The Importance of Solution Studies for the Structural Characterization of the Enterovirus 5’ Cloverleaf
Abstract
1. Introduction
2. Materials and Methods
2.1. Production of 5’CL via T7 In Vitro Transcription
2.2. Circular Dichroism
2.3. Size-Exclusion Chromatography—Superdex 75
2.4. Size-Exclusion Chromatography—Small-Angle X-Ray Scattering (SEC-SAXS)
3. Results
3.1. CD Spectroscopy Showed Variation with Ionic Conditions
3.2. SEC Showed Multiple Conformational Species
3.3. Native and Denaturing Gel Electrophoresis to Augment the SEC Analysis
3.4. SEC-SAXS Identified a Mixture of Monomers and Dimers
4. Discussion
4.1. Sequential Differences Among the Three 5’CL Sequences
4.2. Hydrodynamic Radius
4.3. Previously Reported 5’CL Structural Analysis
4.4. The Crystal vs. Solution Approaches
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
5’CL | 5’ cloverleaf |
RVB14 | Rhinovirus B14 |
PV1 | Poliovirus 1 |
EVD70 | Enterovirus D70 |
ORF | Open reading frame |
NTRs | Non-translated regions |
IRES | Internal ribosome entry site |
SLB | Stem loop B |
SLC | Stem loop C |
SLD | Stem loop D |
SA | Stem A |
PCBP2 | Poly-C binding protein 2 |
CD | Circular dichroism |
SEC | Size-exclusion chromatography |
SAXS | Small-angle X-ray scattering |
SEC75 | Size-exclusion chromatography equipped with a Superdex 75 10/300 column |
SEC200 | Size-exclusion chromatography equipped with a Superdex 200 Increase 10/300 column |
CVB3 | Coxsackievirus B3 |
RDCs | Residual dipolar couplings |
References
- Zell, R.; Delwart, E.; Gorbalenya, A.E.; Hovi, T.; King, A.M.Q.; Knowles, N.J.; Lindberg, A.M.; Pallansch, M.A.; Palmenberg, A.C.; Reuter, G.; et al. ICTV Virus Taxonomy Profile: Picornaviridae. J. Gen. Virol. 2017, 98, 2421–2422. [Google Scholar] [CrossRef]
- Genus: Enterovirus|ICTV. Available online: https://ictv.global/report/chapter/picornaviridae/picornaviridae/enterovirus (accessed on 28 February 2023).
- Knipe, D.M.; Howley, P. Fields Virology; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2013; ISBN 978-1-4698-3066-7. [Google Scholar]
- Greenberg, S.B. Respiratory Consequences of Rhinovirus Infection. Arch. Intern. Med. 2003, 163, 278–284. [Google Scholar] [CrossRef]
- Laboratory Diagnosis of CNS Infections in Children Due to Emerging and Re-Emerging Neurotropic Viruses|Pediatric Research. Available online: https://www.nature.com/articles/s41390-023-02930-6 (accessed on 11 June 2024).
- Jartti, M.; Flodström-Tullberg, M.; Hankaniemi, M.M. Enteroviruses: Epidemic Potential, Challenges and Opportunities with Vaccines. J. Biomed. Sci. 2024, 31, 73. [Google Scholar] [CrossRef]
- Kitamura, N.; Adler, C.; Wimmer, E. Structure and Expression of the Picornavirus Genome*. Ann. N. Y. Acad. Sci. 1980, 354, 183–201. [Google Scholar] [CrossRef]
- Kräusslich, H.-G.; Nicklin, M.J.H.; Lee, C.-K.; Wimmer, E. Polyprotein Processing in Picornavirus Replication. Biochimie 1988, 70, 119–130. [Google Scholar] [CrossRef]
- Fitzgerald, K.D.; Semler, B.L. Bridging IRES Elements in mRNAs to the Eukaryotic Translation Apparatus. Biochim. Biophys. Acta (BBA)—Gene Regul. Mech. 2009, 1789, 518–528. [Google Scholar] [CrossRef] [PubMed]
- van Ooij, M.J.M.; Polacek, C.; Glaudemans, D.H.R.F.; Kuijpers, J.; van Kuppeveld, F.J.M.; Andino, R.; Agol, V.I.; Melchers, W.J.G. Polyadenylation of Genomic RNA and Initiation of Antigenomic RNA in a Positive-Strand RNA Virus Are Controlled by the Same Cis-Element. Nucleic Acids Res. 2006, 34, 2953–2965. [Google Scholar] [CrossRef]
- Jacobson, S.J.; Konings, D.A.; Sarnow, P. Biochemical and Genetic Evidence for a Pseudoknot Structure at the 3′ Terminus of the Poliovirus RNA Genome and Its Role in Viral RNA Amplification. J. Virol. 1993, 67, 2961–2971. [Google Scholar] [CrossRef]
- Pelletier, J.; Sonenberg, N. Internal Initiation of Translation of Eukaryotic mRNA Directed by a Sequence Derived from Poliovirus RNA. Nature 1988, 334, 320–325. [Google Scholar] [CrossRef] [PubMed]
- Rivera, V.M.; Welsh, J.D.; Maizel, J.V. Comparative Sequence Analysis of the 5′ Noncoding Region of the Enteroviruses and Rhinoviruses. Virology 1988, 165, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Pilipenko, E.V.; Blinov, V.M.; Romanova, L.I.; Sinyakov, A.N.; Maslova, S.V.; Agol, V.I. Conserved Structural Domains in the 5′-Untranslated Region of Picornaviral Genomes: An Analysis of the Segment Controlling Translation and Neurovirulence. Virology 1989, 168, 201–209. [Google Scholar] [CrossRef]
- Le, S.-Y.; Zuker, M. Common Structures of the 5′ Non-Coding RNA in Enteroviruses and Rhinoviruses. J. Mol. Biol. 1990, 216, 729–741. [Google Scholar] [CrossRef] [PubMed]
- Gamarnik, A.V.; Andino, R. Two Functional Complexes Formed by KH Domain Containing Proteins with the 5′ Noncoding Region of Poliovirus RNA. RNA 1997, 3, 882–892. [Google Scholar] [PubMed]
- Parsley, T.B.; Towner, J.S.; Blyn, L.B.; Ehrenfeld, E.; Semler, B.L. Poly (rC) Binding Protein 2 Forms a Ternary Complex with the 5′-Terminal Sequences of Poliovirus RNA and the Viral 3CD Proteinase. RNA 1997, 3, 1124–1134. [Google Scholar]
- Herold, J.; Andino, R. Poliovirus RNA Replication Requires Genome Circularization through a Protein–Protein Bridge. Mol. Cell 2001, 7, 581–591. [Google Scholar] [CrossRef]
- Andino, R.; Rieckhof, G.E.; Baltimore, D. A Functional Ribonucleoprotein Complex Forms around the 5′ End of Poliovirus RNA. Cell 1990, 63, 369–380. [Google Scholar] [CrossRef]
- Xiang, W.; Harris, K.S.; Alexander, L.; Wimmer, E. Interaction between the 5′-Terminal Cloverleaf and 3AB/3CDpro of Poliovirus Is Essential for RNA Replication. J. Virol. 1995, 69, 3658–3667. [Google Scholar] [CrossRef]
- Pierce, D.M.; Hayward, C.; Rowlands, D.J.; Stonehouse, N.J.; Herod, M.R. Insights into Polyprotein Processing and RNA-Protein Interactions in Foot-and-Mouth Disease Virus Genome Replication. J. Virol. 2023, 97, e0017123. [Google Scholar] [CrossRef]
- Doherty, J.S.; Kirkegaard, K. Differential Inhibition of Intra- and Inter-Molecular Protease Cleavages by Antiviral Compounds. J. Virol. 2023, 97, e0092823. [Google Scholar] [CrossRef]
- Daniels, M.G.; Werner, M.E.; Li, R.T.; Pascal, S.M. Exploration of Potential Broad-Spectrum Antiviral Targets in the Enterovirus Replication Element: Identification of Six Distinct 5′ Cloverleaves. Viruses 2024, 16, 1009. [Google Scholar] [CrossRef] [PubMed]
- Chapman, N.M.; Kim, K.-S.; Drescher, K.M.; Oka, K.; Tracy, S. 5′ Terminal Deletions in the Genome of a Coxsackievirus B2 Strain Occurred Naturally in Human Heart. Virology 2008, 375, 480–491. [Google Scholar] [CrossRef]
- Chapman, N.M. Persistent Enterovirus Infection: Little Deletions, Long Infections. Vaccines 2022, 10, 770. [Google Scholar] [CrossRef] [PubMed]
- Bouin, A.; Gretteau, P.-A.; Wehbe, M.; Renois, F.; N’Guyen, Y.; Lévêque, N.; Vu, M.N.; Tracy, S.; Chapman, N.M.; Bruneval, P.; et al. Enterovirus Persistence in Cardiac Cells of Patients With Idiopathic Dilated Cardiomyopathy Is Linked to 5′ Terminal Genomic RNA-Deleted Viral Populations With Viral-Encoded Proteinase Activities. Circulation 2019, 139, 2326–2338. [Google Scholar] [CrossRef]
- Bouin, A.; Vu, M.N.; Al-Hakeem, A.; Tran, G.P.; Nguyen, J.H.C.; Semler, B.L. Enterovirus-Cardiomyocyte Interactions: Impact of Terminally Deleted Genomic RNAs on Viral and Host Functions. J. Virol. 2023, 97, e0142622. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-S.; Tracy, S.; Tapprich, W.; Bailey, J.; Lee, C.-K.; Kim, K.; Barry, W.H.; Chapman, N.M. 5′-Terminal Deletions Occur in Coxsackievirus B3 during Replication in Murine Hearts and Cardiac Myocyte Cultures and Correlate with Encapsidation of Negative-Strand Viral RNA. J. Virol. 2005, 79, 7024–7041. [Google Scholar] [CrossRef]
- Warden, M.S.; Cai, K.; Cornilescu, G.; Burke, J.E.; Ponniah, K.; Butcher, S.E.; Pascal, S.M. Conformational Flexibility in the Enterovirus RNA Replication Platform. RNA 2019, 25, 376–387. [Google Scholar] [CrossRef] [PubMed]
- Poulsen, L.D.; Kielpinski, L.J.; Salama, S.R.; Krogh, A.; Vinther, J. SHAPE Selection (SHAPES) Enrich for RNA Structure Signal in SHAPE Sequencing-Based Probing Data. RNA 2015, 21, 1042–1052. [Google Scholar] [CrossRef]
- Trang, P.; Hsu, A.W.; Liu, F. Nuclease Footprint Analyses of the Interactions between RNase P Ribozyme and a Model mRNA Substrate. Nucleic Acids Res. 1999, 27, 4590–4597. [Google Scholar] [CrossRef]
- Using SHAPE-MaP to Probe Small Molecule-RNA Interactions—ScienceDirect. Available online: https://www.sciencedirect.com/science/article/abs/pii/S1046202318303669 (accessed on 24 July 2025).
- Das, N.K.; Hollmann, N.M.; Vogt, J.; Sevdalis, S.E.; Banna, H.A.; Ojha, M.; Koirala, D. Crystal Structure of a Highly Conserved Enteroviral 5′ Cloverleaf RNA Replication Element. Nat. Commun. 2023, 14, 1955. [Google Scholar] [CrossRef]
- Gottipati, K.; McNeme, S.C.; Tipo, J.; White, M.A.; Choi, K.H. Structural Basis for Cloverleaf RNA-Initiated Viral Genome Replication. Nucleic Acids Res. 2023, 51, 8850–8863. [Google Scholar] [CrossRef]
- Das, N.K.; Vogt, J.; Patel, A.; Banna, H.A.; Koirala, D. Structural Basis for a Highly Conserved RNA-Mediated Enteroviral Genome Replication. Nucleic Acids Res. 2024, 52, 11218–11233. [Google Scholar] [CrossRef] [PubMed]
- Cruz-León, S.; Schwierz, N. RNA Captures More Cations than DNA: Insights from Molecular Dynamics Simulations. J. Phys. Chem. B 2022, 126, 8646–8654. [Google Scholar] [CrossRef] [PubMed]
- Draper, D.E. A Guide to Ions and RNA Structure. RNA 2004, 10, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Conformational Changes of Transfer Ribonucleic Acid. Equilibrium Phase Diagrams|Biochemistry. Available online: https://pubs.acs.org/doi/abs/10.1021/bi00773a024 (accessed on 7 June 2025).
Potassium Chloride (K+) | Magnesium Chloride (Mg2+) | |
---|---|---|
ZS | 0 mM | 0 mM |
Mg | 0 mM | 5 mM (CD = 2 mM) |
K | 140 mM | 0 mM |
K+Mg | 140 mM | 2 mM |
CD | Gels | SEC75 | SEC200 | SAXS | |
---|---|---|---|---|---|
Concentration | 0.0015 mM | 0.01 mM | 0.02 mM | 0.2 mM | 0.2 mM |
Serotype | RVB14 | PV1 | EVD70 | |
---|---|---|---|---|
Conditions | Monomer | Monomer | Dimer | Monomer |
Rg (Å) | 24.1463 | 26.8774 | 49.9719 | 25.3639 |
I(0) (cm−1) | 0.0356 | 0.0212 | 0.0257 | 0.0661 |
Dmax (Å) | 82 | 88 | 180 | 95 |
χ2 | 0.925 | 1.008 | 1.036 | 1.108 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daniels, M.G.; Werner, M.E.; Zuo, X.; Pascal, S.M. The Importance of Solution Studies for the Structural Characterization of the Enterovirus 5’ Cloverleaf. Viruses 2025, 17, 1127. https://doi.org/10.3390/v17081127
Daniels MG, Werner ME, Zuo X, Pascal SM. The Importance of Solution Studies for the Structural Characterization of the Enterovirus 5’ Cloverleaf. Viruses. 2025; 17(8):1127. https://doi.org/10.3390/v17081127
Chicago/Turabian StyleDaniels, Morgan G., Meagan E. Werner, Xiaobing Zuo, and Steven M. Pascal. 2025. "The Importance of Solution Studies for the Structural Characterization of the Enterovirus 5’ Cloverleaf" Viruses 17, no. 8: 1127. https://doi.org/10.3390/v17081127
APA StyleDaniels, M. G., Werner, M. E., Zuo, X., & Pascal, S. M. (2025). The Importance of Solution Studies for the Structural Characterization of the Enterovirus 5’ Cloverleaf. Viruses, 17(8), 1127. https://doi.org/10.3390/v17081127