Influenza a Virus Detection at the Human–Swine Interface in US Midwest Swine Farms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of Study Design
2.2. Ethical Statement
2.3. Sampling Protocol for Piglets and Farm Employees
2.4. Survey for Assessment of Farm Practices
2.5. IAV Nucleic Acid Extraction, IAV Screening RT-rtPCR, and IAV Subtyping RT-rtPCR
2.6. Diagnostic Testing
2.7. Whole-Genome and Sanger Gene Sequencing
2.8. Phylogenetic Sequence Analysis
2.9. Statistical Analysis
3. Results
3.1. Farm Employee Survey Responses and RT-rtPCR Results
3.2. Breeding Herd and Nursery Farm Demographics and Management Survey Responses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Reeth, K.; Vincent, A.L. Influenza viruses. In Diseases of Swine; John Wiley & Sons: Hoboken, NJ, USA, 2019; pp. 576–593. [Google Scholar]
- Pomorska-Mól, M.; Dors, A.; Kwit, K.; Czyżewska-Dors, E.; Pejsak, Z. Coinfection modulates inflammatory responses, clinical outcome and pathogen load of H1N1 swine influenza virus and Haemophilus parasuis infections in pigs. BMC Vet. Res. 2017, 13, 376. [Google Scholar] [CrossRef]
- Ma, W. Swine influenza virus: Current status and challenge. Virus Res. 2020, 288, 198118. [Google Scholar] [CrossRef] [PubMed]
- Vincent, A.; Awada, L.; Brown, I.; Chen, H.; Claes, F.; Dauphin, G.; Donis, R.; Culhane, M.; Hamilton, K.; Lewis, N. Review of influenza A virus in swine worldwide: A call for increased surveillance and research. Zoonoses Public Health 2014, 61, 4–17. [Google Scholar] [CrossRef] [PubMed]
- Burrell, C.J.; Howard, C.R.; Murphy, F.A. Chapter 21—Orthomyxoviridae. In Fenner’s Veterinary Virology, 5th ed.; Maclachlan, N.J., Dubovi, E.J., Eds.; Academic Press: Boston, MA, USA, 2017; pp. 389–410. [Google Scholar]
- Ferhadian, D.; Contrant, M.; Printz-Schweigert, A.; Smyth, R.P.; Paillart, J.-C.; Marquet, R. Structural and functional motifs in influenza virus RNAs. Front. Microbiol. 2018, 9, 559. [Google Scholar] [CrossRef]
- Abdelwhab, E.M.; Mettenleiter, T.C. Zoonotic Animal Influenza Virus and Potential Mixing Vessel Hosts. Viruses 2023, 15, 980. [Google Scholar] [CrossRef]
- Zhao, C.; Pu, J. Influence of Host Sialic Acid Receptors Structure on the Host Specificity of Influenza Viruses. Viruses 2022, 14, 2141. [Google Scholar] [CrossRef] [PubMed]
- Vijaykrishna, D.; Smith, G.J.; Pybus, O.G.; Zhu, H.; Bhatt, S.; Poon, L.L.; Riley, S.; Bahl, J.; Ma, S.K.; Cheung, C.L. Long-term evolution and transmission dynamics of swine influenza A virus. Nature 2011, 473, 519–522. [Google Scholar] [CrossRef]
- Rajao, D.S.; Vincent, A.L.; Perez, D.R. Adaptation of human influenza viruses to swine. Front. Vet. Sci. 2019, 5, 347. [Google Scholar] [CrossRef]
- Long, J.S.; Mistry, B.; Haslam, S.M.; Barclay, W.S. Host and viral determinants of influenza A virus species specificity. Nat. Rev. Microbiol. 2019, 17, 67–81. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Moreno, G.; Davies, P.; Yang, M.; Culhane, M.R.; Corzo, C.A.; Li, C.; Rendahl, A.; Torremorell, M. Evidence of influenza A infection and risk of transmission between pigs and farmworkers. Zoonoses Public Health 2022, 69, 560–571. [Google Scholar] [CrossRef] [PubMed]
- Myers, K.P.; Olsen, C.W.; Setterquist, S.F.; Capuano, A.W.; Donham, K.J.; Thacker, E.L.; Merchant, J.A.; Gray, G.C. Are swine workers in the United States at increased risk of infection with zoonotic influenza virus? Clin. Infect. Dis. 2006, 42, 14–20. [Google Scholar] [CrossRef]
- Moraes, D.C.; Baker, A.L.V.; Wang, X.; Zhu, Z.; Berg, E.; Trevisan, G.; Zhang, J.; Jayaraman, S.; Linhares, D.C.; Gauger, P.C. Veterinarian perceptions and practices in prevention and control of influenza virus in the Midwest United States swine farms. Front. Vet. Sci. 2023, 10, 1089132. [Google Scholar] [CrossRef]
- Markin, A.; Ciacci Zanella, G.; Arendsee, Z.W.; Zhang, J.; Krueger, K.M.; Gauger, P.C.; Vincent Baker, A.L.; Anderson, T.K. Reverse-zoonoses of 2009 H1N1 pandemic influenza A viruses and evolution in United States swine results in viruses with zoonotic potential. PLoS Pathog. 2023, 19, e1011476. [Google Scholar] [CrossRef] [PubMed]
- Lewis, N.S.; Russell, C.A.; Langat, P.; Anderson, T.K.; Berger, K.; Bielejec, F.; Burke, D.F.; Dudas, G.; Fonville, J.M.; Fouchier, R.A. The global antigenic diversity of swine influenza A viruses. eLife 2016, 5, e12217. [Google Scholar] [CrossRef]
- Paccha, B.; Neira-Ramirez, V.; Gibbs, S.; Torremorell, M.; Rabinowitz, P.M. Swine worker precautions during suspected outbreaks of influenza in swine. J. Environ. Health 2016, 78, 22–27. [Google Scholar]
- Garrido-Mantilla, J.; Alvarez, J.; Culhane, M.; Nirmala, J.; Cano, J.P.; Torremorell, M. Comparison of individual, group and environmental sampling strategies to conduct influenza surveillance in pigs. BMC Vet. Res. 2019, 15, 61. [Google Scholar] [CrossRef]
- Nolting, J.M.; Szablewski, C.M.; Edwards, J.L.; Nelson, S.W.; Bowman, A.S. Nasal wipes for influenza A virus detection and isolation from swine. J. Vis. Exp. 2015, 106, e53313. [Google Scholar] [CrossRef]
- Prickett, J.R.; Zimmerman, J.J. The development of oral fluid-based diagnostics and applications in veterinary medicine. Anim. Health Res. Rev. 2010, 11, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Zeller, M.A.; Souza, C.K.; Anderson, T.K.; Vincent, A.L.; Harmon, K.; Li, G.; Zhang, J.; Gauger, P.C. Characterization of a 2016–2017 human seasonal H3 influenza a virus spillover now endemic to U.S. swine. Msphere 2022, 7, e00809–e00821. [Google Scholar] [CrossRef] [PubMed]
- Zeller, M.A.; Anderson, T.K.; Walia, R.W.; Vincent, A.L.; Gauger, P.C. ISU FLU ture: A veterinary diagnostic laboratory web-based platform to monitor the temporal genetic patterns of Influenza A virus in swine. BMC Bioinform. 2018, 19, 397. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Anderson, T.K.; Zeller, M.A.; Gauger, P.C.; Vincent, A.L. octoFLU: Automated classification for the evolutionary origin of influenza A virus gene sequences detected in U.S. Swine. Microbiol. Resour. Announc. 2019, 8, e00673-19. [Google Scholar] [CrossRef]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef] [PubMed]
- Lewis, N.S.; Anderson, T.K.; Kitikoon, P.; Skepner, E.; Burke, D.F.; Vincent, A.L. Substitutions near the hemagglutinin receptor-binding site determine the antigenic evolution of influenza A H3N2 viruses in U.S. swine. J. Virol. 2014, 88, 4752–4763. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Centers for Disease Control and Prevention, Flu Vaccination Coverage, United States, 2022–2023 Influenza. Available online: https://www.cdc.gov/flu/fluvaxview/coverage-2223estimates.htm (accessed on 5 April 2024).
- Rabinowitz, P.M.; Huang, E.; Paccha, B.; Vegso, S.; Gurzau, A. Awareness and practices regarding zoonotic influenza prevention in Romanian swine workers. Influenza Other Respir. Viruses 2013, 7, 27–31. [Google Scholar] [CrossRef]
- Rajão, D.S.; Gauger, P.C.; Anderson, T.K.; Lewis, N.S.; Abente, E.J.; Killian, M.L.; Perez, D.R.; Sutton, T.C.; Zhang, J.; Vincent, A.L. Novel reassortant human-like H3N2 and H3N1 influenza A viruses detected in pigs are virulent and antigenically distinct from swine viruses endemic to the United States. J. Virol. 2015, 89, 11213–11222. [Google Scholar] [CrossRef] [PubMed]
- Nelson, M.I.; Stratton, J.; Killian, M.L.; Janas-Martindale, A.; Vincent, A.L. Continual reintroduction of human pandemic H1N1 influenza A viruses into swine in the United States, 2009 to 2014. J. Virol. 2015, 89, 6218–6226. [Google Scholar] [CrossRef] [PubMed]
- Anjorin, A.-A.A.; Sausy, A.; Muller, C.P.; Hübschen, J.M.; Omilabu, S.A.; Snoeck, C.J. Human seasonal influenza viruses in swine workers in Lagos, Nigeria: Consequences for animal and public health. Viruses 2023, 15, 1219. [Google Scholar] [CrossRef]
- Anderson, T.K.; Chang, J.; Arendsee, Z.W.; Venkatesh, D.; Souza, C.K.; Kimble, J.B.; Lewis, N.S.; Davis, C.T.; Vincent, A.L. Swine influenza A viruses and the tangled relationship with humans. Cold Spring Harb. Perspect. Med. 2021, 11, a038737. [Google Scholar] [CrossRef] [PubMed]
- Zeller, M.A.; Li, G.; Harmon, K.M.; Zhang, J.; Vincent, A.L.; Anderson, T.K.; Gauger, P.C. Complete genome sequences of two novel human-like H3N2 influenza A viruses, A/swine/Oklahoma/65980/2017 (H3N2) and A/Swine/Oklahoma/65260/2017 (H3N2), detected in swine in the United States. Microbiol. Resour. Announc. 2018, 7, e01203-18. [Google Scholar] [CrossRef] [PubMed]
- Zeller, M.A.; Carnevale de Almeida Moraes, D.; Ciacci Zanella, G.; Souza, C.K.; Anderson, T.K.; Baker, A.L.; Gauger, P.C. Reverse zoonosis of the 2022–2023 human seasonal H3N2 detected in swine. npj Viruses 2024, 2, 27. [Google Scholar] [CrossRef]
- Bowman, A.S.; Nelson, S.W.; Page, S.L.; Nolting, J.M.; Killian, M.L.; Sreevatsan, S.; Slemons, R.D. Swine-to-human transmission of influenza A (H3N2) virus at agricultural fairs, Ohio, USA, 2012. Emerg. Infect. Dis. 2014, 20, 1472–1480. [Google Scholar] [CrossRef]
- Ciuoderis-Aponte, K.; Diaz, A.; Muskus, C.; Peña, M.; Hernández-Ortiz, J.; Osorio, J. Farm management practices, biosecurity and influenza a virus detection in swine farms: A comprehensive study in colombia. Porc. Health Manag. 2022, 8, 42. [Google Scholar] [CrossRef] [PubMed]
- Filippitzi, M.-E.; Brinch Kruse, A.; Postma, M.; Sarrazin, S.; Maes, D.; Alban, L.; Nielsen, L.; Dewulf, J. Review of transmission routes of 24 infectious diseases preventable by biosecurity measures and comparison of the implementation of these measures in pig herds in six European countries. Transbound. Emerg. Dis. 2018, 65, 381–398. [Google Scholar] [CrossRef] [PubMed]
- Alarcón, L.V.; Allepuz, A.; Mateu, E. Biosecurity in pig farms: A review. Porc. Health Manag. 2021, 7, 5. [Google Scholar] [CrossRef] [PubMed]
- Krueger, W.S.; Gray, G.C. Swine influenza virus infections in man. In Swine Influenza; Springer: Berlin/Heidelberg, Germany, 2012; pp. 201–225. [Google Scholar]
- Gray, G.; Kayali, G. Facing pandemic influenza threats: The importance of including poultry and swine workers in preparedness plans. Poult. Sci. 2009, 88, 880–884. [Google Scholar] [CrossRef]
- Torremorell, M.; Allerson, M.; Corzo, C.; Diaz, A.; Gramer, M. Transmission of influenza A virus in pigs. Transbound. Emerg. Dis. 2012, 59, 68–84. [Google Scholar] [CrossRef]
- Dias, A.S.; Baker, A.L.V.; Baker, R.B.; Zhang, J.; Zeller, M.A.; Kitikoon, P.; Gauger, P.C. Detection and Characterization of Influenza A Virus Endemic Circulation in Suckling and Nursery Pigs Originating from Vaccinated Farms in the Same Production System. Viruses 2024, 16, 626. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, J.J.; Torremorell, M.; Craft, M.E. Mathematical modeling of influenza A virus dynamics within swine farms and the effects of vaccination. PLoS ONE 2014, 9, e106177. [Google Scholar] [CrossRef] [PubMed]
- Allerson, M.; Deen, J.; Detmer, S.E.; Gramer, M.R.; Joo, H.S.; Romagosa, A.; Torremorell, M. The impact of maternally derived immunity on influenza A virus transmission in neonatal pig populations. Vaccine 2013, 31, 500–505. [Google Scholar] [CrossRef] [PubMed]
- White, L.; Torremorell, M.; Craft, M. Influenza A virus in swine breeding herds: Combination of vaccination and biosecurity practices can reduce likelihood of endemic piglet reservoir. Prev. Vet. Med. 2017, 138, 55–69. [Google Scholar] [CrossRef] [PubMed]
- Diaz, A.; Marthaler, D.; Culhane, M.; Sreevatsan, S.; Alkhamis, M.; Torremorell, M. Complete genome sequencing of influenza A viruses within swine farrow-to-wean farms reveals the emergence, persistence, and subsidence of diverse viral genotypes. J. Virol. 2017, 91, e00745-17. [Google Scholar] [CrossRef] [PubMed]
- Sosa Portugal, S.; Cortey, M.; Tello, M.; Casanovas, C.; Mesonero-Escuredo, S.; Barrabés, S.; Pineda, P.; Wacheck, S.; Martín-Valls, G.; Mateu, E. Diversity of influenza A viruses retrieved from respiratory disease outbreaks and subclinically infected herds in Spain (2017–2019). Transbound. Emerg. Dis. 2021, 68, 519–530. [Google Scholar] [CrossRef] [PubMed]
- Taylor, K.Y.; Agu, I.; José, I.; Mäntynen, S.; Campbell, A.; Mattson, C.; Chou, T.-W.; Zhou, B.; Gresham, D.; Ghedin, E. Influenza A virus reassortment is strain dependent. PLoS Pathog. 2023, 19, e1011155. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, R.P.; Gordon, M.L. Review of genome sequencing technologies in molecular characterization of influenza A viruses in swine. J. Vet. Diagn. Investig. 2022, 34, 177–189. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.N.; Zanella, G.C.; Cowan, B.; Caceres, C.J.; Rajao, D.S.; Perez, D.R.; Gauger, P.C.; Vincent Baker, A.L.; Anderson, T.K. Nucleoprotein reassortment enhanced transmissibility of H3 1990.4. a clade influenza A virus in swine. J. Virol. 2024, 98, e01703-23. [Google Scholar] [CrossRef] [PubMed]
- Arendsee, Z.W.; Chang, J.; Hufnagel, D.E.; Markin, A.; Janas-Martindale, A.; Vincent, A.L.; Anderson, T.K. octoFLUshow: An interactive tool describing spatial and temporal trends in the genetic diversity of influenza A virus in U.S. swine. Microbiol. Resour. Announc. 2021, 10, e01081-21. [Google Scholar] [CrossRef]
- Lagan, P.; Hamil, M.; Cull, S.; Hanrahan, A.; Wregor, R.M.; Lemon, K. Swine influenza A virus infection dynamics and evolution in intensive pig production systems. Virus Evol. 2024, 10, veae017. [Google Scholar] [CrossRef]
- Rose, N.; Hervé, S.; Eveno, E.; Barbier, N.; Eono, F.; Dorenlor, V.; Andraud, M.; Camsusou, C.; Madec, F.; Simon, G. Dynamics of influenza A virus infections in permanently infected pig farms: Evidence of recurrent infections, circulation of several swine influenza viruses and reassortment events. Vet. Res. 2013, 44, 72. [Google Scholar] [CrossRef] [PubMed]
- Nirmala, J.; Perez, A.; Culhane, M.R.; Allerson, M.W.; Sreevatsan, S.; Torremorell, M. Genetic variability of influenza A virus in pigs at weaning in Midwestern United States swine farms. Transbound. Emerg. Dis. 2021, 68, 62–75. [Google Scholar] [CrossRef] [PubMed]
- Garrido-Mantilla, J.; Culhane, M.R.; Torremorell, M. Transmission of influenza A virus and porcine reproductive and respiratory syndrome virus using a novel nurse sow model: A proof of concept. Vet. Res. 2020, 51, 42. [Google Scholar] [CrossRef]
- Thomas, M.N.; Janzen, G.M.; Markin, A.K.; Sharma, A.; Hewitt, K.S.; Li, G.; Baker, A.L.; Gauger, P.C.; Anderson, T.K. Active surveillance for influenza A virus in swine reveals within-farm reassortment and cocirculation of distinct subtypes and genetic clades. bioRxiv 2024. [Google Scholar] [CrossRef]
- Bolton, M.J.; Abente, E.J.; Venkatesh, D.; Stratton, J.A.; Zeller, M.; Anderson, T.K.; Lewis, N.S.; Vincent, A.L. Antigenic evolution of H3N2 influenza A viruses in swine in the United States from 2012 to 2016. Influenza Other Respir. Viruses 2019, 13, 83–90. [Google Scholar] [CrossRef]
- Powell, J.D.; Abente, E.J.; Chang, J.; Souza, C.K.; Rajao, D.S.; Anderson, T.K.; Zeller, M.A.; Gauger, P.C.; Lewis, N.S.; Vincent, A.L. Characterization of contemporary 2010.1 H3N2 swine influenza A viruses circulating in United States pigs. Virology 2021, 553, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Dohoo, I.R. Bias—Is it a problem, and what should we do? Prev. Vet. Med. 2014, 113, 331–337. [Google Scholar] [CrossRef]
Category | Sample Type | Number per Month | Age Target | Total Samples Collected |
---|---|---|---|---|
Farm employee | Nasal secretion | ≥2 | ≥18 years old | 447 |
Prewean piglets | Udder wipes | 10 | 2–3 weeks-old | 486 |
Prewean piglets | Nasal wipes | 15 | 2–3 weeks-old | 712 |
Nursery pigs | Nasal wipes | 15 | 6–9 weeks-old | 742 |
Nursery pigs | Oral fluids | 4 | 6–9 weeks-old | 218 |
Variable | Category | Frequency (n) | Percent (%) |
---|---|---|---|
Farm employee age (years) | 18–25 | 8 | 16.7 |
26–35 | 14 | 29.2 | |
36–45 | 15 | 31.3 | |
46–55 | 10 | 20.7 | |
>56 | 6 | 2.1 | |
Farm employee gender | Male | 30 | 62.5 |
Female | 18 | 37.5 | |
Farm employee influenza vaccination (Previous 12 months) | Yes | 14 | 29.2 |
No | 32 | 66.7 | |
Do not know | 2 | 4.1 | |
Time working with swine (years) | 1 year | 13 | 27.1 |
1–2 years | 5 | 10.4 | |
2–5 years | 8 | 16.7 | |
5–10 years | 8 | 16.7 | |
>10 years | 14 | 29.1 |
Variable | Category | Number of Farms | Percent (%) |
---|---|---|---|
Average sow inventory | 1000–5000 | 3 | 60 |
>5000 | 2 | 40 | |
Farrowing system | Batch flow | 1 | 20 |
Continuous flow | 4 | 80 | |
Frequency of weaning piglets | Weekly | 4 | 80 |
Every three weeks | 1 | 20 | |
Frequency of gilts entering the breeding herd per year | Weekly | 2 | 40 |
Monthly | 2 | 40 | |
Quarterly (every 3 months) | 1 | 20 | |
Internal gilt multiplication | Yes | 2 | 40 |
No | 3 | 60 | |
Gilt influenza vaccination | Yes | 5 | 100 |
No | 0 | 0 | |
Influenza vaccine doses prior to breeding herd entry | 1 dose | 0 | 0 |
2 doses | 4 | 80 | |
3 doses | 1 | 20 | |
Vaccine administration: weeks prior to breeding herd entry | 1 week | 0 | 0 |
2–3 weeks | 1 | 20 | |
>3 weeks | 4 | 80 | |
Whole-herd influenza vaccination | Yes | 3 | 60 |
No | 2 | 40 | |
Influenza vaccination frequency | Once per year | 0 | 0 |
Twice or more per year | 3 | 60 | |
Pre-farrow administration | 1 | 20 | |
Other | 1 | 20 | |
Influenza vaccine product | Autogenous or farm-specific | 5 | 100 |
Commercial vaccine | 0 | 0 | |
Number of vaccine antigens | 4 strains per dose | 1 | 20 |
5 strains per dose | 4 | 80 |
Variable | Category | Frequency | Percent (%) |
---|---|---|---|
Diagnostic testing and surveillance | |||
Routine influenza surveillance | Yes | 3 | 60 |
No | 2 | 40 | |
Gilt source influenza virus status | Gilts influenza positive | 1 | 20 |
Gilts influenza negative | 3 | 60 | |
Influenza status unknown | 1 | 20 | |
Gilt source influenza antibody status | Influenza antibody positive | 1 | 20 |
Influenza antibody negative | 1 | 20 | |
Influenza antibody unknown | 3 | 60 | |
The goal of influenza surveillance | Targeting IAV control | 1 | 20 |
Targeting IAV elimination | 1 | 20 | |
No specific IAV protocol | 1 | 20 | |
Unknown | 2 | 40 | |
Biosecurity | |||
Employee uses personal protective equipment | Yes | 3 | 60 |
No | 2 | 40 | |
Farm employees are influenza-vaccinated | Yes | 4 | 80 |
No | 1 | 20 | |
Farm recommends employee influenza vaccine | Yes | 5 | 100 |
No | 0 | 0 | |
Farm recommends use of sick leave policy | Yes | 3 | 60 |
No | 2 | 40 | |
Biomanagement | |||
The farm uses nurse sows | Yes | 5 | 100 |
No | 0 | 0 | |
Nurse sows moved between farrowing rooms | Yes | 4 | 80 |
No | 1 | 20 |
Variable | Category | Frequency | Total (%) |
---|---|---|---|
Pig source at the nursery site | Single source | 3 | 60 |
Mixed source | 2 | 40 | |
Influenza surveillance conducted at the nursery | Yes | 1 | 20 |
No | 4 | 80 | |
Nursery pigs receive IAV vaccine | Yes | 0 | 0 |
No | 5 | 100 | |
Diagnostics conducted for influenza in nursery | Yes | 1 | 20 |
No | 4 | 80 | |
Number of influenza vaccine doses | 1 dose | 0 | 0 |
2 doses | 0 | 0 | |
No vaccination | 5 | 100 |
Farm | Sequence Source | H3 Clade | Date | Nucleotide Homology * | Antigenic Motif ** | |||||
---|---|---|---|---|---|---|---|---|---|---|
145 | 155 | 156 | 158 | 159 | 189 | |||||
5 | Vaccine sequence | H3.1990.4 | October 2021 | - | G | C | K | N | S | K |
5 | Nursery Sequence | H3.1990.4.a | May 2023 | 89.71% | G | C | R | G | S | K |
5 | Nursery Sequence | H3.2010.1 | July 2023 | 86.07% | D | V | R | G | M | I |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moraes, D.C.A.; Zeller, M.A.; Thomas, M.N.; Anderson, T.K.; Linhares, D.C.L.; Baker, A.L.; Silva, G.S.; Gauger, P.C. Influenza a Virus Detection at the Human–Swine Interface in US Midwest Swine Farms. Viruses 2024, 16, 1921. https://doi.org/10.3390/v16121921
Moraes DCA, Zeller MA, Thomas MN, Anderson TK, Linhares DCL, Baker AL, Silva GS, Gauger PC. Influenza a Virus Detection at the Human–Swine Interface in US Midwest Swine Farms. Viruses. 2024; 16(12):1921. https://doi.org/10.3390/v16121921
Chicago/Turabian StyleMoraes, Daniel C. A., Michael A. Zeller, Megan N. Thomas, Tavis K. Anderson, Daniel C. L. Linhares, Amy L. Baker, Gustavo S. Silva, and Phillip C. Gauger. 2024. "Influenza a Virus Detection at the Human–Swine Interface in US Midwest Swine Farms" Viruses 16, no. 12: 1921. https://doi.org/10.3390/v16121921
APA StyleMoraes, D. C. A., Zeller, M. A., Thomas, M. N., Anderson, T. K., Linhares, D. C. L., Baker, A. L., Silva, G. S., & Gauger, P. C. (2024). Influenza a Virus Detection at the Human–Swine Interface in US Midwest Swine Farms. Viruses, 16(12), 1921. https://doi.org/10.3390/v16121921