan, M.S.; Carty, S.A. DNA Methylation in T-Cell Development and Differentiation. Crit. Rev. Immunol. 2020, 40, 135–156. [Google Scholar] [CrossRef] [PubMed]
- Scharer, C.D.; Barwick, B.G.; Youngblood, B.A.; Ahmed, R.; Boss, J.M. Global DNA methylation remodeling accompanies CD8 T cell effector function. J. Immunol. 2013, 191, 3419–3429. [Google Scholar] [CrossRef]
- Belk, J.A.; Daniel, B.; Satpathy, A.T. Epigenetic regulation of T cell exhaustion. Nat. Immunol. 2022, 23, 848–860. [Google Scholar] [CrossRef] [PubMed]
- Youngblood, B.; Noto, A.; Porichis, F.; Akondy, R.S.; Ndhlovu, Z.M.; Austin, J.W.; Bordi, R.; Procopio, F.A.; Miura, T.; Allen, T.M.; et al. Cutting edge: Prolonged exposure to HIV reinforces a poised epigenetic program for PD-1 expression in virus-specific CD8 T cells. J. Immunol. 2013, 191, 540–544. [Google Scholar] [CrossRef]
- Moore, L.D.; Le, T.; Fan, G. DNA methylation and its basic function. Neuropsychopharmacology 2013, 38, 23–38. [Google Scholar] [CrossRef]
- Curtis, A.D., 2nd; Dennis, M.; Eudailey, J.; Walter, K.L.; Cronin, K.; Alam, S.M.; Choudhary, N.; Tuck, R.H.; Hudgens, M.; Kozlowski, P.A.; et al. HIV Env-Specific IgG Antibodies Induced by Vaccination of Neonatal Rhesus Macaques Persist and Can Be Augmented by a Late Booster Immunization in Infancy. mSphere 2020, 5, 10–1128. [Google Scholar] [CrossRef]
- Jensen, K.; Nabi, R.; Van Rompay, K.K.A.; Robichaux, S.; Lifson, J.D.; Piatak, M., Jr.; Jacobs, W.R., Jr.; Fennelly, G.; Canfield, D.; Mollan, K.R.; et al. Vaccine-Elicited Mucosal and Systemic Antibody Responses Are Associated with Reduced Simian Immunodeficiency Viremia in Infant Rhesus Macaques. J. Virol. 2016, 90, 7285–7302. [Google Scholar] [CrossRef]
- Jensen, K.; Dela Pena-Ponce, M.G.; Piatak, M., Jr.; Shoemaker, R.; Oswald, K.; Jacobs, W.R., Jr.; Fennelly, G.; Lucero, C.; Mollan, K.R.; Hudgens, M.G.; et al. Balancing Trained Immunity with Persistent Immune Activation and the Risk of Simian Immunodeficiency Virus Infection in Infant Macaques Vaccinated with Attenuated Mycobacterium tuberculosis or Mycobacterium bovis BCG Vaccine. Clin. Vaccine Immunol. 2017, 24, e00360-16. [Google Scholar] [CrossRef]
- Dwyer, J.M.; Johnson, C. The use of concanavalin A to study the immunoregulation of human T cells. Clin. Exp. Immunol. 1981, 46, 237–249. [Google Scholar]
- Messeguer, X.; Escudero, R.; Farre, D.; Nunez, O.; Martinez, J.; Alba, M.M. PROMO: Detection of known transcription regulatory elements using species-tailored searches. Bioinformatics 2002, 18, 333–334. [Google Scholar] [CrossRef] [PubMed]
- Farre, D.; Roset, R.; Huerta, M.; Adsuara, J.E.; Rosello, L.; Alba, M.M.; Messeguer, X. Identification of patterns in biological sequences at the ALGGEN server: PROMO and MALGEN. Nucleic Acids Res. 2003, 31, 3651–3653. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Tollefsbol, T.O. DNA methylation methods: Global DNA methylation and methylomic analyses. Methods 2021, 187, 28–43. [Google Scholar] [CrossRef] [PubMed]
- Betts, M.R.; Nason, M.C.; West, S.M.; De Rosa, S.C.; Migueles, S.A.; Abraham, J.; Lederman, M.M.; Benito, J.M.; Goepfert, P.A.; Connors, M.; et al. HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T cells. Blood 2006, 107, 4781–4789. [Google Scholar] [CrossRef]
- Freel, S.A.; Saunders, K.O.; Tomaras, G.D. CD8(+)T-cell-mediated control of HIV-1 and SIV infection. Immunol. Res. 2011, 49, 135–146. [Google Scholar] [CrossRef]
- de Mendoza, A.; Nguyen, T.V.; Ford, E.; Poppe, D.; Buckberry, S.; Pflueger, J.; Grimmer, M.R.; Stolzenburg, S.; Bogdanovic, O.; Oshlack, A.; et al. Large-scale manipulation of promoter DNA methylation reveals context-specific transcriptional responses and stability. Genome Biol. 2022, 23, 163. [Google Scholar] [CrossRef]
- Treatment Action Group. Available online: https://www.treatmentactiongroup.org/ (accessed on 9 January 2024).
- Gulzar, N.; Copeland, K.F. CD8+ T-cells: Function and response to HIV infection. Curr. HIV Res. 2004, 2, 23–37. [Google Scholar] [CrossRef]
- Breen, E.C.; Salazar-Gonzalez, J.F.; Shen, L.P.; Kolberg, J.A.; Urdea, M.S.; Martinez-Maza, O.; Fahey, J.L. Circulating CD8 T cells show increased interferon-gamma mRNA expression in HIV infection. Cell Immunol. 1997, 178, 91–98. [Google Scholar] [CrossRef]
- Stacey, A.R.; Norris, P.J.; Qin, L.; Haygreen, E.A.; Taylor, E.; Heitman, J.; Lebedeva, M.; DeCamp, A.; Li, D.; Grove, D.; et al. Induction of a striking systemic cytokine cascade prior to peak viremia in acute human immunodeficiency virus type 1 infection, in contrast to more modest and delayed responses in acute hepatitis B and C virus infections. J. Virol. 2009, 83, 3719–3733. [Google Scholar] [CrossRef]
- Zanussi, S.; Simonelli, C.; D’Andrea, M.; Caffau, C.; Clerici, M.; Tirelli, U.; DePaoli, P. CD8+ lymphocyte phenotype and cytokine production in long-term non-progressor and in progressor patients with HIV-1 infection. Clin. Exp. Immunol. 1996, 105, 220–224. [Google Scholar] [CrossRef]
- Crabtree, G.R.; Clipstone, N.A. Signal transmission between the plasma membrane and nucleus of T lymphocytes. Annu. Rev. Biochem. 1994, 63, 1045–1083. [Google Scholar] [CrossRef] [PubMed]
- Bruniquel, D.; Schwartz, R.H. Selective, stable demethylation of the interleukin-2 gene enhances transcription by an active process. Nat. Immunol. 2003, 4, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Murayama, A.; Sakura, K.; Nakama, M.; Yasuzawa-Tanaka, K.; Fujita, E.; Tateishi, Y.; Wang, Y.; Ushijima, T.; Baba, T.; Shibuya, K.; et al. A specific CpG site demethylation in the human interleukin 2 gene promoter is an epigenetic memory. EMBO J. 2006, 25, 1081–1092. [Google Scholar] [CrossRef] [PubMed]
- Nakayama-Hosoya, K.; Ishida, T.; Youngblood, B.; Nakamura, H.; Hosoya, N.; Koga, M.; Koibuchi, T.; Iwamoto, A.; Kawana-Tachikawa, A. Epigenetic repression of interleukin 2 expression in senescent CD4+ T cells during chronic HIV type 1 infection. J. Infect. Dis. 2015, 211, 28–39. [Google Scholar] [CrossRef]
- Kumar, A.; Abbas, W.; Herbein, G. TNF and TNF receptor superfamily members in HIV infection: New cellular targets for therapy? Mediators Inflamm. 2013, 2013, 484378. [Google Scholar] [CrossRef] [PubMed]
- Brenchley, J.M.; Douek, D.C. HIV infection and the gastrointestinal immune system. Mucosal Immunol. 2008, 1, 23–30. [Google Scholar] [CrossRef]
- Buggert, M.; Japp, A.S.; Betts, M.R. Everything in its right place: Resident memory CD8+ T cell immunosurveillance of HIV infection. Curr. Opin. HIV AIDS 2019, 14, 93–99. [Google Scholar] [CrossRef]
- Gonzalez, S.M.; Taborda, N.A.; Rugeles, M.T. Role of Different Subpopulations of CD8(+) T Cells during HIV Exposure and Infection. Front. Immunol. 2017, 8, 936. [Google Scholar] [CrossRef] [PubMed]
- Beck, S.E.; Veenhuis, R.T.; Blankson, J.N. Does B Cell Follicle Exclusion of CD8+ T Cells Make Lymph Nodes Sanctuaries of HIV Replication? Front. Immunol. 2019, 10, 2362. [Google Scholar] [CrossRef]
- Connick, E.; Mattila, T.; Folkvord, J.M.; Schlichtemeier, R.; Meditz, A.L.; Ray, M.G.; McCarter, M.D.; Mawhinney, S.; Hage, A.; White, C.; et al. CTL fail to accumulate at sites of HIV-1 replication in lymphoid tissue. J. Immunol. 2007, 178, 6975–6983. [Google Scholar] [CrossRef]
- Schreurs, R.; Sagebiel, A.F.; Steinert, F.L.; Highton, A.J.; Klarenbeek, P.L.; Drewniak, A.; Bakx, R.; The, S.M.L.; Ribeiro, C.M.S.; Perez, D.; et al. Intestinal CD8(+) T cell responses are abundantly induced early in human development but show impaired cytotoxic effector capacities. Mucosal Immunol. 2021, 14, 605–614. [Google Scholar] [CrossRef]
- Buggert, M.; Nguyen, S.; Salgado-Montes de Oca, G.; Bengsch, B.; Darko, S.; Ransier, A.; Roberts, E.R.; Del Alcazar, D.; Brody, I.B.; Vella, L.A.; et al. Identification and characterization of HIV-specific resident memory CD8(+) T cells in human lymphoid tissue. Sci. Immunol. 2018, 3, eaar4526. [Google Scholar] [CrossRef]
- Strongin, Z.; Raymond Marchand, L.; Deleage, C.; Pampena, M.B.; Cardenas, M.A.; Beusch, C.M.; Hoang, T.N.; Urban, E.A.; Gourves, M.; Nguyen, K.; et al. Distinct SIV-specific CD8(+) T cells in the lymph node exhibit simultaneous effector and stem-like profiles and are associated with limited SIV persistence. Nat. Immunol. 2024, 25, 1245–1256. [Google Scholar] [CrossRef]
Tissue Type/Animal | Age (Wks) | Tissue | SIV Status | Wks PI a | Viremia at the Time of Sampling (RNA Copies/mL) |
---|---|---|---|---|---|
PBMC b—Pre- and post-SIV infection | |||||
RM c 1 | 12 | PBMC | Negative | — | |
25 | Positive | 13 | 1.6 × 107 | ||
RM 2 | 12 | PBMC | Negative | — | |
24 | Positive | 12 | 1.7 × 106 | ||
RM 3 | 12 | PBMC | Negative | — | |
24 | Positive | 12 | 2.5 × 107 | ||
RM 4 | 12 | PBMC | Negative | — | |
24 | Positive | 12 | 7.4 × 106 | ||
Tissues—SIV-uninfected | |||||
RM 5 | 12 | LN d, INT e | Negative | — | — |
RM 6 | 5 | LN, INT | Negative | — | — |
RM 7 | 4 | LN, INT | Negative | — | — |
RM 8 | 6 | LN, INT | Negative | — | — |
Tissues—SIV-infected | |||||
RM 9 | 18 | LN, INT | Positive | 9 | 1.4 × 108 |
RM 10 | 15 | LN, INT | Positive | 6 | 8.7 × 107 |
RM 11 | 18 | LN, INT | Positive | 4 | 4.0 × 107 |
Target (GenBank No.) | Primer a | Sequence (5′-3′) (Position—Input Sequence Used for Primer Design *) | Amplicon Size |
---|---|---|---|
IL-2 promoter (EF457241) | F R | AGGTAAAGATATAAAAATGAGAAATATGGATTGG (143–171) ATATAAATAAAATCCCTCATAATTACATTAACCCAC (741–706) | 597 bp |
IFNγ promoter (AY486428.1) | F R | AATGTGTTTTGTGAATGAGGAGTTAATATTTTATTAGG (412–449) AACTTAACTAATCTTTCTCTTCTAATAACTAATCTTC (763–799) | 387 bp |
TNFα promoter (AY486430) | F R | AGGAGGAYGGGATTTAATTTTTAGAG (649–674) AAAATCTAAAATTACTTCTCTCCCTCTTAAC (963–992) | 343 bp |
Cytokine Promoter | Gen Bank No. | Promoter Region of Interest * (Size) | No. of CpGs in Assessed Promoter Region |
---|---|---|---|
IL-2 | EF45724 | 530–1127 (597 bp) | 3 |
IFNγ | AY486428.1 | 412–799 (387 bp) | 3 |
TNFα | AY486430 | 649–992 (343 bp) | 11 |
Cytokine Promoter | CpG Site Position from TSS a | TF b Binding Sites Coinciding with or in Close Proximity to CpG Sites |
---|---|---|
IL-2 | −306 | C/EBPbeta, XBP-1, GR-beta, Foxp3, HNF-1C, HNF-1A, HNF-1B, C/EBP alpha, POU2F1, POU2F2 |
−644 | C/EBP beta, GR-alpha, GR-beta, HNF-3A, PR-B, PR-A, MEF-2A | |
−702 | C/EBP beta, XBP-1, GR-beta, Foxp3, PR-B, PR-A, C/EBP alpha | |
IFNγ | −183 | GR-beta, GR-alpha, TFII-1 |
−315 | GR-alpha, C/EBP beta, LEF1, NFAT2, NCI/CTF, SRY, TCF-4E, GR, RXR-alpha, NF-1, TCF4 | |
−410 | GR beta, TFIID (T00820), GR-alpha, NFAT2, TFII-1, NFKB, C/EBP beta, STAT4, c-ETS1, STAT1beta, HNF-3alpha, NFAT1, IRF1 | |
TNFα | −172 | C/EBP beta, GR-alpha, TFII-1 |
−201 | C/EBP beta, Foxp3, GR, c-Myb, PR-B, PR-A | |
−220 | GR-alpha, TFII-1, PPAR-alpha: RXR-alpha, XBP-1, AR, TBP | |
−228 | GR-alpha, Pax-5, p53, PPAR-alpha: RXR-alpha, ETF, EBF | |
−251 | C/EBP beta, Foxp3, GR-beta, XBP-1 | |
−298 | GR-alpha, STAT4, c-Ets-1, Elk-1, PU.1, c-Ets2 | |
−340 | C/EBP beta, Foxp3, TFII-1, NFI/CTF | |
−342 | YY1 | |
−348 | Pax-5, p53, E2F-1, Sp1, WT1 | |
−417 | GR-alpha, TFII-1, PEA3, YY1, MAZ | |
−423 | GR-alpha, TFII-1, GR-beta, STAT4, c-Ets1 |
Tissue Type/Cytokine Promoter | Median Methylation SIV-Naïve Animals (%) | Median Methylation SIV-Infected Animals (%) | 95% Confidence Interval of Difference Between Median | p-Value a |
---|---|---|---|---|
Lymph node/IL-2 Promoter | 82.3 | 83.1 | −8.7 to 7.8 | >0.9999 |
Intestinal tissue/IL-2 Promoter | 65.3 | 66.7 | −6.9 to 11.6 | >0.9999 |
Lymph node/IFNγ Promoter | 82.6 | 79.3 | −12.8 to 17.2 | 0.6286 |
Intestinal tissue/IFNγ Promoter | 72.0 | 71.7 | −10.1 to 5.7 | 0.6286 |
Lymph node/TNFα Promoter | 41.7 | 49.4 | −12.4 to 22.1 | 0.4000 |
Intestinal tissue/TNFα Promoter | 47.8 | 53.3 | 3.8 to 11.8 | 0.0571 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nag, M.; Fogle, J.E.; Pillay, S.; Del Prete, G.Q.; De Paris, K. Tissue-Specific DNA Methylation Changes in CD8+ T Cells During Chronic Simian Immunodeficiency Virus Infection of Infant Rhesus Macaques. Viruses 2024, 16, 1839. https://doi.org/10.3390/v16121839
Nag M, Fogle JE, Pillay S, Del Prete GQ, De Paris K. Tissue-Specific DNA Methylation Changes in CD8+ T Cells During Chronic Simian Immunodeficiency Virus Infection of Infant Rhesus Macaques. Viruses. 2024; 16(12):1839. https://doi.org/10.3390/v16121839
Chicago/Turabian StyleNag, Mukta, Jonathan E. Fogle, Santhoshan Pillay, Gregory Q. Del Prete, and Kristina De Paris. 2024. "Tissue-Specific DNA Methylation Changes in CD8+ T Cells During Chronic Simian Immunodeficiency Virus Infection of Infant Rhesus Macaques" Viruses 16, no. 12: 1839. https://doi.org/10.3390/v16121839
APA StyleNag, M., Fogle, J. E., Pillay, S., Del Prete, G. Q., & De Paris, K. (2024). Tissue-Specific DNA Methylation Changes in CD8+ T Cells During Chronic Simian Immunodeficiency Virus Infection of Infant Rhesus Macaques. Viruses, 16(12), 1839. https://doi.org/10.3390/v16121839