Overview of Cytomegalovirus Ocular Diseases: Retinitis, Corneal Endotheliitis, and Iridocyclitis
Abstract
:1. Introduction
2. The Mechanism of CMV Infection
3. CMV Infection in Immunocompetent Hosts
4. Congenital CMV Infection
5. CMV Infection in Immunocompromised Hosts
6. CMV Retinitis
6.1. Epidemiology
6.2. Pathophysiology
6.3. Diagnosis
6.4. Clinical Findings
6.5. Treatment
7. CMV Corneal Endotheliitis
7.1. Epidemiology
7.2. Pathophysiology
7.3. Diagnosis
7.4. Clinical Findings
7.5. Treatment
8. CMV Iridocyclitis
8.1. Epidemiology
8.2. Pathophysiology
8.3. Diagnosis
8.4. Clinical Findings
8.5. Treatment
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yoser, S.L.; Forster, D.J.; Rao, N.A. Systemic viral infections and their retinal and choroidal manifestations. Surv. Ophthalmol. 1993, 37, 313–352. [Google Scholar] [CrossRef] [PubMed]
- Eagle, K.; Herriot, R.; Gray, E.S. Owl’s-Eye Cells. N. Engl. J. Med. 1994, 331, 649. [Google Scholar] [CrossRef] [PubMed]
- Mocarski, E.S.; Shenk, T., Jr.; Griffiths, P.D.; Pass, R.F. Cyotmegaloviruses. In Fields Virology, 6th ed.; Knipe, D.M., Howley, P.M., Eds.; Lippencott Williams and Wilkins: Philadelphia, PA, USA, 2013; pp. 1960–2014. [Google Scholar]
- Boppana, S.B.; Ross, S.A.; Fowler, K.B. Congenital cytomegalovirus infection: Clinical outcome. Clin. Infect. Dis. 2013, 57 (Suppl. S4), S178–S181. [Google Scholar] [CrossRef]
- Dreher, A.M.; Arora, N.; Fowler, K.B.; Novak, Z.; Britt, W.J.; Boppana, S.B.; Ross, S.A. Spectrum of disease and outcome in children with symptomatic congenital cytomegalovirus infection. J. Pediatr. 2014, 164, 855–859. [Google Scholar] [CrossRef] [PubMed]
- Ross, S.A.; Boppana, S.B. Congenital cytomegalovirus infection: Outcome and diagnosis. Semin. Pediatr. Infect. Dis. 2005, 16, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Manicklal, S.; Manicklal, S.; Emery, V.C.; Lazzarotto, T.; Boppana, S.B.; Gupta, R.K. The “silent” global burden of congenital cytomegalovirus. Clin. Microbiol. Rev. 2013, 26, 86–102. [Google Scholar] [CrossRef] [PubMed]
- Nigro, G.; Adler, S.P. Cytomegalovirus infections during pregnancy. Curr. Opin. Obstet. Gynecol. 2011, 23, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Vancikova, Z.; Dvorak, P. Cytomegalovirus infection in immunocompetent and immunocompromised individuals—A review. Curr. Drug Targets Immune Endocr. Metabol. Disord. 2001, 1, 179–187. [Google Scholar] [CrossRef]
- Boppana, S.B.; Pass, R.F.; Britt, W.J.; Stagno, S.; Alford, C.A. Symptomatic congenital cytomegalovirus infection: Neonatal morbidity and mortality. Pediatr. Infect. Dis. J. 1992, 11, 93–99. [Google Scholar] [CrossRef] [PubMed]
- HFulkerson, L.; Nogalski, M.T.; Collins-McMillen, D.; Yurochko, D.A. Overview of Human Cytomegalovirus Pathogenesis. Methods Mol. Biol. 2021, 2244, 1–18. [Google Scholar] [CrossRef]
- Griffiths, P.; Baraniak, I.; Reeves, M. The pathogenesis of human cytomegalovirus. J. Pathol. 2015, 235, 288–297. [Google Scholar] [CrossRef] [PubMed]
- Cannon, M.J.; Schmid, D.S.; Hyde, T.B. Review of cytomegalovirus seroprevalence and demographic characteristics associated with infection. Rev. Med. Virol. 2010, 20, 202–213. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, M.K.; Khanna, R. Human cytomegalovirus: Clinical aspects, immune regulation, and emerging treatments. Lancet Infect. Dis. 2004, 4, 725–738. [Google Scholar] [CrossRef] [PubMed]
- Rafailidis, P.I.; Mourtzoukou, E.G.; Varbobitis, I.C.; Falagas, M.E. Severe cytomegalovirus infection in apparently immunocompetent patients: A systematic review. Virol. J. 2008, 5, 47. [Google Scholar] [CrossRef] [PubMed]
- Drew, J.W.; Ronald, W.B. Randomized controlled trial of oral ganciclovir versus oral acyclovir after induction with intravenous ganciclovir for long-term prophylaxis of cytomegalovirus disease in cytomegalovirus-seropositive liver transplant recipients. Transplantation 2003, 75, 229–233. [Google Scholar] [CrossRef]
- BAnduze-Faris, M.; Fillet, A.M.; Gozlan, J.; Lancar, R.; Boukli, N.; Gasnault, J.; Caumes, E.; Livartowsky, J.; Matheron, S.; Leport, C.; et al. Induction and maintenance therapy of cytomegalovirus central nervous system infection in HIV-infected patients. AIDS 2000, 14, 517–524. [Google Scholar] [CrossRef] [PubMed]
- Koizumi, N.; Suzuki, T.; Uno, T.; Chihara, H.; Shiraishi, A.; Hara, Y.; Inatomi, T.; Sotozono, C.; Kawasaki, S.; Yamasaki, K.; et al. Cytomegalovirus as an Etiologic Factor in Corneal Endotheliitis. Ophthalmology 2008, 115, 292–297.e3. [Google Scholar] [CrossRef] [PubMed]
- Koizumi, N.; Kano, M.; Yamamoto, A.; Saito, M.; Maruko, I.; Sekiryu, T.; Okada, A.A.; Iida, T. Aflibercept therapy for polypoidal choroidal vasculopathy: Short-term results of a multicentre study. Br. J. Ophthalmol. 2015, 99, 1284–1288. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Yang, Y.; Ke, W.; Li, Y.; Wang, K.; Chen, M. Overview and update on cytomegalovirus-associated anterior uveitis and glaucoma. Front. Public Health 2023, 11, 1117412. [Google Scholar] [CrossRef]
- Rice, G.P.; Schrier, R.D.; Oldstone, M.B. Cytomegalovirus infects human lymphocytes and monocytes: Virus expression is restricted to immediate-early gene products. Proc. Natl. Acad. Sci. USA 1984, 81, 6134–6138. [Google Scholar] [CrossRef] [PubMed]
- Sinzger, C.; Digel, M.; Jahn, G. Cytomegalovirus cell tropism. Curr. Top. Microbiol. Immunol. 2008, 325, 63–83. [Google Scholar] [CrossRef] [PubMed]
- Paradowska, E.; Jabłońska, A.; Studzińska, M.; Kasztelewicz, B.; Wiśniewska-Ligier, M.; Dzierżanowska-Fangrat, K.; Woźniakowska-Gęsicka, T.; Czech-Kowalska, J. Distribution of the CMV glycoprotein gH/gL/gO and gH/gL/pUL128/pUL130/pUL131A complex variants and associated clinical manifestations in infants infected congenitally or postnatally. Sci. Rep. 2019, 9, 16352. [Google Scholar] [CrossRef]
- Alston, C.I.; Dix, R.D. SOCS and Herpesviruses, with Emphasis on Cytomegalovirus Retinitis. Front. Immunol. 2019, 10, 732. [Google Scholar] [CrossRef] [PubMed]
- Hahn, G.; Jores, R.; Mocarski, E.S. Cytomegalovirus remains latent in a common precursor of dendritic and myeloid cells. Proc. Natl. Acad. Sci. USA 1998, 95, 3937–3942. [Google Scholar] [CrossRef]
- Soderberg-Naucler, C.; Streblow, D.N.; Fish, K.N.; Allan-Yorke, J.; Smith, P.P.; Nelson, J.A. Reactivation of latent human cytomegalovirus in CD14(+) monocytes is differentiation dependent. J. Virol. 2001, 75, 7543–7554. [Google Scholar] [CrossRef] [PubMed]
- Meylan, E.; Tschopp, J.; Karin, M. Intracellular pattern recognition receptors in the host response. Nature 2006, 442, 39–44. [Google Scholar] [CrossRef]
- Jordan, M.C.; Mar, V.L. Spontaneous activation of latent cytomegalovirus from murine spleen explants. Role of lymphocytes and macrophages in release and replication of virus. J. Clin. Investig. 1982, 70, 762–768. [Google Scholar] [CrossRef] [PubMed]
- Stoddart, C.A.; Cardin, R.D.; Boname, J.M.; Manning, W.C.; Abenes, G.B.; Mocarski, E.S. Peripheral blood mononuclear phagocytes mediate dissemination of murine cytomegalovirus. J. Virol. 1994, 68, 6243–6253. [Google Scholar] [CrossRef] [PubMed]
- Hanson, L.K.; Slater, J.S.; Karabekian, Z.; Virgin, H.W.; Biron, C.A.; Ruzek, M.C.; van Rooijen, N.; Ciavarra, R.P.; Stenberg, R.M.; Campbell, A.E. Replication of murine cytomegalovirus in differentiated macrophages as a determinant of viral pathogenesis. J. Virol. 1999, 73, 5970–5980. [Google Scholar] [CrossRef] [PubMed]
- Kropp, K.A.; Robertson, K.A.; Sing, G.; Rodriguez-Martin, S.; Blanc, M.; Lacaze, P.; Hassim, M.F.B.N.; Khondoker, M.R.; Busche, A.; Dickinson, P.; et al. Reversible inhibition of murine cytomegalovirus replication by gamma interferon (IFN-gamma) in primary macrophages involves a primed type I IFN-signaling subnetwork for full establishment of an immediate-early antiviral state. J. Virol. 2011, 85, 10286–10299. [Google Scholar] [CrossRef] [PubMed]
- Vieira Braga, F.A.; Hertoghs, K.M.; van Lier, R.A.; van Gisbergen, K.P. Molecular characterization of HCMV-specific immune responses: Parallels between CD8(+) T cells, CD4(+) T cells, and NK cells. Eur. J. Immunol. 2015, 45, 2433–2445. [Google Scholar] [CrossRef] [PubMed]
- Dix, R.D.; Cray, C.; Cousins, S.W. Mice immunosuppressed by murine retrovirus infection (MAIDS) are susceptible to cytomegalovirus retinitis. Curr. Eye Res. 1994, 13, 587–595. [Google Scholar] [CrossRef] [PubMed]
- Welsh, R.M.; Brubaker, J.O.; Vargas-Cortes, M.; O’Donnell, C.L. Natural killer (NK) cell response to virus infections in mice with severe combined immunodeficiency. The stimulation of NK cells and the NK cell-dependent control of virus infections occur independently of T and B cell function. J. Exp. Med. 1991, 173, 1053–1063. [Google Scholar] [CrossRef] [PubMed]
- O’Shea, J.J.; Gadina, M.; Schreiber, R.D. Cytokine signaling in 2002: New surprises in the Jak/Stat pathway. Cell 2002, 109, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, A.; Naka, T.; Kubo, M. SOCS proteins, cytokine signalling and immune regulation. Nat. Rev. Immunol. 2007, 7, 454–465. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, L.N.; Benveniste, E.N. Viral exploitation of host SOCS protein functions. J. Virol. 2011, 85, 1912–1921. [Google Scholar] [CrossRef] [PubMed]
- Dickensheets, H.L.; Venkataraman, C.; Schindler, U.; Donnelly, R.P. Interferons inhibit activation of STAT6 by interleukin 4 in human monocytes by inducing SOCS-1 gene expression. Proc. Natl. Acad. Sci. USA 1999, 96, 10800–10805. [Google Scholar] [CrossRef] [PubMed]
- Stoiber, D.; Kovarik, P.; Cohney, S.; Johnston, J.A.; Steinlein, P.; Decker, T. Lipopolysaccharide induces in macrophages the synthesis of the suppressor of cytokine signaling 3 and suppresses signal transduction in response to the activating factor IFN-gamma. J. Immunol. 1999, 163, 2640–2647. [Google Scholar] [CrossRef] [PubMed]
- Hanada, T.; Yoshida, H.; Kato, S.; Tanaka, K.; Masutani, K.; Tsukada, J.; Nomura, Y.; Mimata, H.; Kubo, M.; Yoshimura, A. Suppressor of cytokine signaling-1 is essential for suppressing dendritic cell activation and systemic autoimmunity. Immunity 2003, 19, 437–450. [Google Scholar] [CrossRef] [PubMed]
- Starr, R.; Hilton, D.J. Defining control: Regulation of dendritic cell activation and immune homeostasis by SOCS1. Immunity 2003, 19, 308–309. [Google Scholar] [CrossRef] [PubMed]
- O’Keefe, G.M.; Nguyen, V.T.; Ping Tang, L.L.; Benveniste, E.N. IFN-gamma regulation of class II transactivator promoter IV in macrophages and microglia: Involvement of the suppressors of cytokine signaling-1 protein. J. Immunol. 2001, 166, 2260–2269. [Google Scholar] [CrossRef] [PubMed]
- Ratthé, C.; Pelletier, M.; Chiasson, S.; Girard, D. Molecular mechanisms involved in interleukin-4-induced human neutrophils: Expression and regulation of suppressor of cytokine signaling. J. Leukoc. Biol. 2007, 81, 1287–1296. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Zhang, Q.; Liu, Y.; Li, X.; Zhao, K.; Ding, Y.; Li, Z.; Shen, Q.; Wang, C.; Li, N.; et al. H3K4me3 demethylase Kdm5a is required for NK cell activation by associating with p50 to suppress SOCS1. Cell Rep. 2016, 15, 288–299. [Google Scholar] [CrossRef] [PubMed]
- Egwuagu, C.E.; Yu, C.R.; Zhang, M.; Mahdi, R.M.; Kim, S.J.; Gery, I. Suppressors of cytokine signaling proteins are differentially expressed in Th1 and Th2 cells: Implications for Th cell lineage commitment and maintenance. J. Immunol. 2002, 168, 3181–3187. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, J.; Starr, R. The role of suppressors of cytokine signalling in thymopoiesis and T cell activation. Int. J. Biochem. Cell Biol. 2005, 37, 1774–1786. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Mameza, M.G.; Lee, Y.S.; Eseonu, C.I.; Yu, C.-R.; Derwent, J.J.K.; Egwuagu, C.E. Suppressors of cytokine-signaling proteins induce insulin resistance in the retina and promote survival of retinal cells. Diabetes 2008, 57, 1651–1658. [Google Scholar] [CrossRef] [PubMed]
- Gil, M.P.; Bohn, E.; O’Guin, A.K.; Ramana, C.V.; Levine, B.; Stark, G.R.; Virgin, H.W.; Schreiber, R.D. Biologic consequences of Stat1-independent IFN signaling. Proc. Natl. Acad. Sci. USA 2001, 98, 6680–6685. [Google Scholar] [CrossRef] [PubMed]
- Alexander, W.S.; Starr, R.; Fenner, J.E.; Scott, C.L.; Handman, E.; Sprigg, N.S.; Corbin, J.E.; Cornish, A.L.; Darwiche, R.; Owczarek, C.M.; et al. SOCS1 is a critical inhibitor of interferon gamma signaling and prevents the potentially fatal neonatal actions of this cytokine. Cell 1999, 98, 597–608. [Google Scholar] [CrossRef] [PubMed]
- Diehl, S.; Anguita, J.; Hoffmeyer, A.; Zapton, T.; Ihle, J.N.; Fikrig, E.; Rincón, M. Inhibition of Th1 differentiation by IL-6 is mediated by SOCS1. Immunity 2000, 13, 805–815. [Google Scholar] [CrossRef] [PubMed]
- Kinjyo, I.; Hanada, T.; Inagaki-Ohara, K.; Mori, H.; Aki, D.; Ohishi, M.; Yoshida, H.; Kubo, M.; Yoshimura, A. SOCS1/JAB is a negative regulator of LPS-induced macrophage activation. Immunity 2002, 17, 583–591. [Google Scholar] [CrossRef] [PubMed]
- Baker, B.J.; Akhtar, L.N.; Benveniste, E.N. SOCS1 and SOCS3 in the control of CNS immunity. Trends Immunol. 2009, 30, 392–400. [Google Scholar] [CrossRef]
- Croker, B.A.; Krebs, D.L.; Zhang, J.-G.; Wormald, S.; Willson, A.T.; Stanley, E.G.; Robb, L.; Greenhalgh, C.J.; Förster, I.; Clausen, E.B.; et al. SOCS3 negatively regulates IL-6 signaling in vivo. Nat. Immunol. 2003, 4, 540–545. [Google Scholar] [CrossRef] [PubMed]
- Taleb, S.; Romain, M.; Ramkhelawon, B.; Uyttenhove, C.; Pasterkamp, G.; Herbin, O.; Esposito, B.; Perez, N.; Yasukawa, H.; Van Snick, J.; et al. Loss of SOCS3 expression in T cells reveals a regulatory role for interleukin-17 in atherosclerosis. J. Exp. Med. 2009, 206, 2067–2077. [Google Scholar] [CrossRef] [PubMed]
- Compton, T. Receptors and immune sensors: The complex entry path of human cytomegalovirus. Trends Cell Biol. 2004, 14, 5–8. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, L.; Geissler, A.; Winters, M. Inter- and intragenic variations complicate the molecular epidemiology of human cytomegalovirus. J. Infect. Dis. 2003, 187, 809–819. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, C.C.; Kamil, J.P. Pathogen at the Gates: Human Cytomegalovirus Entry and Cell Tropism. Viruses 2018, 10, 704. [Google Scholar] [CrossRef] [PubMed]
- Vanarsdall, A.L.; Johnson, D.C. Human cytomegalovirus entry into cells. Curr. Opin. Virol. 2012, 2, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Kari, B.; Gehrz, R. Structure, composition and heparin binding properties of a human cytomegalovirus glycoprotein complex designated gC-II. J. Gen. Virol. 1993, 74 Pt 2, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Compton, T.; Nowlin, D.M.; Cooper, N.R. Initiation of human cytomegalovirus infection requires initial interaction with cell surface heparan sulfate. Virology 1993, 193, 834–841. [Google Scholar] [CrossRef] [PubMed]
- Feire, A.L.; Koss, H.; Compton, T. Cellular integrins function as entry receptors for human cytomegalovirus via a highly conserved disintegrin-like domain. Proc. Natl. Acad. Sci. USA 2004, 101, 15470–15475. [Google Scholar] [CrossRef]
- Wang, X.; Huang, D.Y.; Huong, S.M.; Huang, E.S. Integrin alphavbeta3 is a coreceptor for human cytomegalovirus. Nat. Med. 2005, 11, 515–521. [Google Scholar] [CrossRef] [PubMed]
- Burke, H.G.; Heldwein, E.E. Crystal Structure of the Human Cytomegalovirus Glycoprotein B. PLoS Pathog. 2015, 11, e1005227. [Google Scholar] [CrossRef] [PubMed]
- Feire, A.L.; Roy, R.M.; Manley, K.; Compton, T. The glycoprotein B disintegrin-like domain binds beta 1 integrin to mediate cytomegalovirus entry. J. Virol. 2010, 84, 10026–10037. [Google Scholar] [CrossRef] [PubMed]
- Maidji, E.; Genbacev, O.; Chang, H.T.; Pereira, L. Developmental regulation of human cytomegalovirus receptors in cytotrophoblasts correlates with distinct replication sites in the placenta. J. Virol. 2007, 81, 4701–4712. [Google Scholar] [CrossRef] [PubMed]
- Varnum, S.M.; Streblow, D.N.; Monroe, M.E.; Smith, P.; Auberry, K.J.; Pasa-Tolic, L.; Wang, D.; Camp, D.G., 2nd; Rodland, K.; Wiley, S.; et al. Identification of proteins in human cytomegalovirus (HCMV) particles: The HCMV proteome. J. Virol. 2004, 78, 10960–10966. [Google Scholar] [CrossRef] [PubMed]
- Isaacson, M.K.; Compton, T. Human cytomegalovirus glycoprotein B is required for virus entry and cell-to-cell spread but not for virion attachment, assembly, or egress. J. Virol. 2009, 83, 3891–3903. [Google Scholar] [CrossRef] [PubMed]
- Pignatelli, S.; Dal Monte, P.; Rossini, G.; Landini, M.P. Genetic polymorphisms among human cytomegalovirus (HCMV) wild-type strains. Rev. Med. Virol. 2004, 14, 383–410. [Google Scholar] [CrossRef] [PubMed]
- Mach, M.; Kropff, B.; Dal Monte, P.; Britt, W. Complex formation by human cytomegalovirus glycoproteins M (gpUL100) and N (gpUL73). J. Virol. 2000, 74, 11881–11892. [Google Scholar] [CrossRef] [PubMed]
- Burkhardt, C.; Himmelein, S.; Britt, W.; Winkler, T.; Mach, M. Glycoprotein N subtypes of human cytomegalovirus induce a strain-specific antibody response during natural infection. J. Gen. Virol. 2009, 90, 1951–1961. [Google Scholar] [CrossRef] [PubMed]
- Arun, K.; Michael, F.; Ravit, A.-B. Activation of nucleotide oligomerization domain (NOD) 2 by human cytomegalovirus initiates innate immune responses and restricts virus replication. PLoS ONE 2014, 9, e92704. [Google Scholar] [CrossRef]
- Oliveira-Nascimento, L.; Massari, P.; Wetzler, L.M. The Role of TLR2 in Infection and Immunity. Front. Immunol. 2012, 3, 79. [Google Scholar] [CrossRef] [PubMed]
- Igor, L.; Pelton, C.; Streblow, D.; DeFilippis, V.; McWeeney, S.; Nelson, J.A. Human Cytomegalovirus miR-UL112-3p Targets TLR2 and Modulates the TLR2/IRAK1/NFκB Signaling Pathway. PLoS Pathog. 2015, 11, e1004881. [Google Scholar] [CrossRef]
- Boehme Karl, W.; Mario, G.; Teresa, C. Human cytomegalovirus envelope glycoproteins B and H are necessary for TLR2 activation in permissive cells. J. Immunol. 2006, 177, 7094–7102. [Google Scholar] [CrossRef] [PubMed]
- Compton, T.; Kurt-Jones, E.A.; Boehme, K.W.; Belko, J.; Latz, E.; Golenbock, D.T.; Finberg, R.W. Human cytomegalovirus activates inflammatory cytokine responses via CD14 and Toll-like receptor 2. J. Virol. 2003, 77, 4588–4596. [Google Scholar] [CrossRef] [PubMed]
- Gerna, G.; Kabanova, A.; Lilleri, D. Human Cytomegalovirus Cell Tropism and Host Cell Receptors. Vaccines 2019, 7, 70. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Jardetzky, T.S.; Chin, A.L.; Johnson, D.C.; Vanarsdall, A.L. The human cytomegalovirus penetrates hosttrimer and Pentamer promote sequential steps in entry into epithelial and endothelial cells by pH-independent fusion at the cell surfaces and endosomes. J. Virol. 2018, 92. [Google Scholar] [CrossRef] [PubMed]
- Kinzler, E.R.; Theiler, R.N.; Compton, T. Expression and reconstitution of the gH/gL/gO complex of human cytomegalovirus. J. Clin. Virol. 2002, 25 (Suppl. S2), S87–S95. [Google Scholar] [CrossRef] [PubMed]
- Ryckman, B.J.; Jarvis, M.A.; Drummond, D.D.; Nelson, J.A.; Johnson, D.C. Human cytomegalovirus entry into epithelial and endothelial cells depends on genes UL128 to UL150 and occurs by endocytosis and low-pH fusion. J. Virol. 2006, 80, 710–722. [Google Scholar] [CrossRef]
- Martinez-Martin, N.; Marcandalli, J.; Huang, C.S.; Arthur, C.P.; Perotti, M.; Foglierini, M.; Ho, H.; Dosey, A.M.; Shriver, S.; Payandeh, J.; et al. An unbiased screen for human cytomegalovirus identifies neuropilin-2 as a central viral receptor. Cell 2018, 174, 1158–1171. [Google Scholar] [CrossRef] [PubMed]
- Vanarsdall Adam, L.; Pritchard Sarah, R.; Wisner Todd, W.; Liu, J.; Jardetzky Ted, S.; Johnson David, C. CD147 Promotes Entry of Pentamer-Expressing Human Cytomegalovirus into Epithelial and Endothelial Cells. mBio 2018, 9, e00781-18. [Google Scholar] [CrossRef] [PubMed]
- DeFilippis, V.R.; Alvarado, D.; Sali, T.; Rothenburg, S.; Fruh, K. Human cytomegalovirus induces the interferon response via the DNA sensor ZBP1. J. Virol. 2010, 84, 585–598. [Google Scholar] [CrossRef] [PubMed]
- Kuenzel, S.; Till, A.; Winkler, M.; Häsler, R.; Lipinski, S.; Jung, S.; Grötzinger, J.; Fickenscher, H.; Schreiber, S.; Rosenstiel, P. The nucleotide-binding oligomerization domain-like receptor NLRC5 is involved in IFN-dependent antiviral immune responses. J. Immunol. 2010, 184, 1990–2000. [Google Scholar] [CrossRef] [PubMed]
- Kanneganti TD, Lamkanfi M, Nunez G Intracellular NOD-like receptors in host defense and disease. Immunity 2007, 27, 549–559. [CrossRef] [PubMed]
- Shaw MH, Reimer T, Kim YG, Nunez G NOD-like receptors (NLRs): Bona fide intracellular microbial sensors. Curr. Opin. Immunol. 2008, 20, 377–382. [CrossRef] [PubMed]
- Bravender, T. Epstein-Barr virus, cytomegalovirus, and infectious mononucleosis. Adolesc. Med. State Art. Rev. 2010, 21, 251–264. [Google Scholar] [PubMed]
- Nolan, N.; Halai, U.-A.; Regunath, H.; Smith, L.P.; Rojas-Moreno, C.; Salzer, W. Primary cytomegalovirus infection in immunocompetent adults in the United States—A case series. IDCases 2017, 10, 123–126. [Google Scholar] [CrossRef]
- Jordan, M.C.; Rousseau, W.E.; Stewart, J.A.; Noble, G.R.; Chin, T.D. Spontaneous cytomegalovirus mononucleosis. Clinical and laboratory observations in nine cases. Ann. Intern. Med. 1973, 79, 153–160. [Google Scholar] [CrossRef]
- Eddleston, M.; Peacock, S.; Juniper, M.; Warrell, D.A. Severe cytomegalovirus infection in immunocompetent patients. Clin. Infect. Dis. 1997, 24, 52–56. [Google Scholar] [CrossRef] [PubMed]
- Schneider, E.W.; Elner, S.G.; van Kuijk, F.J.; Goldberg, N.; Lieberman, R.M.; Eliott, D.; Johnson, M.W. Chronic retinal necrosis: Cytomegalovirus necrotizing retinitis associated with panretinal vasculopathy in non-HIV patients. Retina 2013, 33, 1791–1799. [Google Scholar] [CrossRef] [PubMed]
- Britt, W.J. Maternal immunity and the natural history of congenital human cytomegalovirus infection. Viruses 2018, 10, 405. [Google Scholar] [CrossRef]
- Dong, N.; Cao, L.; Zheng, D.; Su, L.; Lu, L.; Dong, Z.; Xu, M.; Xu, J. Distribution of CMV envelope glycoprotein B, H and N genotypes in infants with congenital cytomegalovirus symptomatic infection. Front. Pediatr. 2023, 11, 1112645. [Google Scholar] [CrossRef]
- Salomè, S.; Ciampa, N.; Giordano, M.; Raimondi, R.; Capone, E.; Grieco, C.; Coppola, C.; Capasso, L.; Raimondi, F. Ophthalmological impairment in patients with congenital cytomegalovirus infection. Front. Pediatr. 2023, 11, 1251893. [Google Scholar] [CrossRef] [PubMed]
- Rawlinson, W.D.; Boppana, S.B.; Fowler, K.B.; Kimberlin, D.W.; Lazzarotto, T.; Alain, S.; Daly, K.; Doutré, S.; Gibson, L.; Giles, M.L.; et al. Congenital cytomegalovirus infection in pregnancy and the neonate: Consensus recommendations for prevention, diagnosis, and therapy. Lancet Infect. Dis. 2017, 17, e177–e188. [Google Scholar] [CrossRef] [PubMed]
- Cheung, T.W.; Teich, S.A. Cytomegalovirus infection in patients with HIV infection. Mt. Sinai J. Med. 1999, 66, 113–124. [Google Scholar] [PubMed]
- Hodson, E.M.; Craig, J.C.; Strippoli, G.F.M.; Webster, A.C. Antiviral medications for preventing cytomegalovirus disease in solid organ transplant recipients. Cochrane Database Syst. Rev. 2008, 2, CD003774. [Google Scholar]
- Ryosuke, O.; Singh, N. Cytomegalovirus infection in critically ill patients: A systematic review. Crit. Care 2009, 13, R68. [Google Scholar] [CrossRef]
- Mahlaoui, N.; Warnatz, K.; Jones, A.; Workman, S.; Cant, A. Advances in the Care of Primary Immunodeficiencies (PIDs): From Birth to Adulthood. J. Clin. Immunol. 2017, 37, 452–460. [Google Scholar] [CrossRef] [PubMed]
- Ruffner, M.A.; Sullivan, K.E.; Henrickson, S.E. Recurrent and Sustained Viral Infections in Primary Immunodeficiencies. Front. Immunol. 2017, 8, 665. [Google Scholar] [CrossRef] [PubMed]
- de Villartay, J.-P.; Lim, A.; Al-Mousa, H.; Dupont, S.; Déchanet-Merville, J.; Coumau-Gatbois, E.; Gougeon, M.-L.; Lemainque, A.; Eidenschenk, C.; Jouanguy, E.; et al. A novel immunodeficiency associated with hypomorphic RAG1 mutations and CMV infection. J. Clin. Investig. 2005, 115, 3291–3299. [Google Scholar] [CrossRef] [PubMed]
- Del Rosal, T.; Quintana-Ortega, C.; Deyá-Martinez, A.; Soler-Palacín, P.; Goycochea-Valdivia, W.A.; Salmón, N.; Pérez-Martínez, A.; Alsina, L.; Martín-Nalda, A.; Alonso, L.; et al. Impact of cytomegalovirus infection prior to hematopoietic stem cell transplantation in children with inborn errors of immunity. Eur. J. Pediat. 2022, 181, 3889–3898. [Google Scholar] [CrossRef] [PubMed]
- van der Meer, J.T.; Drew, W.L.; Bowden, R.A.; Galasso, G.J.; Griffiths, P.D.; Jabs, D.A.; Katlama, C.; Spector, S.A.; Whitley, R.J. Summary of the International Consensus Symposium on Advances in the Diagnosis, Treatment and Prophylaxis and Cytomegalovirus Infection. Antiviral Res. 1996, 32, 119–140. [Google Scholar] [CrossRef] [PubMed]
- Heiden, D.; Ford, N.; Wilson, D.; Rodriguez, W.R.; Margolis, T.; Janssens, B.; Bedelu, M.; Tun, N.; Goemaere, E.; Saranchuk, P.; et al. Cytomegalovirus retinitis: The neglected disease of the AIDS pandemic. PLoS Med. 2007, 4, e334. [Google Scholar] [CrossRef] [PubMed]
- Deayton, J.; Mocroft, A.; Wilson, P.; Emery, V.C.; Johnson, M.A.; Griffiths, P.D. Loss of cytomegalovirus (CMV) viraemia following highly active antiretroviral therapy in the absence of specific anti-CMV therapy. AIDS 1999, 13, 1203–1206. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, C.E.; Drew, W.L.; McMullen, D.J.; Miner, R.; Lee, J.Y.; Kaslow, R.A.; Lazar, J.G.; Saag, M.S. Decrease of cytomegalovirus replication in human immunodeficiency virus infected-patients after treatment with highly active antiretroviral therapy. J. Infect. Dis. 1999, 180, 847–849. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, M.A.; Schrier, R.; McCune, J.M.; Torriani, F.J.; Holland, G.N.; O’Donnell, J.J.; Freeman, W.R.; Bredt, B.M. Cytomegalovirus (CMV)-specific CD4+ T lymphocyte immune function in long-term survivors of AIDS-related CMV end-organ disease who are receiving potent antiretroviral therapy. J. Infect. Dis. 2001, 183, 1399–1404. [Google Scholar] [CrossRef] [PubMed]
- Holland, G.N.; Pepose, J.S.; Pettit, T.H.; Gottlieb, M.S.; Yee, R.D.; Foos, R.Y. Acquired immune deficiency syndrome. Ocular manifestations. Ophthalmology 1983, 90, 859–873. [Google Scholar] [CrossRef] [PubMed]
- Jabs, D.A.; Green, W.R.; Fox, R.; Polk, B.F.; Bartlett, J.G. Ocular Manifestations of Acquired Immune Deficiency Syndrome. Ophthalmology 1989, 96, 1092–1099. [Google Scholar] [CrossRef] [PubMed]
- Jabs, D. Ocular manifestations of HIV infection. Trans. Am. Ophthalmol. Soc. 1995, 93, 623–683. [Google Scholar] [CrossRef] [PubMed]
- Hoover, D.R.; Peng, Y.; Saah, A.; Semba, R.; Detels, R.R.; Rinaldo, C.R.; Phair, J.P. Occurrence of cytomegalovirus retinitis after human immunodeficiency virus immunosuppression. Arch. Ophthalmol. 1996, 114, 821–827. [Google Scholar] [CrossRef] [PubMed]
- Pertel, P.; Hirschtick, R.; Phair, J.; Chmiel, J.; Poggensee, I.; Murphy, R. Risk of developing cytomegalovirus retinitis in persons infected with the human immunodeficiency virus. Retina 1993, 13, 262–263. [Google Scholar] [CrossRef]
- Kuppermann, B.D.; Petty, J.G.; Richman, D.D.; Mathews, W.C.; Fullerton, S.C.; Rickman, L.S.; Freeman, W.R. Correlation between CD4+ counts and prevalence of cytomegalovirus retinitis and human immunodeficiency virus-related noninfectious retinal vasculopathy in patients with acquired immunodeficiency syndrome. Am. J. Ophthalmol. 1993, 115, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Baldassano, V.; Dunn, J.; Feinberg, J.; Jabs, D. Cytomegalovirus Retinitis and Low CD4+ T-Lymphocyte Counts. N. Engl. J. Med. 1995, 333, 670. [Google Scholar] [CrossRef] [PubMed]
- Jabs, D.; Holbrook, J.; Vannatta, M.; Clark, R.; Jacobson, M.; Kempen, J.; Murphy, R. Risk Factors for Mortality in Patients with AIDS in the Era of Highly Active Antiretroviral Therapy. Ophthalmology 2005, 112, 771–779. [Google Scholar] [CrossRef] [PubMed]
- Saini, N.; Hasija, S.; Kaur, P.; Kaur, M.; Pathania, V.; Singh, A. Study of prevalence of ocular manifestations in HIV positive patients. Nepal. J. Ophthalmol. 2019, 11, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Stewart, M.W. Optimal management of cytomegalovirus retinitis in patients with AIDS. Clin. Ophthalmol. 2010, 4, 285–299. [Google Scholar] [CrossRef] [PubMed]
- Sugar, E.A.; Jabs, D.A.; Ahuja, A.; Thorne, J.E.; Danis, R.P.; Meinert, C.L. Incidence of Cytomegalovirus Retinitis in the Era of Highly Active Antiretroviral Therapy. Am. J. Ophthalmol. 2012, 153, 1016–1024.e5. [Google Scholar] [CrossRef] [PubMed]
- Jabs, D.A.; Ahuja, A.; Van Natta, M.L.; Lyon, A.T.; Yeh, S.; Danis, R. Long-term Outcomes of Cytomegalovirus Retinitis in the Era of Modern Antiretroviral Therapy. Ophthalmology 2015, 122, 1452–1463. [Google Scholar] [CrossRef] [PubMed]
- Baril, L.; Jouan, M.; Agher, R.; Cambau, E.; Caumes, E.; Bricaire, F.; Katlama, C. Impact of highly active antiretroviral therapy on onset of Mycobacterium avium complex infection and cytomegalovirus disease in patients with AIDS. AIDS 2000, 14, 2593–2596. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, D.E.; Smithen, L.M.; Angelilli, A.; Freeman, W.R. HIV-associated retinopathy in the HAART era. Retina 2005, 25, 633–649; quiz 682. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Zhao, N.; Wang, L.Y.; Wen, Y. Frosted branch angiitis due to cytomegalovirus-associated unmasking immune reconstitution inflammatory syndrome: A case report and literature review. BMC Infect. Dis. 2021, 21, 613. [Google Scholar] [CrossRef] [PubMed]
- Kuo, I.C.; Kempen, J.H.; Dunn, J.P.; Vogelsang, G.; Jabs, D.A. Clinical characteristics and outcomes of cytomegalovirus retinitis in persons without human immunodeficiency virus infection. Am. J. Ophthalmol. 2004, 138, 338–346. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Kumari, N.; Trehan, A.; Khadwal, A.; Dogra, M.R.; Gupta, V.; Sharma, A.; Gupta, A.; Singh, R. Outcome of cytomegalovirus retinitis in immunocompromised patients without human immunodeficiency virus treated with intravitreal ganciclovir injection. Graefes Arch. Clin. Exp. Ophthalmol. 2014, 252, 1393–1401. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Jiang, Q.; Li, M.; Lu, Y.; Wang, Z. Retrospective study of cytomegalovirus retinitis complicated with acquired immunodeficiency syndrome. Int. J. Clin. Exp. Med. 2015, 8, 9537–9542. [Google Scholar] [PubMed]
- Kulshrestha, M.K.; Goble, R.R.; Murray, P.I. Cytomegalovirus retinitis associated with long term oral corticosteroid use. Br. J. Ophthalmol. 1996, 80, 849–850. [Google Scholar] [CrossRef] [PubMed]
- Pathanapitoon, K.; Tesavibul, N.; Choopong, P.; Boonsopon, S.; Kongyai, N.; Ausayakhun, S.; Kunavisarut, P.; Rothova, A. Clinical manifestations of cytomegalovirus-associated posterior uveitis and panuveitis in patients without human immunodeficiency virus infection. JAMA Ophthalmol. 2013, 131, 638. [Google Scholar] [CrossRef] [PubMed]
- Al-Farsi, N.; Al Jabri, S. Cytomegalovirus retinitis in children post hematopoietic stem cell transplantation: Can we develop a screening protocol? Oman J. Ophthalmol. 2022, 15, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Jeon, S.; Lee, W.K.; Lee, Y.; Lee, D.G.; Lee, J.W. Risk factors for cytomegalovirus retinitis in patients with cytomegalovirus viremia after hematopoietic stem cell transplantation. Ophthalmology. 2012, 119, 1892–1898. [Google Scholar] [CrossRef] [PubMed]
- Hiwarkar, P.; Gajdosova, E.; Qasim, W.; Worth, A.; Breuer, J.; Chiesa, R.; Ridout, D.; Edelsten, C.; Moore, A.; Amrolia, P.; et al. Frequent occurrence of cytomegalovirus retinitis during immune reconstitution warrants regular ophthalmic screening in high-risk pediatric allogeneic hematopoietic stem cell transplant recipients. Clin. Infect. Dis. 2014, 58, 1700–1706. [Google Scholar] [CrossRef]
- Crippa, F.; Corey, L.; Chuang, E.L.; Sale, G.; Boeckh, M. Virological, clinical, and ophthalmologic features of cytomegalovirus retinitis after hematopoietic stem cell transplantation. Clin. Infect. Dis. 2001, 32, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Streilein, J.W. Ocular immune privilege and the Faustian dilemma: The Proctor lecture. Investiig. Ophthalmol. Vis. Sci. 1996, 37, 1940–1950. [Google Scholar]
- Taylor, A.W. Ocular immune privilege and transplantation. Front Immunol. 2016, 7, 37. [Google Scholar] [CrossRef] [PubMed]
- Medawar, P.B. Immunity to homologous grafted skin; the fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Br. J. Exp. Pathol. 1948, 29, 58–69. [Google Scholar] [PubMed]
- Takeuchi, O.; Akira, S. MDA5/RIG-I and virus recognition. Curr. Opin. Immunol. 2008, 20, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Haas, M.; Meshorer, A. Reticulum cell neoplasms induced in C57BL/6 mice by cultured virus grown in stromal hematopoietic cell lines. J. Natl. Cancer Inst. 1979, 63, 427–439. [Google Scholar] [PubMed]
- Mosier, D.E.; Yetter, R.A.; Morse, H.C., III. Retroviral induction of acute lymphoproliferative disease and profound immunosuppression in adult C57BL/6 mice. J. Exp. Med. 1985, 161, 766–784. [Google Scholar] [CrossRef] [PubMed]
- Yetter, R.A.; Buller, R.M.; Lee, J.S.; Elkins, K.L.; Mosier, D.E.; Fredrickson, T.N.; Morse, H.C. CD4+ T cells are required for development of a murine retrovirus-induced immunodeficiency syndrome (MAIDS). J. Exp. Med. 1988, 168, 623–635. [Google Scholar] [CrossRef]
- Duan, Y.; Ji, Z.; Atherton, S.S. Dissemination and replication of MCMV after supraciliary inoculation in immunosuppressed BALB/c mice. Investig. Ophthalmol. Vis. Sci. 1994, 35, 1124–1131. [Google Scholar]
- Zhang, M.; Covar, J.; Marshall, B.; Dong, Z.; Atherton, S.S. Lack of TNF-α promotes Caspase-3–independent apoptosis during murine cytomegalovirus retinitis. Investig. Ophthalmol. Vis. Sci. 2011, 52, 1800–1808. [Google Scholar] [CrossRef] [PubMed]
- Sloka, J.S.; Stefanelli, M. The mechanism of action of methylprednisolone in the treatment of multiple sclerosis. Mult. Scler. 2005, 11, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Alston, C.I.; Dix, R.D. Reduced frequency of murine cytomegalovirus retinitis in C57BL/6 mice correlates with low levels of suppressor of cytokine signaling (SOCS)1 and SOCS3 expression within the eye during corticosteroid-induced immunosuppression. Cytokine 2017, 97, 38–41. [Google Scholar] [CrossRef] [PubMed]
- Chien, H.; Alston, C.I.; Dix, R.D. Suppressor of cytokine signaling 1 (SOCS1) and SOCS3 are stimulated within the eye during experimental murine cytomegalovirus retinitis in mice with retrovirus-induced immunosuppression. J. Virol. 2018, 92, e00526-18. [Google Scholar] [CrossRef]
- Standardization of Uveitis Nomenclature (SUN) Working Group. Classification Criteria for Cytomegalovirus Retinitis. Am. J. Ophthalmol. 2021, 228, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Jabs, D.A.; Ahuja, A.; Natta, M.V.; Dunn, J.; Yeh, S. Comparison of treatment regimens for cytomegalovirus retinitis in patients with AIDS in the era of highly active antiretroviral therapy. Ophthalmology 2013, 120, 1262–1270. [Google Scholar] [CrossRef] [PubMed]
- Takehiko, M.; Kikuchi, T.; Koh, M.; Koda, Y.; Yamazaki, R.; Sakurai, M.; Tomita, Y.; Ozawa, Y.; Kohashi, S.; Abe, R.; et al. Cytomegalovirus retinitis after allogeneic hematopoietic stem cell transplantation under cytomegalovirus antigenemia-guided active screening. Bone Marrow Transplant. 2021, 56, 1266–1271. [Google Scholar]
- Becker, K.N.; Becker, N.M. Ocular manifestations seen in HIV. Dis. Mon. 2014, 60, 268–275. [Google Scholar] [CrossRef]
- Mansour, A.M.; Li, H.K. Frosted Retinal Periphlebitis in the Acquired Immunodeficiency Syndrome. Ophthalmologica 1993, 207, 182–186. [Google Scholar] [CrossRef] [PubMed]
- Yashiro, S.; Nishijima, T.; Yamamoto, Y.; Sekine, Y.; Yoshida-Hata, N.; Iida, T.; Oka, S. Spectral domain optical coherence tomography and fundus autofluorescence findings in cytomegalovirus retinitis in HIV-infected patients. Jpn. J. Ophthalmol. 2018, 62, 373–389. [Google Scholar] [CrossRef]
- Xie, L.Y.; Chen, C.; Kong, W.J.; Du, K.F.; Guo, C.G.; Wei, W.B. A comparative study on retinal thickness of the macular region among AIDS patients with normal ocular fundus, HIV-related microvascular retinopathy patients, and cytomegalovirus retinitis patients. Medicine 2019, 98, e16073. [Google Scholar] [CrossRef]
- Bin Dokhi, H.; Alharbi, A.O.; Ibnouf, N.H.; Alahmari, B.; Refka, M.N. Post-CD19 Chimeric Antigen Receptor T-Cell Therapy Cytomegalovirus Retinitis. Cureus 2022, 14, e23002. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.P.; Patel, S.; Orlin, A.; Marlow, E.; Chee, R.I.; Nadelmann, J.; Chan, R.V.P.; D’Amico, D.J.; Kiss, S. Spectral Domain Optical Coherence Tomography Findings in Macula-Involving Cytomegalovirus Retinitis. Retina 2018, 38, 1000–1010. [Google Scholar] [CrossRef]
- Invernizzi, A.; Agarwal, A.; Ravera, V.; Oldani, M.; Staurenghi, G.; Viola, F. OPTICAL COHERENCE TOMOGRAPHY FINDINGS IN CYTOMEGALOVIRUS RETINITIS: A Longitudinal Study. Retina 2018, 38, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Kurup, S.P.; Khan, S.; Gill, M.K. Spectral domain optical coherence tomography in the evaluation and management of infectious retinitis. Retina 2014, 34, 2233–2241. [Google Scholar] [CrossRef] [PubMed]
- Bowen, E.; Atkins, M.; Griffiths, P.; Emery, V.; Madge, S.; Johnson, M.; Wilson, P. Natural history of untreated cytomegalovirus retinitis. Lancet 1995, 346, 8991–8992. [Google Scholar] [CrossRef] [PubMed]
- Lancini, D.; Faddy, H.M.; Flower, R.; Hogan, C. Cytomegalovirus disease in immunocompetent adults. Med. J. Aust. 2014, 201, 578–580. [Google Scholar] [CrossRef] [PubMed]
- Holland, G.N.; Buhles, W.C.; Mastre, B.; Kaplan, H.J. A controlled retrospective study of ganciclovir treatment for cytomegalovirus retinopathy. Use of a standardized system for the assessment of disease outcome. UCLA CMV Retinopathy Study Group. Arch. Ophthalmol. 1989, 107, 1759–1766. [Google Scholar] [CrossRef] [PubMed]
- Palestine, A.G.; Polis, M.A.; De Smet, M.D.; Baird, B.F.; Falloon, J.; Kovacs, J.A.; Davey, R.T.; Zurlo, J.J.; Zunich, K.M.; Davis, M. A randomized, controlled trial of foscarnet in the treatment of cytomegalovirus retinitis in patients with AIDS. Ann. Intern. Med. 1991, 115, 665–673. [Google Scholar] [CrossRef]
- Studies of Ocular Complications of AIDS Research Group. The AIDS Clinical Trials Group. The ganciclovir implant plus oral ganciclovir versus parenteral cidofovir for the treatment of cytomegalovirus retinitis in patients with acquired immunodeficiency syndrome: The Ganciclovir Cidofovir Cytomegalovirus Retinitis Trial. Am. J. Ophthalmol. 2001, 131, 457–467. [Google Scholar] [CrossRef]
- Tripathy, K.; Mittal, K.; Venkatesh, P.; Bakhshi, S.; Chawla, R. Treatment of unilateral zone I cytomegalovirus retinitis in acute lymphoblastic leukemia with oral valganciclovir and intravitreal ganciclovir. Oman J. Ophthalmol. 2017, 10, 250–252. [Google Scholar] [CrossRef] [PubMed]
- Kamal, A.; King, A.; Sylvestri, G.; Dhillon, B. Sustained release intravitreal ganciclovir implant as salvage treatment in AIDS related cytomegalovirus retinitis. Br. J. Ophthalmol. 1998, 82, 333. [Google Scholar] [CrossRef] [PubMed]
- Charles, N.C.; Steiner, G.C. Ganciclovir intraocular implant. A clinicopathologic study. Ophthalmology 1996, 103, 416–421. [Google Scholar] [CrossRef] [PubMed]
- Luckie, A.; Ai, E. Diagnosis and management of cytomegalovirus retinitis in AIDS. Curr. Opin. Ophthalmol. 1993, 4, 81–89. [Google Scholar] [CrossRef]
- Thorne, J.E.; Jabs, D.A.; Kempen, J.H.; Holbrook, J.T.; Nichols, C.; Meinert, C.L. Causes of Visual Acuity Loss among Patients with AIDS and Cytomegalovirus Retinitis in the Era of Highly Active Antiretroviral Therapy. Ophthalmology 2006, 113, 1441–1445. [Google Scholar] [CrossRef] [PubMed]
- Henderly, D.E.; Freeman, W.R.; Causey, D.M.; Rao, N.A. Cytomegalovirus Retinitis and Response to Therapy with Ganciclovir. Ophthalmology 1987, 94, 425–434. [Google Scholar] [CrossRef] [PubMed]
- Urban, B.; Bakunowicz-Łazarczyk, A.; Michalczuk, M. Immune recovery uveitis: Pathogenesis, clinical symptoms, and treatment. Mediators Inflamm. 2014, 2014, 971417. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Kamoi, K.; Zong, Y.; Zhang, J.; Ohno-Matsui, K. Human Immunodeficiency Virus and Uveitis. Viruses 2023, 15, 444. [Google Scholar] [CrossRef] [PubMed]
- Koizumi, N.; Yamasaki, K.; Kawasaki, S.; Sotozono, C.; Inatomi, T.; Mochida, C.; Kinoshita, S. Cytomegalovirus in aqueous humor from an eye with corneal endotheliitis. Am. J. Ophthalmol. 2006, 141, 564–565. [Google Scholar] [CrossRef]
- Yoo, W.; Kwon, L.; Eom, Y.; Thng, Z.; Or, C.; Nguyen, Q.; Kim, S. Cytomegalovirus Corneal Endotheliitis: A Comprehensive Review. Ocul. Immunol. Inflamm. 2024, 1–10. [Google Scholar] [CrossRef]
- Streilein, J.W. Molecular basis of ACAID. Ocul. Immunol. Inflamm. 1997, 5, 217–218. [Google Scholar] [CrossRef] [PubMed]
- Niederkorn, J.Y.; Streilein, J.W. Analysis of antibody production induced by allogeneic tumor cells inoculated into the anterior chamber of the eye. Transplantation 1982, 33, 573–577. [Google Scholar] [CrossRef]
- Zheng, X.; Yamaguchi, M.; Goto, T.; Okamoto, S.; Ohashi, Y. Experimental corneal endotheliitis in rabbit. Investig. Ophthalmol. Vis. Sci. 2000, 41, 377–385. [Google Scholar]
- Kobayashi, A.; Yokogawa, H.; Higashide, T.; Nitta, K.; Sugiyama, K. Clinical significance of owl eye morphologic features by in vivo laser confocal microscopy in patients with cytomegalovirus corneal endotheliitis. Am. J. Ophthalmol. 2012, 153, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, R.; Hashida, N.; Maruyama, K.; Nishida, K. Clinical Findings of Specular Microscopy Images in Cytomegalovirus Corneal Endotheliitis. Asia Pac. J. Ophthalmol. 2022, 11, 273–278. [Google Scholar] [CrossRef]
- Hosogai, M.; Shima, N.; Nakatani, Y.; Inoue, T.; Iso, T.; Yokoo, H.; Yorifuji, H.; Akiyama, H.; Kishi, S.; Isomura, H. Analysis of human cytomegalovirus replication in primary cultured human corneal endothelial cells. Br. J. Ophthalmol. 2015, 99, 1583–1590. [Google Scholar] [CrossRef] [PubMed]
- E, X.; Meraner, P.; Lu, P.; Perreira, J.M.; Aker, A.M.; McDougall, W.M.; Zhuge, R.; Chan, G.C.; Gerstein, R.M.; Caposio, P.; et al. OR14I1 is a receptor for the human cytomegalovirus pentameric complex and defines viral epithelial cell tropism. Proc. Natl. Acad. Sci. USA 2019, 116, 7043–7052. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, D.; Uotani, R.; Inoue, M.; Haruki, T.; Shimizu, Y.; Yakura, K.; Yamagami, S.; Suzutani, T.; Hosogai, M.; Isomura, H.; et al. Corneal endothelial cells activate innate and acquired arm of anti-viral responses after cytomegalovirus infection. Exp. Eye Res. 2017, 161, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Ishikawa, F.; Sonoda, K.-H.; Hisatomi, T.; Qiao, H.; Yamada, J.; Fukata, M.; Ishibashi, T.; Harada, M.; Kinoshita, S. Characterization and distribution of bone marrow-derived cells in mouse cornea. Investig. Ophthalmol. Vis. Sci. 2005, 46, 497–503. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, K.; Suwa, Y.; Shimomura, Y.; Ohashi, Y. Pathogenesis of ocular cytomegalovirus infection in the immunocompromised host. J. Med. Virol. 1995, 47, 364–369. [Google Scholar] [CrossRef] [PubMed]
- Shiraishi, A.; Hara, Y.; Takahashi, M.; Oka, N.; Yamaguchi, M.; Suzuki, T.; Uno, T.; Ohashi, Y. Demonstration of “owl’s eye” morphology by confocal microscopy in a patient with presumed cytomegalovirus corneal endotheliitis. Am. J. Ophthalmol. 2007, 143, 715–717. [Google Scholar] [CrossRef] [PubMed]
- Yamauchi, Y.; Suzuki, J.; Sakai, J.; Sakamoto, S.; Iwasaki, T.; Usui, M. A case of hypertensive keratouveitis with endotheliitis associated with cytomegalovirus. Ocul. Immunol. Inflamm. 2007, 15, 399–401. [Google Scholar] [CrossRef]
- Kandori, M.; Inoue, T.; Takamatsu, F.; Kojima, Y.; Hori, Y.; Maeda, N.; Tano, Y. Prevalence and Features of Keratitis with Quantitative Polymerase Chain Reaction Positive for Cytomegalovirus. Ophthalmology 2010, 117, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Miyanaga, M.; Sugita, S.; Shimizu, N.; Morio, T.; Miyata, K.; Maruyama, K.; Kinoshita, S.; Mochizuki, M. A significant association of viral loads with corneal endothelial cell damage in cytomegalovirus anterior uveitis. Br. J. Ophthalmol. 2010, 94, 336–340. [Google Scholar] [CrossRef] [PubMed]
- Yokogawa, H.; Kobayashi, A.; Sugiyama, K. Mapping owl’s eye cells of patients with cytomegalovirus corneal endotheliitis using in vivo laser confocal microscopy. Jpn. J. Ophthalmol. 2013, 57, 80–84. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, R.; Hashida, N.; Soma, T.; Koh, S.; Miki, A.; Usui, S.; Maeda, N.; Nishida, K. Clinical Findings of Anterior Segment Spectral Domain Optical Coherence Tomography Images in Cytomegalovirus Corneal Endotheliitis. Cornea 2017, 36, 411–414. [Google Scholar] [CrossRef] [PubMed]
- Chee, S.P.; Bacsal, K.; Jap, A.; Se-Thoe, S.Y.; Cheng, C.L.; Tan, B.H. Clinical features of cytomegalovirus anterior uveitis in immunocompetent patients. Am. J. Ophthalmol. 2008, 145, 834–840. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.O.M.; Yu, A.H.Y.; Chan, C.K.M. Efficacy and safety of oral valganciclovir in cytomegalovirus anterior uveitis with uncontrolled intraocular pressure. Br. J. Ophthalmol. 2021, 105, 1666–1671. [Google Scholar] [CrossRef]
- Su, C.C.; Hu, F.R.; Wang, T.H.; Huang, J.Y.; Yeh, P.T.; Lin, C.P.; Wang, I.J. Clinical outcomes in cytomegalovirus-positive Posner-Schlossman syndrome patients treated with topical ganciclovir therapy. Am. J. Ophthalmol. 2014, 158, 1024–1031.e2. [Google Scholar] [CrossRef] [PubMed]
- Pavan-Langston, D.; Welch, C.L.; Zegans, M.E. Ganciclovir gel for cytomegalovirus keratouveitis. Ophthalmology 2012, 119, 2411. [Google Scholar] [CrossRef] [PubMed]
- Koizumi, N.; Miyazaki, D.; Inoue, T.; Ohtani, F.; Kandori-Inoue, M.; Inatomi, T.; Sotozono, C.; Nakagawa, H.; Horikiri, T.; Ueta, M.; et al. The effect of topical application of 0.15% ganciclovir gel on cytomegalovirus corneal endotheliitis. Br. J. Ophthalmol. 2017, 101, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Alfawaz, A. Cytomegalovirus-related corneal endotheliitis: A review article. Saudi J. Ophthalmol. 2013, 27, 47–49. [Google Scholar] [CrossRef] [PubMed]
- Kawaguchi, T.; Sugita, S.; Shimizu, N.; Mochizuki, M. Kinetics of aqueous flare, intraocular pressure and virus-DNA copies in a patient with cytomegalovirus iridocyclitis without retinitis. Int. Ophthalmol. 2007, 27, 383–386. [Google Scholar] [CrossRef]
- van Boxtel, L.A.A.; van der Lelij, A.; van der Meer, J.; Los, L.I. Cytomegalovirus as a Cause of Anterior Uveitis in Immunocompetent Patients. Ophthalmology 2007, 114, 1358–1362. [Google Scholar] [CrossRef] [PubMed]
- Posner, A.; Schlossman, A. Syndrome of unilateral recurrent attacks of glaucoma with cyclitic symptoms. Arch. Ophthalmol. 1948, 39, 517–535. [Google Scholar] [CrossRef] [PubMed]
- La Hey, E.; Baarsma, G.S.; De Vries, J.; Kijlstra, A. Clinical analysis of Fuchs’ heterochromic cyclitis. Doc. Ophthalmol. 1991, 78, 225–235. [Google Scholar] [CrossRef] [PubMed]
- Babu, K.; Murthy, G.J. Cytomegalovirus anterior uveitis in immunocompetent individuals following topical prostaglandin analogues. J. Ophthalmic Inflamm. Infect. 2013, 3, 55. [Google Scholar] [CrossRef] [PubMed]
- Carmichael, A. Cytomegalovirus and the eye. Eye 2012, 26, 237–240. [Google Scholar] [CrossRef] [PubMed]
- Klenerman, P.; Oxenius, A. T cell responses to cytomegalovirus. Nat. Rev. Immunol. 2016, 16, 367–377. [Google Scholar] [CrossRef] [PubMed]
- Russel, J.H.; Ley, T.J. Lymphocyte-mediated cytotoxicity. Annu. Rev. Immunol. 2002, 20, 323–370. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Zhang, Q. Molecular mechanisms of lymphocyte-mediated cytotoxicity. Cell Mol. Immunol. 2005, 2, 259–264. [Google Scholar] [PubMed]
- Voigt, V.; Andoniou, C.E.; Schuster, I.S.; Oszmiana, A.; Ong, M.L.; Fleming, P.; Forrester, J.V.; Degli-Esposti, M.A. Cytomegalovirus establishes a latent reservoir and triggers long-lasting inflammation in the eye. PLoS Pathog. 2018, 14, e1007040. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Kamoi, K.; Zong, Y.; Yang, M.; Ohno-Matsui, K. Cytomegalovirus Anterior Uveitis: Clinical Manifestations, Diagnosis, Treatment, and Immunological Mechanisms. Viruses 2023, 15, 185. [Google Scholar] [CrossRef] [PubMed]
- Silverman, M.D.; Zamora, D.O.; Pan, Y.; Texeira, P.V.; Planck, S.R.; Rosenbaum, J.T. Cell adhesion molecule expression in cultured human iris endothelial cells. Investig. Ophthalmol. Vis. Sci. 2001, 42, 2861–2866. [Google Scholar]
- Kociok, N.; Heppekausen, H.; Schraermeyer, U.; Esser, P.; Thumann, G.; Grisanti, S.; Heimann, K. The mRNA expression of cytokines and their receptors in cultured iris pigment epithelial cells: A comparison with retinal pigment epithelial cells. Exp. Eye Res. 1998, 67, 237–250. [Google Scholar] [CrossRef]
- Baldwin, J.; Maus, E.; Zanotti, B.; Volin, M.V.; Tandon, R.; Shukla, D.; Tiwari, V. A Role for 3-O-Sulfated Heparan Sulfate in Promoting Human Cytomegalovirus Infection in Human Iris Cells. ASM Journals. J. Virol. 2015, 89, 5185–5192. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.; Majmudar, H.; Tandon, R.; Volin, M.V.; Tiwari, V. Induction of Filopodia During Cytomegalovirus Entry Into Human Iris Stromal Cells. Front. Microbiol. 2022, 13, 834927. [Google Scholar] [CrossRef] [PubMed]
- Chan, N.S.W.; Chee, S.P.; Caspers, L.; Bodaghi, B. Clinical Features of CMV-Associated Anterior Uveitis. Ocul. Immunol. Inflamm. 2018, 26, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.A.; Kim, J.E.; Noh, S.J.; Kyoung Kim, E.; Park, C.K.; Paik, S.Y. Enhanced cytomegalovirus infection in human trabecular meshwork cells and its implication in glaucoma pathogenesis. Sci. Rep. 2017, 7, 43349. [Google Scholar] [CrossRef] [PubMed]
- Daicker, B. Cytomegalovirus panuveitis with infection of corneo-trabecular endothelium in AIDS. Ophthalmologica 1988, 197, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Griessl, M.; Renzaho, A.; Freitag, K.; Seckert, C.K.; Reddehase, M.J.; Lemmermann, N.A.W. Stochastic Episodes of Latent Cytomegalovirus Transcription Drive CD8 T-Cell “Memory Inflation” and Avoid Immune Evasion. Front. Immunol. 2021, 12, 668885. [Google Scholar] [CrossRef] [PubMed]
- Wills, M.R.; Poole, E.; Lau, B.; Krishna, B.; Sinclair, J.H. The immunology of human cytomegalovirus latency: Could latent infection be cleared by novel immunotherapeutic strategies? Cell. Mol. Immunol. 2015, 12, 128–138. [Google Scholar] [CrossRef] [PubMed]
- Jackson, S.E.; Chen, K.C.; Groves, I.J.; Sedikides, G.X.; Gandhi, A.; Houldcroft, C.J.; Poole, E.L.; Montanuy, I.; Mason, G.M.; Okecha, G.; et al. Latent Cytomegalovirus-Driven Recruitment of Activated CD4+ T Cells Promotes Virus Reactivation. Front. Immunol. 2021, 12, 657945. [Google Scholar] [CrossRef]
- Sherman, E.R.; Cafiero-Chin, M. Overcoming diagnostic and treatment challenges in uveitic glaucoma. Clin. Exp. Optom. 2019, 102, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zang, Y.; Lu, Q.; Ma, J.; Jiang, X.; Qu, J.; Zhang, J.; Peng, R.; Luo, M.; Hong, J. Establishing an animal model of cytomegalovirus keratouveitis in rats: Broad infection of anterior segment tissue by cytomegalovirus. Investig. Ophthalmol. Vis. Sci. 2021, 62, 22. [Google Scholar] [CrossRef] [PubMed]
- Accorinti, M.; Gilardi, M.; Pirraglia, M.P.; Amorelli, G.M.; Nardella, C.; Abicca, I.; Pesci, F.R. Cytomegalovirus anterior uveitis: Long-term follow-up of immunocompetent patients. Graefes Arch. Clin. Exp. Ophthalmol. 2014, 252, 1817–1824. [Google Scholar] [CrossRef] [PubMed]
- Moorthy, R.S.; Mermoud, A.; Baerveldt, G.; Minckler, D.S.; Lee, P.P.; Rao, N.A. Glaucoma associated with uveitis. Surv. Ophthalmol. 1997, 41, 361–394. [Google Scholar] [CrossRef] [PubMed]
- Sng, C.C.; Ang, M.; Barton, K. Uveitis and glaucoma: New insights in the pathogenesis and treatment. Prog. Brain Res. 2015, 221, 243–269. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Choi, J.A.; Ju, H.H.; Kim, J.E.; Paik, S.Y.; Rao, P.V. Role of MCP-1 and IL-8 in viral anterior uveitis, and contractility and fibrogenic activity of trabecular meshwork cells. Sci. Rep. 2021, 11, 14950. [Google Scholar] [CrossRef] [PubMed]
- Sugita, S.; Ogawa, M.; Shimizu, N.; Morio, T.; Ohguro, N.; Nakai, K.; Maruyama, K.; Nagata, K.; Takeda, A.; Usui, Y.; et al. Use of a Comprehensive Polymerase Chain Reaction System for Diagnosis of Ocular Infectious Diseases. Ophthalmology 2013, 120, 1761–1768. [Google Scholar] [CrossRef] [PubMed]
- de Schryver, I.; Rozenberg, F.; Cassoux, N.; Michelson, S.; Kestelyn, P.; Lehoang, P.; Davis, J.L.; Bodaghi, B. Diagnosis and treatment of cytomegalovirus iridocyclitis without retinal necrosis. Br. J. Ophthalmol. 2006, 90, 852–855. [Google Scholar] [CrossRef] [PubMed]
- Terada, Y.; Kaburaki, T.; Takase, H.; Goto, H.; Nakano, S.; Inoue, Y.; Maruyama, K.; Miyata, K.; Namba, K.; Sonoda, K.H.; et al. Distinguishing Features of Anterior Uveitis Caused by Herpes Simplex Virus, Varicella-Zoster Virus, and Cytomegalovirus. Am. J. Ophthalmol. 2021, 227, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Takase, H.; Kubono, R.; Terada, Y.; Imai, A.; Fukuda, S.; Tomita, M.; Miyanaga, M.; Kamoi, K.; Sugita, S.; Miyata, K.; et al. Comparison of the ocular characteristics of anterior uveitis caused by herpes simplex virus, varicella-zoster virus, and cytomegalovirus. Jpn. J. Ophthalmol. 2014, 58, 473–482. [Google Scholar] [CrossRef] [PubMed]
- Markomichelakis, N.N.; Canakis, C.; Zafirakis, P.; Marakis, T.; Mallias, I.; Theodossiadis, G. Cytomegalovirus as a cause of anterior uveitis with sectoral iris atrophy. Ophthalmology 2002, 109, 879–882. [Google Scholar] [CrossRef]
- Biron, K.K. Antiviral drugs for cytomegalovirus diseases. Antiviral Res. 2006, 71, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Mietz, H.; Aisenbrey, S.; Bartz-Schmidt, K.U.; Bamborschke, S.; Krieglstein, G.K. Ganciclovir for the treatment of anterior uveitis. Graefes Arch. Clin. Exp. Ophthalmol. 2000, 238, 905–909. [Google Scholar] [CrossRef] [PubMed]
- Sobolewska, B.; Deuter, C.; Doycheva, D.; Zierhut, M. Long-term oral therapy with valganciclovir in patients with Posner-Schlossman syndrome. Graefes Arch. Clin. Exp. Ophthalmol. 2014, 252, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Antoun, J.; Willermain, F.; Makhoul, D.; Motulsky, E.; Caspers, L.; Relvas, L.J. Topical Ganciclovir in Cytomegalovirus Anterior Uveitis. J. Ocul. Pharmacol. Ther. 2017, 33, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Waduthantri, S.; Zhou, L.; Chee, S.P. Intra-cameral level of ganciclovir gel, 0.15% following topical application for cytomegalovirus anterior segment infection: A pilot study. PLoS ONE 2018, 13, e0191850. [Google Scholar] [CrossRef] [PubMed]
- Chee, S.P.; Jap, A. Cytomegalovirus anterior uveitis: Outcome of treatment. Br. J. Ophthalmol. 2010, 94, 1648–1652. [Google Scholar] [CrossRef] [PubMed]
- Touhami, S.; Qu, L.; Angi, M.; Bojanova, M.; Touitou, V.; Lehoang, P.; Rozenberg, F.; Bodaghi, B. Cytomegalovirus Anterior Uveitis: Clinical Characteristics and Long-term Outcomes in a French Series. Am. J. Ophthalmol. 2018, 194, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Hwang, Y.S.; Lin, K.K.; Lee, J.S.; Chang, S.H.L.; Chen, K.J.; Lai, C.C.; Huang, J.C.C.; Kuo, Y.H.; Hsiao, C.H. Intravitreal loading injection of ganciclovir with or without adjunctive oral valganciclovir for cytomegalovirus anterior uveitis. Graefes Arch. Clin. Exp. Ophthalmol. 2010, 248, 263–269. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kobayashi, R.; Hashida, N. Overview of Cytomegalovirus Ocular Diseases: Retinitis, Corneal Endotheliitis, and Iridocyclitis. Viruses 2024, 16, 1110. https://doi.org/10.3390/v16071110
Kobayashi R, Hashida N. Overview of Cytomegalovirus Ocular Diseases: Retinitis, Corneal Endotheliitis, and Iridocyclitis. Viruses. 2024; 16(7):1110. https://doi.org/10.3390/v16071110
Chicago/Turabian StyleKobayashi, Reiko, and Noriyasu Hashida. 2024. "Overview of Cytomegalovirus Ocular Diseases: Retinitis, Corneal Endotheliitis, and Iridocyclitis" Viruses 16, no. 7: 1110. https://doi.org/10.3390/v16071110
APA StyleKobayashi, R., & Hashida, N. (2024). Overview of Cytomegalovirus Ocular Diseases: Retinitis, Corneal Endotheliitis, and Iridocyclitis. Viruses, 16(7), 1110. https://doi.org/10.3390/v16071110