Pharmacological and Adjunctive Management of Non-Hospitalized COVID-19 Patients During the Omicron Era: A Systematic Review and Meta-Analysis
Abstract
1. Introduction
2. Methods
3. Search Question
- -
- Population: adult population with recent diagnosis (within 7 days) of SARS-CoV-2 infection since the rise in Omicron variants.
- -
- Intervention: management strategies in SARS-CoV-2-infected non-hospitalized patients, including pharmacological treatment and telemedicine.
- -
- Comparison: no such strategies or any other pharmacological treatment against SARS-CoV-2 infection.
- -
- Outcome: hospitalization, mortality, disease progression (Intensive Care Unit (ICU) admission), and respiratory failure.
- -
- Setting: non-hospitalized patients.
- -
- Study design: RCT, observational studies, and NRIS.
- -
- Time period: since 1 January 2022.
4. Search and Selection Process
5. Inclusion and Exclusion Criteria
6. Data Analysis
7. Quality Appraisal of Included Studies
8. Results
9. Risk of Bias
10. Pharmacological Interventions
11. Remdesivir
12. Nirmatrelvir/Ritonavir
13. Molnupiravir
13.1. Monoclonal Antibodies
13.2. Sotrovimab
13.3. Adjuvant Therapy
13.4. Telemedicine
14. Organizational Pathways and Follow-Up
15. Discussion
16. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Lai, C.C.; Shih, T.P.; Ko, W.C.; Tang, H.J.; Hsueh, P.R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int. J. Antimicrob. Agent. 2020, 55, 105924. [Google Scholar] [CrossRef]
- Carabelli, A.M.; Peacock, T.P.; Thorne, L.G.; Harvey, W.T.; Hughes, J. COVID-19 Genomics UK Consortium; Peacock, S.J.; Barclay, W.S.; de Silva, T.I.; Towers, G.J.; et al. SARS-CoV-2 variant biology: Immune escape, transmission and fitness. Nat Rev Microbiol. 2023, 21, 162–177. Available online: https://www.nature.com/articles/s41579-022-00841-7 (accessed on 12 March 2025). [PubMed]
- Araf, Y.; Akter, F.; Tang, Y.D.; Fatemi, R.; Parvez, M.S.A.; Zheng, C.; Hossain, M.G. Omicron variant of SARS-CoV-2: Genomics, transmissibility, and responses to current COVID-19 vaccines. J. Med. Virol. 2022, 94, 1825–1832. [Google Scholar] [CrossRef]
- CDC—COVID Data Tracker. 2024. Available online: https://covid.cdc.gov/covid-data-tracker/#variant-summary (accessed on 15 May 2024).
- Lewnard, J.A.; Mahale, P.; Malden, D.; Hong, V.; Ackerson, B.K.; Lewin, B.J.; Link-Gelles, R.; Feldstein, L.R.; Lipsitch, M.; Tartof, S.Y. Immune escape and attenuated severity associated with the SARS-CoV-2 BA.2.86/JN.1 lineage. Nat. Commun. 2024, 15, 8550. Available online: http://medrxiv.org/lookup/doi/10.1101/2024.04.17.24305964 (accessed on 15 May 2024). [CrossRef]
- Marino, A.; Pampaloni, A.; Scuderi, D.; Cosentino, F.; Moscatt, V.; Ceccarelli, M.; Gussio, M.; Celesia, B.M.; Bruno, R.; Borraccino, S.; et al. High-flow nasal cannula oxygenation and tocilizumab administration in patients critically ill with COVID-19: A report of three cases and a literature review. World Acad. Sci. J. 2020, 2, 23. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef]
- Egger, M.; Smith, G.D.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef] [PubMed]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef] [PubMed]
- Sterne, J.A.C.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef]
- Lo, C.K.L.; Mertz, D.; Loeb, M. Newcastle-Ottawa Scale: Comparing reviewers’ to authors’ assessments. BMC Med. Res. Methodol. 2014, 14, 45. [Google Scholar] [CrossRef] [PubMed]
- González-Gómez, Á.; Caro-Teller, J.M.; González-Barrios, I.; Castro-Frontiñán, A.; Rodríguez-Quesada, P.P.; Ferrari-Piquero, J.M. Perfil de seguridad de nirmatrelvir-ritonavir: Evidencia de eventos adversos por interacciones farmacológicas. Farm. Hospitalaria. 2024, 48, 70–74. [Google Scholar] [CrossRef]
- Wong, C.K.H.; Au, I.C.H.; Lau, K.T.K.; Lau, E.H.Y.; Cowling, B.J.; Leung, G.M. Real-world effectiveness of molnupiravir and nirmatrelvir plus ritonavir against mortality, hospitalisation, and in-hospital outcomes among community-dwelling, ambulatory patients with confirmed SARS-CoV-2 infection during the omicron wave in Hong Kong: An observational study. Lancet 2022, 400, 1213–1222. [Google Scholar] [PubMed]
- Bruno, G.; Giotta, M.; Perelli, S.; De Vita, G.; Bartolomeo, N.; Buccoliero, G.B. Early Access to Oral Antivirals in High-Risk Outpatients: Good Weapons to Fight COVID-19. Viruses 2022, 14, 2514. [Google Scholar] [CrossRef]
- Piccicacco, N.; Zeitler, K.; Ing, A.; Montero, J.; Faughn, J.; Silbert, S.; Kim, K. Real-world effectiveness of early remdesivir and sotrovimab in the highest-risk COVID-19 outpatients during the Omicron surge. J. Antimicrob. Chemother. 2022, 77, 2693–2700. [Google Scholar] [CrossRef] [PubMed]
- Kauer, V.; Totschnig, D.; Waldenberger, F.; Augustin, M.; Karolyi, M.; Nägeli, M.; Wenisch, C.; Zoufaly, A. Efficacy of Sotrovimab (SOT), Molnupiravir (MOL), and Nirmatrelvir/Ritponavir (N/R) and Tolerability of Molnupiravir in Outpatients at High Risk for Severe COVID-19. Viruses 2023, 15, 1181. [Google Scholar] [CrossRef]
- Borroto-Esoda, K.; Wilfret, D.; Tong, X.; Plummer, A.; Kearney, B.; Kwong, A.D. SARS-CoV-2 viral dynamics in a placebo-controlled phase 2 study of patients infected with the SARS-CoV-2 Omicron variant and treated with pomotrelvir. Microbiol. Spectr. 2024, 12, e02980–e03023. [Google Scholar] [CrossRef]
- Zamani, S.; Alizadeh, M.; Shahrestanaki, E.; Nami, S.M.; Qorbani, M.; Aalikhani, M.; Gelsefid, S.H.; Khonsari, N.M. Prognostic comparison of COVID-19 outpatients and inpatients treated with Remdesivr: A retrospective cohort study. PLoS ONE 2022, 17, e0277413. [Google Scholar] [CrossRef]
- Standing, J.F.; Buggiotti, L.; Guerra-Assuncao, J.A.; Woodall, M.; Ellis, S.; Agyeman, A.A.; Miller, C.; Okechukwu, M.; Kirkpatrick, E.; Jacobs, A.I.; et al. Randomized controlled trial of molnupiravir SARS-CoV-2 viral and antibody response in at-risk adult outpatients. Nat. Commun. 2024, 15, 1652. [Google Scholar] [CrossRef]
- Evans, A.; Qi, C.; Adebayo, J.O.; Underwood, J.; Coulson, J.; Bailey, R.; Lyons, R.; Edwards, A.; Cooper, A.; John, G.; et al. Real-world effectiveness of molnupiravir, nirmatrelvir-ritonavir, and sotrovimab on preventing hospital admission among higher-risk patients with COVID-19 in Wales: A retrospective cohort study. J. Infect. 2023, 86, 352–360. [Google Scholar] [CrossRef]
- Park, J.J.; Kim, H.; Kim, Y.K.; Lee, S.S.; Jung, E.; Lee, J.S.; Lee, J. Effectiveness and Adverse Events of Nirmatrelvir/Ritonavir Versus Molnupiravir for COVID-19 in Outpatient Setting: Multicenter Prospective Observational Study. J. Korean Med. Sci. 2023, 38, e347. [Google Scholar] [CrossRef] [PubMed]
- Czarnecka, K.; Czarnecka, P.; Tronina, O.; Durlik, M. Molnupiravir Outpatient Treatment for Adults with COVID-19 in a Real-World Setting—A Single Center Experience. J. Clin. Med. 2022, 11, 6464. [Google Scholar] [CrossRef] [PubMed]
- Solera, J.T.; Árbol, B.G.; Bahinskaya, I.; Marks, N.; Humar, A.; Kumar, D. Short-course early outpatient remdesivir prevents severe disease due to COVID-19 in organ transplant recipients during the omicron BA.2 wave. Am. J. Transplant. 2023, 23, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Poznański, P.; Augustyniak-Bartosik, H.; Magiera-Żak, A.; Skalec, K.; Jakuszko, K.; Mazanowska, O.; Janczak, D.; Krajewska, M.; Kamińska, D. Molnupiravir When Used Alone Seems to Be Safe and Effective as Outpatient COVID-19 Therapy for Hemodialyzed Patients and Kidney Transplant Recipients. Viruses 2022, 14, 2224. [Google Scholar] [CrossRef]
- Kwok, W.C.; Tsoi, M.F.; Leung, S.H.I.; Tsui, C.K.; Tam, T.C.C.; Ho, J.C.M.; Lam, D.C.L.; Ip, M.S.M.; Ho, P.L. Real-World Study on Effectiveness of Molnupiravir and Nirmatrelvir–Ritonavir in Unvaccinated Patients with Chronic Respiratory Diseases with Confirmed SARS-CoV-2 Infection Managed in Out-Patient Setting. Viruses 2023, 15, 610. [Google Scholar] [CrossRef] [PubMed]
- Cowman, K.; Miller, A.; Guo, Y.; Chang, M.H.; McSweeney, T.; Bao, H.; Simpson, R.; Braithwaite, C.; Sunu, E.; Ros, T.; et al. Non-randomized evaluation of hospitalization after a prescription for nirmatrelvir/ritonavir versus molnupiravir in high-risk COVID-19 outpatients. J. Antimicrob. Chemother. 2023, 78, 1683–1688. [Google Scholar] [CrossRef]
- Manciulli, T.; Spinicci, M.; Rossetti, B.; Antonello, R.M.; Lagi, F.; Barbiero, A.; Chechi, F.; Formica, G.; Francalanci, E.; Alesi, M.; et al. Safety and Efficacy of Outpatient Treatments for COVID-19: Real-Life Data from a Regionwide Cohort of High-Risk Patients in Tuscany, Italy (the FEDERATE Cohort). Viruses 2023, 15, 438. [Google Scholar] [CrossRef]
- Rinaldi, M.; Campoli, C.; Gallo, M.; Marzolla, D.; Zuppiroli, A.; Riccardi, R.; Casarini, M.; Riccucci, D.; Malosso, M.; Bonazzetti, C.; et al. Comparison between available early antiviral treatments in outpatients with SARS-CoV-2 infection: A real-life study. BMC Infect. Dis. 2023, 23, 646. [Google Scholar] [CrossRef]
- Lui, D.T.W.; Chung, M.S.H.; Lau, E.H.Y.; Lau, K.T.K.; Au, I.C.H.; Lee, C.H.; Woo, Y.C.; Wong, C.K.H.; Cowling, B.J. Analysis of All-Cause Hospitalization and Death Among Nonhospitalized Patients With Type 2 Diabetes and SARS-CoV-2 Infection Treated With Molnupiravir or Nirmatrelvir-Ritonavir During the Omicron Wave in Hong Kong. JAMA Netw. Open 2023, 6, e2314393. [Google Scholar] [CrossRef]
- Petrakis, V.; Rafailidis, P.; Trypsianis, G.; Papazoglou, D.; Panagopoulos, P. The Antiviral Effect of Nirmatrelvir/Ritonavir during COVID-19 Pandemic Real-World Data. Viruses 2023, 15, 976. [Google Scholar] [CrossRef]
- Aggarwal, N.R.; Molina, K.C.; Beaty, L.E.; Bennett, T.D.; Carlson, N.E.; Mayer, D.A.; Peers, J.L.; Russell, S.; Wynia, M.K.; Ginde, A.A. Real-world use of nirmatrelvir–ritonavir in outpatients with COVID-19 during the era of omicron variants including BA.4 and BA.5 in Colorado, USA: A retrospective cohort study. Lancet Infect. Dis. 2023, 23, 696–705. [Google Scholar] [CrossRef]
- Hiremath, S.; Blake, P.G.; Yeung, A.; McGuinty, M.; Thomas, D.; Ip, J.; Brown, P.A.; Pandes, M.; Burke, A.; Sohail, Q.Z.; et al. Early Experience with Modified Dose Nirmatrelvir/Ritonavir in Dialysis Patients with Coronavirus Disease 2019. Clin. J. Am. Soc. Nephrol. 2023, 18, 485–490. [Google Scholar] [CrossRef]
- Colaneri, M.; Amarasinghe, N.; Rezzonico, L.; Pieri, T.C.; Segalini, E.; Sambo, M.; Roda, S.; Meloni, F.; Gregorini, M.; Rampino, T.; et al. Early remdesivir to prevent severe COVID-19 in recipients of solid organ transplant: A real-life study from Northern Italy. Int. J. Infect. Dis. 2022, 121, 157–160. [Google Scholar] [CrossRef]
- Colaneri, M.; Scaglione, G.; Fassio, F.; Galli, L.; Lai, A.; Bergna, A.; Gabrieli, A.; Tarkowski, M.; Ventura, C.D.; Colombo, V.; et al. Early administration of nirmatrelvir/ritonavir leads to faster negative SARS-CoV-2 nasal swabs than monoclonal antibodies in COVID 19 patients at high-risk for severe disease. Virol. J. 2024, 21, 68. [Google Scholar] [CrossRef] [PubMed]
- Salvadori, N.; Jourdain, G.; Krittayaphong, R.; Siripongboonsitti, T.; Kongsaengdao, S.; Atipornwanich, K.; Sakulkonkij, P.; Angkasekwinai, N.; Sirijatuphat, R.; Chusri, S.; et al. Molnupiravir versus favipiravir in at-risk outpatients with COVID-19: A randomized controlled trial in Thailand. Int. J. Infect. Dis. 2024, 143, 107021. [Google Scholar] [CrossRef]
- Shinozaki, S.; Watanabe, A.; Kimata, M.; Miyazaki, M.; Maekawa, S. Safety and Effectiveness of Molnupiravir in Japanese Patients with COVID-19: Final Report of Post-marketing Surveillance in Japan. Infect. Dis. Ther. 2024, 13, 189–205. [Google Scholar] [CrossRef] [PubMed]
- Ioannou, G.N.; Berry, K.; Rajeevan, N.; Li, Y.; Mutalik, P.; Yan, L.; Bui, D.; Cunningham, F.; Hynes, D.M.; Rowneki, M.; et al. Effectiveness of Nirmatrelvir–Ritonavir Against the Development of Post–COVID-19 Conditions Among U.S. Veterans: A Target Trial Emulation. Ann. Intern. Med. 2023, 176, 1486–1497. [Google Scholar] [CrossRef]
- Wee, L.E.; Tay, A.T.; Chiew, C.; Young, B.E.; Wong, B.; Lim, R.; Lee, C.L.; Tan, J.; Vasoo, S.; Lye, D.C.; et al. Real-world effectiveness of nirmatrelvir/ritonavir against COVID-19 hospitalizations and severe COVID-19 in community-dwelling elderly Singaporeans during Omicron BA.2, BA.4/5, and XBB transmission. Clin. Microbiol. Infect. 2023, 29, 1328–1333. [Google Scholar] [CrossRef] [PubMed]
- Prajapati, G.; Das, A.; Sun, Y.; Fonseca, E. Hospitalization Among Patients Treated With Molnupiravir: A Retrospective Study of Administrative Data. Clin. Ther. 2023, 45, 957–964. [Google Scholar] [CrossRef]
- Minoia, C.; Diella, L.; Perrone, T.; Loseto, G.; Pelligrino, C.; Attolico, I.; Pasciolla, C.; Totaro, V.; De Candia, M.S.; Spada, V.; et al. Oral anti-viral therapy for early COVID-19 infection in patients with haematological malignancies: A multicentre prospective cohort. Br. J. Haematol. 2023, 202, 928–936. [Google Scholar] [CrossRef]
- Cegolon, L.; Pol, R.; Simonetti, O.; Larese Filon, F.; Luzzati, R. Molnupiravir, Nirmatrelvir/Ritonavir, or Sotrovimab for High-Risk COVID-19 Patients Infected by the Omicron Variant: Hospitalization, Mortality, and Time until Negative Swab Test in Real Life. Pharmaceuticals 2023, 16, 721. [Google Scholar] [CrossRef]
- Scotto, R.; Buonomo, A.R.; Iuliano, A.; Foggia, M.; Sardanelli, A.; Villari, R.; Pinchera, B.; Gentile, I.; Federico II COVID-Team. Remdesivir Alone or in Combination with Monoclonal Antibodies as an Early Treatment to Prevent Severe COVID-19 in Patients with Mild/Moderate Disease at High Risk of Progression: A Single Centre, Real-Life Study. Vaccines 2023, 11, 200. [Google Scholar] [CrossRef] [PubMed]
- Mazzotta, V.; Cozzi Lepri, A.; Colavita, F.; Rosati, S.; Lalle, E.; Cimaglia, C.; Paulicelli, J.; Mastrorosa, I.; Vita, S.; Fabeni, L.; et al. Viral load decrease in SARS-CoV-2 BA.1 and BA.2 Omicron sublineages infection after treatment with monoclonal antibodies and direct antiviral agents. J. Med. Virol. 2023, 95, e28186. [Google Scholar] [CrossRef]
- Wai, A.K.C.; Chan, C.Y.; Cheung, A.W.L.; Wang, K.; Chan, S.C.L.; Lee, T.T.L.; Luk, L.Y.-F.; Yip, E.T.-F.; Ho, J.W.-K.; Tsui, O.W.-K.; et al. Association of Molnupiravir and Nirmatrelvir-Ritonavir with preventable mortality, hospital admissions and related avoidable healthcare system cost among high-risk patients with mild to moderate COVID-19. Lancet Reg. Health—West. Pacific. 2023, 30, 100602. [Google Scholar] [CrossRef]
- Park, H.R.; Yoo, M.G.; Kim, J.M.; Bae, S.J.; Lee, H.; Kim, J. Effectiveness of Molnupiravir Treatment in Patients with COVID-19 in Korea: A Propensity Score Matched Study. Infect. Chemother. 2023, 55, 490. [Google Scholar] [CrossRef]
- Hedvat, J.; Lange, N.W.; Salerno, D.M.; DeFilippis, E.M.; Kovac, D.; Corbo, H.; Chen, J.K.; Choe, J.Y.; Lee, J.H.; Anamisis, A.; et al. COVID-19 therapeutics and outcomes among solid organ transplant recipients during the Omicron BA.1 era. Am. J. Transplant. 2022, 22, 2682–2688. [Google Scholar] [CrossRef]
- Radcliffe, C.; Palacios, C.F.; Azar, M.M.; Cohen, E.; Malinis, M. Real-world experience with available, outpatient COVID-19 therapies in solid organ transplant recipients during the omicron surge. Am. J. Transplant. 2022, 22, 2458–2463. [Google Scholar] [CrossRef]
- Pontolillo, M.; Ucciferri, C.; Borrelli, P.; Di Nicola, M.; Vecchiet, J.; Falasca, K. Molnupiravir as an Early Treatment for COVID-19: A Real Life Study. Pathogens 2022, 11, 1121. [Google Scholar] [CrossRef] [PubMed]
- Streinu-Cercel, A.; Miron, V.D.; Oană, A.A.; Irimia, M.; Popescu, R.Ș.; Dărămuș, I.A.; Moțoi, M.M.; Ceapraga, G.J.; Săndulescu, O. Real-World Use of Molnupiravir in the Treatment of Outpatients with SARS-CoV-2 Infection—A Patient Profile Based on the Experience of a Tertiary Infectious Disease Center. Pharmaceuticals 2022, 15, 1065. [Google Scholar] [CrossRef] [PubMed]
- Dryden-Peterson, S.; Kim, A.; Kim, A.Y.; Caniglia, E.C.; Lennes, I.T.; Patel, R.; Gainer, L.; Dutton, L.; Donahue, E.; Gandhi, R.T.; et al. Nirmatrelvir Plus Ritonavir for Early COVID-19 in a Large U.S. Health System: A Population-Based Cohort Study. Ann. Intern. Med. 2023, 176, 77–84. [Google Scholar] [CrossRef]
- Mazzitelli, M.; Trunfio, M.; Sasset, L.; Scaglione, V.; Ferrari, A.; Mengato, D.; Gardin, S.; Bonadiman, N.; Calandrino, L.; Agostini, E.; et al. Risk of hospitalization and sequelae in patients with COVID-19 treated with 3-day early remdesivir vs. controls in the vaccine and Omicron era: A real-life cohort study. J. Med. Virol. 2023, 95, e28660. [Google Scholar] [CrossRef]
- Tiseo, G.; Barbieri, C.; Galfo, V.; Occhineri, S.; Matucci, T.; Almerigogna, F.; Kalo, J.; Sponga, P.; Cesaretti, M.; Marchetti, G.; et al. Efficacy and Safety of Nirmatrelvir/Ritonavir, Molnupiravir, and Remdesivir in a Real-World Cohort of Outpatients with COVID-19 at High Risk of Progression: The PISA Outpatient Clinic Experience. Infect. Dis. Ther. 2023, 12, 257–271. [Google Scholar] [CrossRef] [PubMed]
- Kimata, M.; Watanabe, A.; Yanagida, Y.; Kinoshita, D.; Maekawa, S. Safety and Effectiveness of Molnupiravir (LAGEVRIO®) Capsules in Japanese Patients with COVID-19: Interim Report of Post-marketing Surveillance in Japan. Infect. Dis. Ther. 2023, 12, 1119–1136. [Google Scholar] [CrossRef] [PubMed]
- Low, E.V.; Pathmanathan, M.D.; Chidambaram, S.K.; Kim, W.R.; Lee, W.J.; Teh, Z.W.; Appannan, M.R.; Zin, S.M.; Zin, F.M.; Amin, S.B.M.; et al. Real-world nirmatrelvir-ritonavir outpatient treatment in reducing hospitalization for high-risk patients with COVID-19 during Omicron BA.4, BA.5 and XBB subvariants dominance in Malaysia: A retrospective cohort study. Int. J. Infect. Dis. 2023, 135, 77–83. [Google Scholar] [CrossRef]
- Ramos-Rincón, J.M.; Pinargote-Celorio, H.; Llenas-García, J.; Moreno-Pérez, O.; González-Cuello, I.; Gonzalez-de-la-Aleja, P.; Martínez-López, B.; Reus, S.; García-López, M.; Rodríguez, J.C.; et al. A retrospective real-world study of early short-course remdesivir in non-hospitalized COVID-19 patients at high risk for progression: Low rate of hospitalization or death, regardless of immunocompetence status. Front. Pharmacol. 2023, 14, 1218650. [Google Scholar] [CrossRef]
- Levy, M.E.; Burrows, E.; Chilunda, V.; Pawloski, P.A.; Heaton, P.R.; Grzymski, J.; Goldman, J.D.; McEwen, L.M.; Wyman, D.; Rossi, A.D.; et al. SARS-CoV-2 Antiviral Prescribing Gaps Among Nonhospitalized High-Risk Adults. Clin. Infect. Dis. 2024, 78, 1531–1535. [Google Scholar] [CrossRef]
- Georgakopoulou, V.; Gkoufa, A.; Makrodimitri, S.; Basoulis, D.; Tsakanikas, A.; Karamanakos, G.; Mastrogianni, E.; Voutsinas, P.M.; Spandidos, D.A.; Papageorgiou, C.V.; et al. Early 3-day course of remdesivir for the prevention of the progression to severe COVID-19 in the elderly: A single-centre, real-life cohort study. Exp. Ther. Med. 2023, 26, 462. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.C.; Tsai, Y.W.; Wang, S.H.; Wu, J.Y.; Liu, T.H.; Hsu, W.H.; Huang, P.-Y.; Chuang, M.-H.; Sheu, M.-J.; Lai, C.-C.; et al. The effectiveness of oral anti-SARS-CoV-2 agents in non-hospitalized COVID-19 patients with nonalcoholic fatty liver disease: A retrospective study. Front. Pharmacol. 2024, 15, 1321155. [Google Scholar] [CrossRef] [PubMed]
- Rajme-López, S.; Martinez-Guerra, B.A.; Román-Montes, C.M.; Tamez-Torres, K.M.; Tello-Mercado, A.C.; Tepo-Ponce, K.M.; Segura-Ortíz, Z.; López-Aguirre, A.; del Rocío Gutiérrez-Mazariegos, O.; Lazcano-Delgadillo, O.; et al. Nirmatrelvir/ritonavir and remdesivir against symptomatic treatment in high-risk COVID-19 outpatients to prevent hospitalization or death during the Omicron era: A propensity score-matched study. Ther. Adv. Infect. 2024, 11, 20499361241236582. [Google Scholar] [CrossRef]
- Rajme-López, S.; Martinez-Guerra, B.A.; Zalapa-Soto, J.; Román-Montes, C.M.; Tamez-Torres, K.M.; González-Lara, M.F.; Hernandez-Gilosul, T.; Kershenobich-Stalnikowitz, D.; Sifuentes-Osornio, J.; Ponce-de-León, A.; et al. Early Outpatient Treatment With Remdesivir in Patients at High Risk for Severe COVID-19: A Prospective Cohort Study. Open Forum Infect. Dis. 2022, 9, ofac502. [Google Scholar] [CrossRef]
- Chesdachai, S.; Rivera, C.G.; Cole, K.C.; Teaford, H.R.; Gonzalez Suarez, M.L.; Larsen, J.J.; Ganesh, R.; Tulledge-Scheitel, S.; Razonable, R.R. Comparable outcomes of outpatient remdesivir and sotrovimab among high-risk patients with mild to moderate COVID-19 during the omicron BA.1 surge. Sci. Rep. 2024, 14, 5430. [Google Scholar] [CrossRef] [PubMed]
- Gáspár, Z.; Szabó, B.G.; Ábrahám, A.; Várnai, Z.; Kiss-Dala, N.; Szlávik, J.; Sinkó, J.; Vályi-Nagy, I.; Lakatos, B. Outcomes of high-risk adult outpatients treated with early remdesivir therapy during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) omicron era: Experiences from the national centre of Hungary. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2023, 396, 1857–1862. [Google Scholar] [CrossRef]
- Edelstein, G.E.; Boucau, J.; Uddin, R.; Marino, C.; Liew, M.Y.; Barry, M.; Choudhary, M.C.; Gilbert, R.F.; Reynolds, Z.; Li, Y.; et al. SARS-CoV-2 Virologic Rebound With Nirmatrelvir–Ritonavir Therapy: An Observational Study. Ann. Intern. Med. 2023, 176, 1577–1585. [Google Scholar] [CrossRef]
- Gentile, I.; Giaccone, A.; Scirocco, M.M.; Di Brizzi, F.; Cuccurullo, F.; Silvitelli, M.; Ametrano, L.; Alfè, F.A.; Pietroluongo, D.; Irace, I.; et al. Efficacy of Nirmatrelvir/ritonavir in reducing the risk of severe outcome in patients with SARS-CoV-2 infection: A real-life full-matched case-control study (SAVALO Study). BMC Infect. Dis. 2024, 24, 1434. [Google Scholar] [CrossRef]
- Hsu, C.K.; Hsu, W.H.; Shiau, B.W.; Tsai, Y.W.; Wu, J.Y.; Liu, T.H.; Huang, P.Y.; Chuang, M.H.; Lai, C.C. The effectiveness of novel oral antiviral treatment for non-hospitalized high-risk patients with COVID-19 during predominance of omicron XBB subvariants. Expert Rev. Anti-Infect. Ther. 2024, 22, 785–792. [Google Scholar] [CrossRef]
- Molina, K.C.; Webb, B.J.; Kennerley, V.; Beaty, L.E.; Bennett, T.D.; Carlson, N.E.; Mayer, D.A.; Peers, J.L.; Russell, S.; Wynia, M.K.; et al. Real-world evaluation of early remdesivir in high-risk COVID-19 outpatients during Omicron including BQ.1/BQ.1.1/XBB.1.5. BMC Infect. Dis. 2024, 24, 802. [Google Scholar] [CrossRef]
- Jorda, A.; Ensle, D.; Eser, H.; Glötzl, F.; Riedl, B.; Szell, M.; Valipour, A.; Zoufaly, A.; Wenisch, C.; Haider, D.; et al. Real-world effectiveness of nirmatrelvir-ritonavir and molnupiravir in non-hospitalized adults with COVID-19: A population-based, retrospective cohort study. Clin. Microbiol. Infect. 2025, 31, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Larsen, C.S.; Westergaard, C.L.; Stærke, N.B.; Arnet, U.; Liu, G.; Kantsø, L.R.; Kjellberg, J. Clinical outcomes among COVID-19 patients initiated on molnupiravir in Denmark—A national registry study. Antivir. Ther. 2025, 30, 13596535241313244. [Google Scholar] [CrossRef]
- Saheb Sharif-Askari, F.; Ali Hussain Alsayed, H.; Saheb Sharif-Askari, N.; Al Sayed Hussain, A.; Al-Muhsen, S.; Halwani, R. Nirmatrelvir plus ritonavir reduces COVID-19 hospitalization and prevents long COVID in adult outpatients. Sci. Rep. 2024, 14, 25901. [Google Scholar] [CrossRef]
- Butt, A.A.; Yan, P.; Shaikh, O.S. Nirmatrelvir/ritonavir or Molnupiravir for treatment of non-hospitalized patients with COVID-19 at risk of disease progression. PLoS ONE 2024, 19, e0298254. [Google Scholar] [CrossRef] [PubMed]
- Takazono, T.; Fujita, S.; Komeda, T.; Miyazawa, S.; Yoshida, Y.; Kitanishi, Y.; Kinoshita, M.; Kojima, S.; Shen, H.; Uehara, T.; et al. Real-World Effectiveness of Ensitrelvir in Reducing Severe Outcomes in Outpatients at High Risk for COVID-19. Infect. Dis. Ther. 2024, 13, 1821–1833. [Google Scholar] [CrossRef]
- Bhargava, A.; Szpunar, S.; Sharma, M.; Saravolatz, L. Risk Factors for Seeking Medical Care Following Nirmatrelvir-Ritonavir (Paxlovid) Treatment for COVID-19: “Symptom Rebound”. Viruses 2025, 17, 782. [Google Scholar] [CrossRef]
- Scaglione, V.; Gardin, S.; Sasset, L.; Presa, N.; Rossetto, A.; Boemo, D.G.; Silvola, S.; Restelli, U.; Cattelan, A. Impact of oral early antiviral therapies for mild–moderate COVID-19 in the outpatient’s setting during Omicron era: A pharmacoeconomic analysis. Eur. J. Med. Res. 2024, 29, 597. [Google Scholar] [CrossRef]
- Rowan, C.G.; Nichols, R.M.; Dhopeshwarkar, N.; Alyea, J.M.; Zhu, B.; Toh, S.K.; Chan, A.; Grace, E.L. Real-World Effectiveness of Bebtelovimab Versus Nirmatrelvir/Ritonavir in Outpatients with COVID-19. Pulm. Ther. 2025, 11, 55–67. [Google Scholar] [CrossRef]
- Siripongboonsitti, T.; Nontawong, N.; Tawinprai, K.; Suptawiwat, O.; Soonklang, K.; Poovorawan, Y.; Mahanonda, N. Efficacy of combined COVID-19 convalescent plasma with oral RNA-dependent RNA polymerase inhibitor treatment versus neutralizing monoclonal antibody therapy in COVID-19 outpatients: A multi-center, non-inferiority, open-label randomized controlled trial (PlasMab). Microbiol. Spectr. 2023, 11, e03257–e03323. [Google Scholar]
- Aggarwal, N.R.; Beaty, L.E.; Bennett, T.D.; Carlson, N.E.; Mayer, D.A.; Molina, K.C.; Peers, J.L.; Russell, S.; Wynia, M.K.; Ginde, A.A. Change in effectiveness of sotrovimab for preventing hospitalization and mortality for at-risk COVID-19 outpatients during an Omicron BA.1 and BA.1.1-predominant phase. Int. J. Infect. Dis. 2023, 128, 310–317. [Google Scholar] [CrossRef]
- Sanchez, E.; Krantz, E.M.; Yoke, L.; Gallaher, M.; Bhattacharyya, P.; So, L.; Escobar, Z.K.; Tverdek, F.; Rosen, E.A.; Quinn, Z.Z.; et al. Clinical outcomes and frequency of persistent infection among immunosuppressed patients treated with bebtelovimab for COVID-19 infection at an ambulatory cancer center. Transpl. Infect. Dis. 2024, 26, e14223. [Google Scholar] [CrossRef] [PubMed]
- Bell, C.F.; Bobbili, P.; Desai, R.; Gibbons, D.C.; Drysdale, M.; DerSarkissian, M.; Patel, V.; Birch, H.J.; Lloyd, E.J.; Zhang, A.; et al. Real-World Effectiveness of Sotrovimab for the Early Treatment of COVID-19: Evidence from the US National COVID Cohort Collaborative (N3C). Clin. Drug Investig. 2024, 44, 183–198. [Google Scholar] [CrossRef] [PubMed]
- Gershengorn, H.B.; Patel, S.; Ferreira, T.; Das, S.; Parekh, D.J.; Shukla, B. The clinical effectiveness of REGEN-COV in SARS-CoV-2 infection with Omicron versus Delta variants. PLoS ONE 2022, 17, e0278770. [Google Scholar] [CrossRef] [PubMed]
- Mazzaferri, F.; Mirandola, M.; Savoldi, A.; De Nardo, P.; Morra, M.; Tebon, M.; Armellini, M.; De Luca, G.; Calandrino, L.; Sasset, L.; et al. Exploratory data on the clinical efficacy of monoclonal antibodies against SARS-CoV-2 Omicron variant of concern. eLife 2022, 11, e79639. [Google Scholar] [CrossRef] [PubMed]
- McCreary, E.K.; Kip, K.E.; Collins, K.; Minnier, T.E.; Snyder, G.M.; Steiner, A.; Meyers, R.; Borneman, T.; Adam, M.; Thurau, L.; et al. Evaluation of Bebtelovimab for Treatment of Covid-19 During the SARS-CoV-2 Omicron Variant Era. Open Forum Infect. Dis. 2022, 9, ofac517. [Google Scholar] [CrossRef]
- Molina, K.C.; Kennerley, V.; Beaty, L.E.; Bennett, T.D.; Carlson, N.E.; Mayer, D.A.; Peers, J.L.; Russell, S.; Wynia, M.K.; Aggarwal, N.R.; et al. Real-world evaluation of bebtelovimab effectiveness during the period of COVID-19 Omicron variants, including BA.4/BA.5. Int. J. Infect. Dis. 2023, 132, 34–39. [Google Scholar] [CrossRef]
- Maranda, B.; Labbé, S.M.; Lurquin, M.; Brabant, P.; Fugère, A.; Larrivée, J.F.; Grbic, D.; Leroux, A.; Leduc, F.; Finzi, A.; et al. Safety and efficacy of inhaled IBIO123 for mild-to-moderate COVID-19: A randomised, double-blind, dose-ascending, placebo-controlled, phase 1/2 trial. Lancet Infect. Dis. 2024, 24, 25–35. [Google Scholar] [CrossRef]
- Rabanal Basalo, A.; Navarro Pablos, M.; Viejo Pinero, N.; Vila Méndez, M.L.; Molina Barcena, V.; Montilla Bernabé, A.; Puigdollers, M.L.R.; Gallego, A.M.B.; Sánchez, C.G.; Antón, S.J.; et al. A randomized, double-blind study on the efficacy of oral domperidone versus placebo for reducing SARS-CoV-2 viral load in mild-to-moderate COVID-19 patients in primary health care. Ann. Med. 2023, 55, 2268535. [Google Scholar] [CrossRef]
- Reis, G.; Dos Santos Moreira Silva, E.A.; Medeiros Silva, D.C.; Thabane, L.; De Souza Campos, V.H.; Ferreira, T.S.; Santos, C.V.Q.D.; Nogueira, A.M.R.; Almeida, A.P.F.G.; Savassi, L.C.M.; et al. Oral Fluvoxamine With Inhaled Budesonide for Treatment of Early-Onset COVID-19: A Randomized Platform Trial. Ann. Intern. Med. 2023, 176, 667–675. [Google Scholar] [CrossRef] [PubMed]
- Farahani, R.H.; Ajam, A.; Naeini, A.R. Effect of fluvoxamine on preventing neuropsychiatric symptoms of post COVID syndrome in mild to moderate patients, a randomized placebo-controlled double-blind clinical trial. BMC Infect. Dis. 2023, 23, 197. [Google Scholar] [CrossRef] [PubMed]
- Vila Méndez, M.L.; Antón Sanz, C.; Cárdenas García, A.D.R.; Bravo Malo, A.; Torres Martínez, F.J.; Martín Moros, J.M.; Torrijos, M.R.; Covisa, J.F.J.V.; Sierra, O.G.; Barcena, V.M.; et al. Efficacy of Bromhexine versus Standard of Care in Reducing Viral Load in Patients with Mild-to-Moderate COVID-19 Disease Attended in Primary Care: A Randomized Open-Label Trial. J. Clin. Med. 2022, 12, 142. [Google Scholar] [CrossRef] [PubMed]
- Shahbazi, S.; Vahdat Shariatpanahi, Z.; Shahbazi, E. Bosentan for high-risk outpatients with COVID-19 infection: A randomized, double blind, placebo-controlled trial. eClinicalMedicine 2023, 62, 102117. [Google Scholar] [CrossRef]
- Martin, D.E.; Pandey, N.; Chavda, P.; Singh, G.; Sutariya, R.; Sancilio, F.; Tripp, R.A. Oral Probenecid for Nonhospitalized Adults with Symptomatic Mild-to-Moderate COVID-19. Viruses 2023, 15, 1508. [Google Scholar] [CrossRef]
- Tomazini, B.M.; Tramujas, L.; Medrado, F.A.; Gomes, S.P.D.C.; Negrelli, K.L.; Murinize, G.S.; Santos, R.H.N.; Vianna, B.M.P.; Piotto, B.F.; Veiga, T.S.; et al. Halofuginone for non-hospitalized adult patients with COVID-19 a multicenter, randomized placebo-controlled phase 2 trial. The HALOS trial. PLoS ONE 2024, 19, e0299197. [Google Scholar] [CrossRef]
- Vargas-Sánchez, H.R.; Tomás-López, J.C.; Álvarez-Medina, V.; Gil-Velázquez, L.E.; Vega-Vega, H.; Alarcón-López, A.; Pérez-Villegas, R.; Carbajal-García, C.M.; del Rocío Rivera-Tello, E.; Cervantes-Ocampo, M.; et al. Telephonic Follow-up and the Risk of Death in Ambulatory Patients with COVID-19. J. Am. Board. Fam. Med. 2023, 36, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Mandal, S.; Wiesenfeld, B.M.; Mann, D.; Lawrence, K.; Chunara, R.; Testa, P.; Nov, O. Evidence for Telemedicine’s Ongoing Transformation of Health Care Delivery Since the Onset of COVID-19: Retrospective Observational Study. JMIR Form. Res. 2022, 6, e38661. [Google Scholar] [CrossRef] [PubMed]
- Liew, I.T.; Tan, W.J.M.; Ho, Q.Y.; Chung, S.J.; Thangaraju, S.; Yong, J.; Ng, E.; He, X.; Kwan, N.; Kee, T. An outpatient model of care for COVID-19 infected kidney transplant patients—The hospital-at-home. Nephrology 2023, 28, 283–291. [Google Scholar] [CrossRef]
- Zahradka, I.; Petr, V.; Jakubov, K.; Modos, I.; Hruby, F.; Viklicky, O. Early referring saved lives in kidney transplant recipients with COVID-19: A beneficial role of telemedicine. Front. Med. 2023, 10, 1252822. [Google Scholar] [CrossRef]
- Pinargote-Celorio, H.; Otero-Rodríguez, S.; González-de-la-Aleja, P.; Rodríguez-Díaz, J.C.; Climent, E.; Chico-Sánchez, P.; Riera, G.; Llorens, P.; Aparicio, M.; Montiel, I.; et al. Mild SARS-CoV-2 infection in vulnerable patients: Implementation of a clinical pathway for early treatment. Enfermedades Infecc. Y Microbiol. Clin. 2024, 42, 195–201. (In English) [Google Scholar] [CrossRef]
- Najjar-Debbiny, R.; Gronich, N.; Weber, G.; Khoury, J.; Amar, M.; Stein, N.; Goldstein, L.H.; Saliba, W. Effectiveness of Paxlovid in Reducing Severe Coronavirus Disease 2019 and Mortality in High-Risk Patients. Clin. Infect. Dis. 2023, 76, e342–e349. [Google Scholar] [CrossRef]
- Gottlieb, R.L.; Vaca, C.E.; Paredes, R.; Mera, J.; Webb, B.J.; Perez, G.; Oguchi, G.; Ryan, P.; Nielsen, B.U.; Brown, M.; et al. Early Remdesivir to Prevent Progression to Severe Covid-19 in Outpatients. N. Engl. J. Med. 2022, 386, 305–315. [Google Scholar] [CrossRef]
- Mozaffari, E.; Chandak, A.; Chima-Melton, C.; Kalil, A.C.; Jiang, H.; Lee, E.; Der-Torossian, C.; Thrun, M.; Berry, M.; Haubrich, R.; et al. Remdesivir is Associated with Reduced Mortality in Patients Hospitalized for COVID-19 Not Requiring Supplemental Oxygen. Open Forum Infect. Dis. 2024, 11, ofae202. [Google Scholar] [CrossRef]
- Schilling, W.H.K.; Jittamala, P.; Watson, J.A.; Boyd, S.; Luvira, V.; Siripoon, T.; Ngamprasertchai, T.; Batty, E.M.; Cruz, C.; Callery, J.J.; et al. Antiviral efficacy of molnupiravir versus ritonavir-boosted nirmatrelvir in patients with early symptomatic COVID-19 (PLATCOV): An open-label, phase 2, randomised, controlled, adaptive trial. Lancet Infect. Dis. 2024, 24, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Takashita, E.; Yamayoshi, S.; Simon, V.; Van Bakel, H.; Sordillo, E.M.; Pekosz, A.; Fukushi, S.; Suzuki, T.; Maeda, K.; Halfmann, P.; et al. Efficacy of Antibodies and Antiviral Drugs against Omicron BA.2.12.1, BA.4, and BA.5 Subvariants. N. Engl. J. Med. 2022, 387, 468–470. [Google Scholar] [CrossRef]
Variables | Coefficient (CI, 95%) | Standard Error | p-Value |
---|---|---|---|
Sample size | |||
≤5 events in each group | REF | ||
>5 events in each group | −2.1 (−3.4 to −0.7) | 0.5 | 0.01 |
Age | |||
Median age ≤ 60 years | REF | ||
Median age > 60 years | 0.8 (−0.6 to 2.2) | 0.5 | 0.17 |
Vaccination | |||
≤50% of the study population vaccinated | REF | ||
>50% of the study population vaccinated | 1.5 (0.2–2.8) | 0.4 | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rindi, L.V.; Zaçe, D.; Sarmati, L.; Parrella, R.; Russo, G.; Andreoni, M.; Mastroianni, C.M. Pharmacological and Adjunctive Management of Non-Hospitalized COVID-19 Patients During the Omicron Era: A Systematic Review and Meta-Analysis. Viruses 2025, 17, 1128. https://doi.org/10.3390/v17081128
Rindi LV, Zaçe D, Sarmati L, Parrella R, Russo G, Andreoni M, Mastroianni CM. Pharmacological and Adjunctive Management of Non-Hospitalized COVID-19 Patients During the Omicron Era: A Systematic Review and Meta-Analysis. Viruses. 2025; 17(8):1128. https://doi.org/10.3390/v17081128
Chicago/Turabian StyleRindi, Lorenzo Vittorio, Drieda Zaçe, Loredana Sarmati, Roberto Parrella, Gianluca Russo, Massimo Andreoni, and Claudio Maria Mastroianni. 2025. "Pharmacological and Adjunctive Management of Non-Hospitalized COVID-19 Patients During the Omicron Era: A Systematic Review and Meta-Analysis" Viruses 17, no. 8: 1128. https://doi.org/10.3390/v17081128
APA StyleRindi, L. V., Zaçe, D., Sarmati, L., Parrella, R., Russo, G., Andreoni, M., & Mastroianni, C. M. (2025). Pharmacological and Adjunctive Management of Non-Hospitalized COVID-19 Patients During the Omicron Era: A Systematic Review and Meta-Analysis. Viruses, 17(8), 1128. https://doi.org/10.3390/v17081128