Sxt1, Isolated from a Therapeutic Phage Cocktail, Is a Broader Host Range Relative of the Phage T3
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacteria, Phages, and Growth Conditions
2.2. Sxt1 Bacteriophage Isolation and Purification
2.3. Transmission Electron Microscopy
2.4. Cryo-Electron Microscopy
2.5. One-Step Growth Curve
2.6. Liquid Culture Infection
2.7. Determination of the Host Range
2.8. Adsorption Assay
2.9. DNA Sequencing
2.10. Phage Genome Assembly and Annotation
2.11. Sequence Alignment, Phylogenetics Analysis, and Structural Comparison
2.12. Visualization of the Results
3. Results and Discussion
3.1. Isolation, Life Cycle, and Morphology of Sxt1
3.2. Genomic Organization of the Sxt1
3.3. Comparative Genomics of Sxt1
3.4. Sxt1 Encodes Extended Lateral Tail Fibers
3.5. Sxt1 Has a Broader Host Range Compared to T3 and T7 Phages
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rossolini, G.M.; Arena, F.; Pecile, P.; Pollini, S. Update on the Antibiotic Resistance Crisis. Curr. Opin. Pharmacol. 2014, 18, 56–60. [Google Scholar] [CrossRef] [PubMed]
- Luong, T.; Salabarria, A.-C.; Roach, D.R. Phage Therapy in the Resistance Era: Where Do We Stand and Where Are We Going? Clin. Ther. 2020, 42, 1659–1680. [Google Scholar] [CrossRef] [PubMed]
- Hatfull, G.F.; Dedrick, R.M.; Schooley, R.T. Phage Therapy for Antibiotic-Resistant Bacterial Infections. Annu. Rev. Med. 2022, 73, 197–211. [Google Scholar] [CrossRef] [PubMed]
- Knezevic, P.; Hoyle, N.S.; Matsuzaki, S.; Gorski, A. Advances in Phage Therapy: Present Challenges and Future Perspectives. Front. Microbiol. 2021, 12, 1390. [Google Scholar] [CrossRef]
- Pirnay, J.-P.; Ferry, T.; Resch, G. Recent Progress toward the Implementation of Phage Therapy in Western Medicine. FEMS Microbiol. Rev. 2022, 46, fuab040. [Google Scholar] [CrossRef]
- Brives, C.; Pourraz, J. Phage Therapy as a Potential Solution in the Fight against AMR: Obstacles and Possible Futures. Palgrave Commun. 2020, 6, 100. [Google Scholar] [CrossRef]
- Schooley, R.T.; Strathdee, S. Treat Phage like Living Antibiotics. Nat. Microbiol. 2020, 5, 391–392. [Google Scholar] [CrossRef]
- Schooley, R.T.; Biswas, B.; Gill, J.J.; Hernandez-Morales, A.; Lancaster, J.; Lessor, L.; Barr, J.J.; Reed, S.L.; Rohwer, F.; Benler, S. Development and Use of Personalized Bacteriophage-Based Therapeutic Cocktails to Treat a Patient with a Disseminated Resistant Acinetobacter Baumannii Infection. Antimicrob. Agents Chemother. 2017, 61, 10–1128. [Google Scholar] [CrossRef]
- Chan, B.K.; Turner, P.E.; Kim, S.; Mojibian, H.R.; Elefteriades, J.A.; Narayan, D. Phage Treatment of an Aortic Graft Infected with Pseudomonas Aeruginosa. Evol. Med. Public Health 2018, 2018, 60–66. [Google Scholar] [CrossRef]
- Dedrick, R.M.; Guerrero-Bustamante, C.A.; Garlena, R.A.; Russell, D.A.; Ford, K.; Harris, K.; Gilmour, K.C.; Soothill, J.; Jacobs-Sera, D.; Schooley, R.T.; et al. Engineered Bacteriophages for Treatment of a Patient with a Disseminated Drug-Resistant Mycobacterium Abscessus. Nat. Med. 2019, 25, 730–733. [Google Scholar] [CrossRef]
- Jault, P.; Leclerc, T.; Jennes, S.; Pirnay, J.P.; Que, Y.-A.; Resch, G.; Rousseau, A.F.; Ravat, F.; Carsin, H.; Le Floch, R.; et al. Efficacy and Tolerability of a Cocktail of Bacteriophages to Treat Burn Wounds Infected by Pseudomonas Aeruginosa (PhagoBurn): A Randomised, Controlled, Double-Blind Phase 1/2 Trial. Lancet Infect. Dis. 2019, 19, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Sarker, S.A.; Sultana, S.; Reuteler, G.; Moine, D.; Descombes, P.; Charton, F.; Bourdin, G.; McCallin, S.; Ngom-Bru, C.; Neville, T.; et al. Oral Phage Therapy of Acute Bacterial Diarrhea with Two Coliphage Preparations: A Randomized Trial in Children from Bangladesh. EBioMedicine 2016, 4, 124–137. [Google Scholar] [CrossRef] [PubMed]
- Petrovic Fabijan, A.; Lin, R.C.Y.; Ho, J.; Maddocks, S.; Ben Zakour, N.L.; Iredell, J.R.; Westmead Bacteriophage Therapy Team. Safety of Bacteriophage Therapy in Severe Staphylococcus Aureus Infection. Nat. Microbiol. 2020, 5, 465–472. [Google Scholar] [CrossRef] [PubMed]
- Altamirano, F.L.G.; Barr, J.J. Unlocking the next Generation of Phage Therapy: The Key Is in the Receptors. Curr. Opin. Biotechnol. 2021, 68, 115–123. [Google Scholar] [CrossRef]
- Bertozzi Silva, J.; Storms, Z.; Sauvageau, D. Host Receptors for Bacteriophage Adsorption. FEMS Microbiol. Lett. 2016, 363, fnw002. [Google Scholar] [CrossRef]
- Isaev, A.B.; Musharova, O.S.; Severinov, K.V. Microbial Arsenal of Antiviral Defenses—Part I. Biochemistry 2021, 86, 319–337. [Google Scholar] [CrossRef]
- Kutateladze, M.; Adamia, R. Phage Therapy Experience at the Eliava Institute. Med. Mal. Infect. 2008, 38, 426–430. [Google Scholar] [CrossRef]
- Zaldastanishvili, E.; Leshkasheli, L.; Dadiani, M.; Nadareishvili, L.; Askilashvili, L.; Kvatadze, N.; Goderdzishvili, M.; Kutateladze, M.; Balarjishvili, N. Phage Therapy Experience at the Eliava Phage Therapy Center: Three Cases of Bacterial Persistence. Viruses 2021, 13, 1901. [Google Scholar] [CrossRef]
- Sarker, S.A.; Brüssow, H. From Bench to Bed and Back Again: Phage Therapy of Childhood Escherichia Coli Diarrhea. Ann. N. Y. Acad. Sci. 2016, 1372, 42–52. [Google Scholar] [CrossRef]
- McCallin, S.; Sarker, S.A.; Barretto, C.; Sultana, S.; Berger, B.; Huq, S.; Krause, L.; Bibiloni, R.; Schmitt, B.; Reuteler, G.; et al. Safety Analysis of a Russian Phage Cocktail: From Metagenomic Analysis to Oral Application in Healthy Human Subjects. Virology 2013, 443, 187–196. [Google Scholar] [CrossRef]
- Villarroel, J.; Larsen, M.V.; Kilstrup, M.; Nielsen, M. Metagenomic Analysis of Therapeutic PYO Phage Cocktails from 1997 to 2014. Viruses 2017, 9, 328. [Google Scholar] [CrossRef] [PubMed]
- Zschach, H.; Joensen, K.G.; Lindhard, B.; Lund, O.; Goderdzishvili, M.; Chkonia, I.; Jgenti, G.; Kvatadze, N.; Alavidze, Z.; Kutter, E.M.; et al. What Can We Learn from a Metagenomic Analysis of a Georgian Bacteriophage Cocktail? Viruses 2015, 7, 6570–6589. [Google Scholar] [CrossRef] [PubMed]
- McCallin, S.; Sarker, S.A.; Sultana, S.; Oechslin, F.; Brüssow, H. Metagenome Analysis of Russian and Georgian Pyophage Cocktails and a Placebo-controlled Safety Trial of Single Phage versus Phage Cocktail in Healthy Staphylococcus Aureus Carriers. Environ. Microbiol. 2018, 20, 3278–3293. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Smith, S.E.; Huang, W.; Ru, J.; Mirzaei, M.K.; Deng, L. Metagenomic Analyses of Single Phages and Phage Cocktails Show Instances of Contamination with Temperate Phages and Bacterial DNA. bioRxiv 2024, 2024–2029. [Google Scholar] [CrossRef]
- Грищук, В.В.; Кoлеватoв, А.П. Применение Пoливалентнoгo Бактериoфага “Секстафаг” в Кoмплекснoм Лечении Инфицирoваннoгo Панкреoнекрoза. Медицинская наука и oбразoвание Урала 2008, 9, 58–59, (Article In Russian). [Google Scholar]
- Кoвязина, Н.А.; Никoлаева, А.М.; Функнер, Е.В. Разрабoтка сoстава и исследoвание капсулирoваннoй лекарственнoй фoрмы секстафаг®. Вестник Вoрoнежскoгo гoсударственнoгo университета. Серия Химия. Биoлoгия. Фармация 2020, 75–80, (Article In Russian). [Google Scholar]
- Кoвязина, Н.А.; Решетникoв, B.И.; Функнер, Е.В.; Ефимoва, М.Г. Разрабoтка Сoстава и Технoлoгии Желудoчнo-Резистентных Таблетoк “Секстафаг”. Фармация 2008, 2008, 36–39, (Article In Russian). [Google Scholar]
- Кoвязина, Н.А.; Никoлаева, А.М. Планиметрическая Оценка Заживления Инфекциoнных Ран При Терапии Лекарственнoй Пленкoй Секстафаг® Пиoбактериoфаг Пoливалентный На Мoрских Свинках. In Proceedings of the Сoвременные прoблемы естественных наук и фармации; Peoples’ Friendship University of Russia: Moscow, Russia, 2022; pp. 329–331, (Article In Russian). [Google Scholar]
- Swanson, N.A.; Lokareddy, R.K.; Li, F.; Hou, C.-F.D.; Leptihn, S.; Pavlenok, M.; Niederweis, M.; Pumroy, R.A.; Moiseenkova-Bell, V.Y.; Cingolani, G. Cryo-EM Structure of the Periplasmic Tunnel of T7 DNA-Ejectosome at 2.7 Å Resolution. Mol. Cell 2021, 81, 3145–3159. [Google Scholar] [CrossRef]
- Swanson, N.A.; Hou, C.-F.D.; Cingolani, G. Viral Ejection Proteins: Mosaically Conserved, Conformational Gymnasts. Microorganisms 2022, 10, 504. [Google Scholar] [CrossRef]
- Hurwitz, B.L.; Deng, L.; Poulos, B.T.; Sullivan, M.B. Evaluation of Methods to Concentrate and Purify Ocean Virus Communities through Comparative, Replicated Metagenomics. Environ. Microbiol. 2013, 15, 1428–1440. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An Ultra-Fast All-in-One FASTQ Preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef] [PubMed]
- Wick, R.R.; Judd, L.M.; Gorrie, C.L.; Holt, K.E. Unicycler: Resolving Bacterial Genome Assemblies from Short and Long Sequencing Reads. PLoS Comput. Biol. 2017, 13, e1005595. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Moraru, C.; Varsani, A.; Kropinski, A.M. VIRIDIC—A Novel Tool to Calculate the Intergenomic Similarities of Prokaryote-Infecting Viruses. Viruses 2020, 12, 1268. [Google Scholar] [CrossRef] [PubMed]
- Jain, C.; Rodriguez-R, L.M.; Phillippy, A.M.; Konstantinidis, K.T.; Aluru, S. High Throughput ANI Analysis of 90K Prokaryotic Genomes Reveals Clear Species Boundaries. Nat. Commun. 2018, 9, 5114. [Google Scholar] [CrossRef]
- Bouras, G.; Nepal, R.; Houtak, G.; Psaltis, A.J.; Wormald, P.-J.; Vreugde, S. Pharokka: A Fast Scalable Bacteriophage Annotation Tool. Bioinformatics 2023, 39, btac776. [Google Scholar] [CrossRef]
- McNair, K.; Zhou, C.; Dinsdale, E.A.; Souza, B.; Edwards, R.A. PHANOTATE: A Novel Approach to Gene Identification in Phage Genomes. Bioinformatics 2019, 35, 4537–4542. [Google Scholar] [CrossRef]
- Terzian, P.; Olo Ndela, E.; Galiez, C.; Lossouarn, J.; Pérez Bucio, R.E.; Mom, R.; Toussaint, A.; Petit, M.-A.; Enault, F. PHROG: Families of Prokaryotic Virus Proteins Clustered Using Remote Homology. NAR Genom. Bioinform. 2021, 3, lqab067. [Google Scholar] [CrossRef]
- Chen, L.; Yang, J.; Yu, J.; Yao, Z.; Sun, L.; Shen, Y.; Jin, Q. VFDB: A Reference Database for Bacterial Virulence Factors. Nucleic Acids Res. 2005, 33, D325–D328. [Google Scholar] [CrossRef]
- Alcock, B.P.; Raphenya, A.R.; Lau, T.T.Y.; Tsang, K.K.; Bouchard, M.; Edalatmand, A.; Huynh, W.; Nguyen, A.-L.V.; Cheng, A.A.; Liu, S.; et al. CARD 2020: Antibiotic Resistome Surveillance with the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res. 2020, 48, D517–D525. [Google Scholar] [CrossRef]
- Steinegger, M.; Söding, J. MMseqs2 Enables Sensitive Protein Sequence Searching for the Analysis of Massive Data Sets. Nat. Biotechnol. 2017, 35, 1026–1028. [Google Scholar] [CrossRef] [PubMed]
- Larralde, M.; Zeller, G. PyHMMER: A Python Library Binding to HMMER for Efficient Sequence Analysis. Bioinformatics 2023, 39, btad214. [Google Scholar] [CrossRef] [PubMed]
- Cook, R.; Brown, N.; Redgwell, T.; Rihtman, B.; Barnes, M.; Clokie, M.; Stekel, D.J.; Hobman, J.; Jones, M.A.; Millard, A. INfrastructure for a PHAge REference Database: Identification of Large-Scale Biases in the Current Collection of Cultured Phage Genomes. Phage 2021, 2, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Ondov, B.D.; Treangen, T.J.; Melsted, P.; Mallonee, A.B.; Bergman, N.H.; Koren, S.; Phillippy, A.M. Mash: Fast Genome and Metagenome Distance Estimation Using MinHash. Genome Biol. 2016, 17, 132. [Google Scholar] [CrossRef] [PubMed]
- Emms, D.M.; Kelly, S. OrthoFinder: Phylogenetic Orthology Inference for Comparative Genomics. Genome Biol. 2019, 20, 238. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; Von Haeseler, A.; Lanfear, R. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; Von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef]
- Hoang, D.T.; Chernomor, O.; Von Haeseler, A.; Minh, B.Q.; Vinh, L.S. UFBoot2: Improving the Ultrafast Bootstrap Approximation. Mol. Biol. Evol. 2018, 35, 518–522. [Google Scholar] [CrossRef]
- Garcia-Doval, C.; van Raaij, M.J. Structure of the Receptor-Binding Carboxy-Terminal Domain of Bacteriophage T7 Tail Fibers. Proc. Natl. Acad. Sci. USA 2012, 109, 9390–9395. [Google Scholar] [CrossRef]
- Mirdita, M.; Schütze, K.; Moriwaki, Y.; Heo, L.; Ovchinnikov, S.; Steinegger, M. ColabFold: Making Protein Folding Accessible to All. Nat. Methods 2022, 19, 679–682. [Google Scholar] [CrossRef]
- Garneau, J.R.; Depardieu, F.; Fortier, L.-C.; Bikard, D.; Monot, M. PhageTerm: A Tool for Fast and Accurate Determination of Phage Termini and Packaging Mechanism Using next-Generation Sequencing Data. Sci. Rep. 2017, 7, 8292. [Google Scholar] [CrossRef] [PubMed]
- Garcia, L.R.; Molineux, I.J. Rate of Translocation of Bacteriophage T7 DNA across the Membranes of Escherichia Coli. J. Bacteriol. 1995, 177, 4066–4076. [Google Scholar] [CrossRef] [PubMed]
- Davanloo, P.; Rosenberg, A.H.; Dunn, J.J.; Studier, F.W. Cloning and Expression of the Gene for Bacteriophage T7 RNA Polymerase. Proc. Natl. Acad. Sci. USA 1984, 81, 2035–2039. [Google Scholar] [CrossRef] [PubMed]
- Atanasiu, C.; Su, T.J.; Sturrock, S.S.; Dryden, D.T.F. Interaction of the Ocr Gene 0.3 Protein of Bacteriophage T7 with EcoKl Restriction/Modification Enzyme. Nucleic Acids Res. 2002, 30, 3936–3944. [Google Scholar] [CrossRef]
- Isaev, A.; Drobiazko, A.; Sierro, N.; Gordeeva, J.; Yosef, I.; Qimron, U.; Ivanov, N.V.; Severinov, K. Phage T7 DNA Mimic Protein Ocr Is a Potent Inhibitor of BREX Defence. Nucleic Acids Res. 2020, 48, 5397–5406. [Google Scholar] [CrossRef]
- Andriianov, A.; Trigüis, S.; Drobiazko, A.; Sierro, N.; Ivanov, N.V.; Selmer, M.; Severinov, K.; Isaev, A. Phage T3 Overcomes the BREX Defense through SAM Cleavage and Inhibition of SAM Synthesis by SAM Lyase. Cell Rep. 2023, 42, 112972. [Google Scholar] [CrossRef]
- Michalewicz, J.; Nicholson, A.W. Molecular Cloning and Expression of the Bacteriophage T7 0.7 Protein Kinase) Gene. Virology 1992, 186, 452–462. [Google Scholar] [CrossRef]
- Jiang, S.; Chen, C.; Huang, W.; He, Y.; Du, X.; Wang, Y.; Ou, H.; Deng, Z.; Xu, C.; Jiang, L.; et al. A Widespread Phage-Encoded Kinase Enables Evasion of Multiple Host Antiphage Defence Systems. Nat. Microbiol. 2024, 9, 3226–3239. [Google Scholar] [CrossRef]
- Dunn, J.J.; Studier, F.W.; Gottesman, M. Complete Nucleotide Sequence of Bacteriophage T7 DNA and the Locations of T7 Genetic Elements. J. Mol. Biol. 1983, 166, 477–535. [Google Scholar] [CrossRef]
- Barth, Z.K.; Dunham, D.T.; Seed, K.D. Nuclease Genes Occupy Boundaries of Genetic Exchange between Bacteriophages. NAR Genom. Bioinform. 2023, 5, lqad076. [Google Scholar] [CrossRef] [PubMed]
- Thurgood, T.L.; Sharma, R.; Call, J.J.; Chronis, J.D.; Dawson, D.D.; Finnegan, Z.K.; Foster, K.W.; Meek, T.; Potts, E.; Sirrine, M.R.; et al. Genome Sequences of 12 Phages That Infect Klebsiella Pneumoniae. Microbiol. Resour. Announc. 2020, 9, e00024-20. [Google Scholar] [CrossRef] [PubMed]
- Sofy, A.R.; El-Dougdoug, N.K.; Refaey, E.E.; Dawoud, R.A.; Hmed, A.A. Characterization and Full Genome Sequence of Novel KPP-5 Lytic Phage against Klebsiella Pneumoniae Responsible for Recalcitrant Infection. Biomedicines 2021, 9, 342. [Google Scholar] [CrossRef] [PubMed]
- Tran, R.; Kongari, R.; Lessor, L.; Gill, J.J.; Liu, M. Complete Genome Sequence of Klebsiella Pneumoniae Podophage Patroon. Microbiol. Resour. Announc. 2019, 8, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Kropinski, A.M.; Prangishvili, D.; Lavigne, R. Position Paper: The Creation of a Rational Scheme for the Nomenclature of Viruses of Bacteria and Archaea. Environ. Microbiol. 2009, 11, 2775–2777. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Margolin, W.; Molineux, I.J.; Liu, J. The Bacteriophage T7 Virion Undergoes Extensive Structural Remodeling during Infection. Science 2013, 339, 576–579. [Google Scholar] [CrossRef]
- Molineux, I.J. No Syringes Please, Ejection of Phage T7 DNA from the Virion Is Enzyme Driven. Mol. Microbiol. 2001, 40, 1–8. [Google Scholar] [CrossRef]
- Perry, E.B.; Barrick, J.E.; Bohannan, B.J.M. The Molecular and Genetic Basis of Repeatable Coevolution between Escherichia Coli and Bacteriophage T3 in a Laboratory Microcosm. PLoS ONE 2015, 10, e0130639. [Google Scholar] [CrossRef]
- Yehl, K.; Lemire, S.; Yang, A.C.; Ando, H.; Mimee, M.; Torres, M.D.T.; de la Fuente-Nunez, C.; Lu, T.K. Engineering Phage Host-Range and Suppressing Bacterial Resistance through Phage Tail Fiber Mutagenesis. Cell 2019, 179, 459–469. [Google Scholar] [CrossRef]
- Cai, L.; Liu, H.; Zhang, W.; Xiao, S.; Zeng, Q.; Dang, S. Cryo-EM Structure of Cyanophage P-SCSP1u Offers Insights into DNA Gating and Evolution of T7-like Viruses. Nat. Commun. 2023, 14, 6438. [Google Scholar] [CrossRef]
- Li, F.; Hou, C.-F.D.; Yang, R.; Whitehead, R., III; Teschke, C.M.; Cingolani, G. High-Resolution Cryo-EM Structure of the Shigella Virus Sf6 Genome Delivery Tail Machine. Sci. Adv. 2022, 8, eadc9641. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Xiao, H.; Wang, L.; Wang, X.; Tan, Z.; Han, Z.; Li, X.; Yang, F.; Liu, Z.; Song, J.; et al. Structural Changes in Bacteriophage T7 upon Receptor-Induced Genome Ejection. Proc. Natl. Acad. Sci. USA 2021, 118, e2102003118. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, C.K.; Kemp, P.; Molineux, I.J. Genes 1.2 and 10 of Bacteriophages T3 and T7 Determine the Permeability Lesions Observed in Infected Cells of Escherichia Coli Expressing the F Plasmid Gene PifA. J. Bacteriol. 1991, 173, 6507–6514. [Google Scholar] [CrossRef] [PubMed]
- Maltby, R.; Leatham-Jensen, M.P.; Gibson, T.; Cohen, P.S.; Conway, T. Nutritional Basis for Colonization Resistance by Human Commensal Escherichia Coli Strains HS and Nissle 1917 against E. Coli O157: H7 in the Mouse Intestine. PLoS ONE 2013, 8, e53957. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Reeves, P.R. Escherichia Coli K12 Regains Its O Antigen. Microbiology 1994, 140, 49–57. [Google Scholar] [CrossRef]
- Iguchi, A.; Iyoda, S.; Kikuchi, T.; Ogura, Y.; Katsura, K.; Ohnishi, M.; Hayashi, T.; Thomson, N.R. A Complete View of the Genetic Diversity of the Escherichia Coli O-Antigen Biosynthesis Gene Cluster. DNA Res. 2015, 22, 101–107. [Google Scholar] [CrossRef]
- Liu, B.; Furevi, A.; Perepelov, A.V.; Guo, X.; Cao, H.; Wang, Q.; Reeves, P.R.; Knirel, Y.A.; Wang, L.; Widmalm, G. Structure and Genetics of Escherichia Coli O Antigens. FEMS Microbiol. Rev. 2020, 44, 655–683. [Google Scholar] [CrossRef]
- Gaborieau, B.; Vaysset, H.; Tesson, F.; Charachon, I.; Dib, N.; Bernier, J.; Dequidt, T.; Georjon, H.; Clermont, O.; Hersen, P.; et al. Prediction of Strain Level Phage–Host Interactions across the Escherichia Genus Using Only Genomic Information. Nat. Microbiol. 2024, 9, 2847–2861. [Google Scholar] [CrossRef]
- Ochman, H.; Selander, R.K. Standard Reference Strains of Escherichia coli from Natural Populations. J. Bacteriol. 1984, 157, 690–693. [Google Scholar] [CrossRef]
- Amor, K.; Heinrichs, D.E.; Frirdich, E.; Ziebell, K.; Johnson, R.P.; Whitfield, C. Distribution of Core Oligosaccharide Types in Lipopolysaccharides from Escherichia coli. Infect. Immun. 2000, 68, 1116–1124. [Google Scholar] [CrossRef]
Feature | Sxt1 | T3 | T7 | |
---|---|---|---|---|
Phage | ||||
Genome length, bp | 39,368 | 38,208 | 39,937 | |
GC-content, % | 50.5 | 50 | 48.5 | |
# CDSs * | 46 | 47 | 53 | |
DTR length, bp | 227 | 231 | 160 | |
Host range ** | 15/72 | 7/72 | 5/72 | |
LTF tip domain identity, % | 100 | 43 | 54 | |
LTF protein length, aa | 667 | 558 | 553 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iarema, P.; Kotovskaya, O.; Skutel, M.; Drobiazko, A.; Moiseenko, A.; Sokolova, O.; Samitova, A.; Korostin, D.; Severinov, K.; Isaev, A. Sxt1, Isolated from a Therapeutic Phage Cocktail, Is a Broader Host Range Relative of the Phage T3. Viruses 2024, 16, 1905. https://doi.org/10.3390/v16121905
Iarema P, Kotovskaya O, Skutel M, Drobiazko A, Moiseenko A, Sokolova O, Samitova A, Korostin D, Severinov K, Isaev A. Sxt1, Isolated from a Therapeutic Phage Cocktail, Is a Broader Host Range Relative of the Phage T3. Viruses. 2024; 16(12):1905. https://doi.org/10.3390/v16121905
Chicago/Turabian StyleIarema, Polina, Oksana Kotovskaya, Mikhail Skutel, Alena Drobiazko, Andrei Moiseenko, Olga Sokolova, Alina Samitova, Dmitriy Korostin, Konstantin Severinov, and Artem Isaev. 2024. "Sxt1, Isolated from a Therapeutic Phage Cocktail, Is a Broader Host Range Relative of the Phage T3" Viruses 16, no. 12: 1905. https://doi.org/10.3390/v16121905
APA StyleIarema, P., Kotovskaya, O., Skutel, M., Drobiazko, A., Moiseenko, A., Sokolova, O., Samitova, A., Korostin, D., Severinov, K., & Isaev, A. (2024). Sxt1, Isolated from a Therapeutic Phage Cocktail, Is a Broader Host Range Relative of the Phage T3. Viruses, 16(12), 1905. https://doi.org/10.3390/v16121905