Novel Approaches for the Delivery of Anti-HIV Drugs—What Is New?
Conflicts of Interest
References
- UNAIDS. UNAIDS Data 2019; UNAIDS: Geneva, Switzerland, 2019; Available online: https://www.unaids.org/en/resources/documents/2019/2019-UNAIDS-data (accessed on 16 October 2019).
- Cihlar, T.; Fordyce, M. Current status and prospects of HIV treatment. Curr. Opin. Virol. 2016, 18, 50–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- GBD HIV Collaborators. Global, regional, and national incidence, prevalence, and mortality of HIV, 1980–2017, and forecasts to 2030, for 195 countries and territories: A systematic analysis for the Global Burden of Diseases, Injuries, and Risk Factors Study 2017. Lancet HIV 2019. [Google Scholar] [CrossRef]
- Piot, P.; Abdool Karim, S.S.; Hecht, R.; Legido-Quigley, H.; Buse, K.; Stover, J.; Resch, S.; Ryckman, T.; Møgedal, S.; Dybul, M.; et al. UNAIDS-Lancet Commission, Defeating AIDS–advancing global health. Lancet 2015, 386, 171–218. [Google Scholar] [CrossRef]
- Pernet, O.; Yadav, S.S.; An, D.S. Stem cell based therapy for HIV/AIDS. Adv. Drug Deliv. Rev. 2016, 103, 187–201. [Google Scholar] [CrossRef]
- Hua, C.; Ackerman, M.E. Engineering broadly neutralizing antibodies for HIV prevention and therapy. Adv. Drug Deliv. Rev. 2016, 103, 157–173. [Google Scholar] [CrossRef] [Green Version]
- Swamy, M.N.; Wu, H.; Shankar, P. Recent advances in RNAi-mediated therapy and prevention of HIV-1/AIDS. Adv. Drug Deliv. Rev. 2016, 103, 174–186. [Google Scholar] [CrossRef]
- Hawkins, T. Understanding and managing the adverse effects of antiretroviral therapy. Antivir. Res. 2010, 85, 201–209. [Google Scholar] [CrossRef]
- Riddell, J.T.; Amico, K.R.; Mayer, K.H. HIV preexposure prophylaxis: A review. JAMA 2018, 319, 1261–1268. [Google Scholar] [CrossRef]
- Cory, T.J.; Schacker, T.W.; Stevenson, M.; Fletcher, C.V. Overcoming pharmacologic sanctuaries. Curr. Opin. HIV AIDS 2013, 8, 190–195. [Google Scholar] [CrossRef] [Green Version]
- Else, L.J.; Taylor, S.; Back, D.J.; Khoo, S.H. Pharmacokinetics of antiretroviral drugs in anatomical sanctuary sites: The male and female genital tract. Antivir. Ther. 2011, 16, 1149–1167. [Google Scholar] [CrossRef]
- Iyidogan, P.; Anderson, K.S. Current perspectives on HIV-1 antiretroviral drug resistance. Viruses 2014, 6, 4095–4139. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chen, K.; Kalichman, S.C. Barriers to HIV medication adherence as a function of regimen simplification. Ann. Behav. Med. 2017, 51, 67–78. [Google Scholar] [CrossRef] [PubMed]
- Woodsong, C.; MacQueen, K.; Amico, K.R.; Friedland, B.; Gafos, M.; Mansoor, L.; Tolley, E.; McCormack, S. Microbicide clinical trial adherence: Insights for introduction. J. Int. AIDS Soc. 2013, 16, 18505. [Google Scholar] [CrossRef] [PubMed]
- Crawford, K.W.; Ripin, D.H.; Levin, A.D.; Campbell, J.R.; Flexner, C. Participants of Conference on Antiretroviral Drug Optimization. Optimising the manufacture, formulation, and dose of antiretroviral drugs for more cost-efficient delivery in resource-limited settings: A consensus statement. Lancet Infect. Dis. 2012, 12, 550–560. [Google Scholar] [CrossRef]
- Dubrocq, G.; Rakhmanina, N.; Phelps, B.R. Challenges and opportunities in the development of HIV medications in pediatric patients. Paediatr. Drugs 2017, 19, 91–98. [Google Scholar] [CrossRef]
- Woodsong, C.; Holt, J.D. Acceptability and preferences for vaginal dosage forms intended for prevention of HIV or HIV and pregnancy. Adv. Drug Deliv. Rev. 2015, 15, 146–154. [Google Scholar] [CrossRef]
- Elopre, L.; Kudroff, K.; Westfall, A.O.; Overton, E.T.; Mugavero, M.J. The right people, right places, and right practices: Disparities in PrEP access among African American men, women, and MSM in the deep south. J. Acquir. Immune Defic. Syndr. 2017, 74, 56–59. [Google Scholar] [CrossRef]
- Vella, S.; Schwartlander, B.; Sow, S.P.; Eholie, S.P.; Murphy, R.L. The history of antiretroviral therapy and of its implementation in resource-limited areas of the world. AIDS 2012, 26, 1231–1241. [Google Scholar] [CrossRef]
- Tsukamoto, T. Gene therapy approaches to functional cure and protection of hematopoietic potential in HIV infection. Pharmaceutics 2019, 11, 114. [Google Scholar] [CrossRef]
- Düzgüneş, N.; Konopka, K. Eradication of human immunodeficiency virus type-1 (HIV-1)-infected cells. Pharmaceutics 2019, 11, 255. [Google Scholar]
- Notario-Pérez, F.; Cazorla-Luna, R.; Martín-Illana, A.; Ruiz-Caro, R.; Peña, J.; Veiga, M.D. Tenofovir hot-melt granulation using Gelucire((R)) to develop sustained-release vaginal systems for weekly protection against sexual transmission of HIV. Pharmaceutics 2019, 11, 137. [Google Scholar]
- Mesquita, L.; Galante, J.; Nunes, R.; Sarmento, B.; das Neves, J. Pharmaceutical vehicles for vaginal and rectal administration of anti-HIV microbicide nanosystems. Pharmaceutics 2019, 11, 145. [Google Scholar] [CrossRef] [PubMed]
- Tyo, K.M.; Minooei, F.; Curry, K.C.; NeCamp, S.M.; Graves, D.L.; Fried, J.R.; Steinbach-Rankins, J.M. Relating advanced electrospun fiber architectures to the temporal release of active agents to meet the needs of next-generation intravaginal delivery applications. Pharmaceutics 2019, 11, 160. [Google Scholar] [CrossRef] [PubMed]
- Puri, A.; Bhattaccharjee, S.A.; Zhang, W.; Clark, M.; Singh, O.; Doncel, G.F.; Banga, A.K. Development of a transdermal delivery system for tenofovir alafenamide, a prodrug of tenofovir with potent antiviral activity against HIV and HBV. Pharmaceutics 2019, 11, 173. [Google Scholar] [CrossRef] [PubMed]
- Johnson, L.M.; Krovi, S.A.; Li, L.; Girouard, N.; Demkovich, Z.R.; Myers, D.; Creelman, B.; van der Straten, A. Characterization of a reservoir-style implant for sustained release of tenofovir alafenamide (TAF) for HIV pre-exposure prophylaxis (PrEP). Pharmaceutics 2019, 11, 315. [Google Scholar] [CrossRef]
- Yang, H.; Li, J.; Patel, S.K.; Palmer, K.E.; Devlin, B.; Rohan, L.C. Design of poly(lactic-co-glycolic acid) (PLGA) nanoparticles for vaginal co-delivery of griffithsin and dapivirine and their synergistic effect for HIV prophylaxis. Pharmaceutics 2019, 11, 184. [Google Scholar] [CrossRef]
- Grande, F.; Ioele, G.; Occhiuzzi, M.A.; De Luca, M.; Mazzotta, E.; Ragno, G.; Garofalo, A.; Muzzalupo, R. Reverse transcriptase inhibitors nanosystems designed for drug stability and controlled delivery. Pharmaceutics 2019, 11, 197. [Google Scholar] [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
das Neves, J. Novel Approaches for the Delivery of Anti-HIV Drugs—What Is New? Pharmaceutics 2019, 11, 554. https://doi.org/10.3390/pharmaceutics11110554
das Neves J. Novel Approaches for the Delivery of Anti-HIV Drugs—What Is New? Pharmaceutics. 2019; 11(11):554. https://doi.org/10.3390/pharmaceutics11110554
Chicago/Turabian Styledas Neves, José. 2019. "Novel Approaches for the Delivery of Anti-HIV Drugs—What Is New?" Pharmaceutics 11, no. 11: 554. https://doi.org/10.3390/pharmaceutics11110554
APA Styledas Neves, J. (2019). Novel Approaches for the Delivery of Anti-HIV Drugs—What Is New? Pharmaceutics, 11(11), 554. https://doi.org/10.3390/pharmaceutics11110554