Modified Spraying Technique and Response Surface Methodology for the Preparation and Optimization of Propolis Liposomes of Enhanced Anti-Proliferative Activity against Human Melanoma Cell Line A375
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Methodology
2.2.1. Spraying Technique for the Preparation of PP-Lip
2.2.2. Entrapment Efficiency Percentage (%EE) of Prepared Liposomes
2.2.3. Optimization of Preparation Parameters of PP-Lip Using Response Surface Methodology (RSM), and Box–Behnken Design of Preparation Conditions
2.2.4. RSM Approach for Optimization of Factors
2.2.5. Spraying Technique Versus TEIM
2.2.6. In Vitro Cytotoxicity Assay
3. Results
3.1. Preparation of PP-Lip
3.2. Response Surface Methodology (RSM) Approach for the Optimization of Preparation Factors
3.3. Optimized Formulation Parameters for the Lowest Particle Size
3.4. Optimized Formulation Parameters for the Lowest PDI
3.5. Effect of Individual Variables on the Responses
3.6. Confirming the Optimized Formula with the Optimized Particle Size and PDI
3.7. Preparation of the Optimized Formula with TEIM
3.8. In Vitro Cytotoxicity Assay
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alencar, S.; Oldoni, T.; Castro, M.; Cabral, I.; Costa-Neto, C.; Cury, J.; Rosalen, P.; Ikegaki, M. Chemical composition and biological activity of a new type of Brazilian propolis: Red propolis. J. Ethnopharmacol. 2007, 113, 278–283. [Google Scholar] [CrossRef] [PubMed]
- Fokt, H.; Pereira, A.; Ferreira, A.; Cunha, A.; Aguiar, C. How do bees prevent hive infections? The antimicrobial properties of propolis. Curr. Res. Technol. Educ. Top. Appl. Microbiol. Microb. Biotechnol. 2010, 1, 481–493. [Google Scholar]
- Simone-Finstrom, M.; Spivak, M. Propolis and bee health: The natural history and significance of resin use by honey bees. Apidologie 2010, 41, 295–311. [Google Scholar] [CrossRef]
- Banskota, A.H.; Tezuka, Y.; Kadota, S. Recent progress in pharmacological research of propolis. Phytother. Res. 2001, 15, 561–571. [Google Scholar] [CrossRef] [PubMed]
- Sforcin, J. Propolis and the immune system: A review. J. Ethnopharmacol. 2007, 113, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Sforcin, J.M.; Bankova, V. Propolis: Is there a potential for the development of new drugs? J. Ethnopharmacol. 2011, 133, 253–260. [Google Scholar] [CrossRef]
- Shinmei, Y.; Yano, H.; Kagawa, Y.; Izawa, K.; Akagi, M.; Inoue, T.; Kamei, C. Effect of Brazilian propolis on sneezing and nasal rubbing in experimental allergic rhinitis of mice. Immunopharmacol. Immunotoxicol. 2009, 31, 688–693. [Google Scholar] [CrossRef]
- Bankova, V. Chemical diversity of propolis makes it a valuable source of new biologically active compounds. J. ApiProd. ApiMed. Sci. 2009, 1, 23–28. [Google Scholar] [CrossRef]
- De Castro, S. Propolis: Biological and pharmacological activities. Therapeutic uses of this bee-product. Annu. Rev. Biomed. Sci. 2001, 3, 49–83. [Google Scholar] [CrossRef]
- Hegazi, A.G.; el Hady, F.K.A. Egyptian propolis: 3. Antioxidant, antimicrobial activities and chemical composition of propolis from reclaimed lands. Z. Nat. C 2002, 57, 395–402. [Google Scholar] [CrossRef]
- Burdock, G. Review of the biological properties and toxicity of bee propolis (propolis). Food Chem. Toxicol. 1998, 36, 347–363. [Google Scholar] [CrossRef]
- Kujumgiev, A.; Tsvetkova, I.; Serkedjieva, Y.; Bankova, V.; Christov, R.; Popov, S. Antibacterial, antifungal and antiviral activity of propolis of different geographic origin. J. Ethnopharmacol. 1999, 64, 235–240. [Google Scholar] [CrossRef]
- Kumazawa, S.; Hamasaka, T.; Nakayama, T. Antioxidant activity of propolis of various geographic origins. Food Chem. 2004, 84, 329–339. [Google Scholar] [CrossRef]
- Park, Y.K.; Koo, MH.; Abreu, JA.; Ikegaki, M.; Cury, JA.; Rosalen, P.L. Antimicrobial activity of propolis on oral microorganisms. Curr. Microbiol. 1998, 36, 24–28. [Google Scholar] [CrossRef]
- Marcucci, M. Propolis: Chemical composition, biological properties and therapeutic activity. Apidologie 1995, 26, 83–99. [Google Scholar] [CrossRef]
- Zhang, W.; Lan, Y.; Huang, Q.; Hua, Z. Galangin induces B16F10 melanoma cell apoptosis via mitochondrial pathway and sustained activation of p38 MAPK. Cytotechnology 2013, 65, 447–455. [Google Scholar] [CrossRef]
- Pichichero, E.; Cicconi, R.; Mattei, M.; Canini, A. Chrysin-induced apoptosis is mediated through p38 and Bax activation in B16-F1 and A375 melanoma cells. Int. J. Oncol. 2011, 38, 473–483. [Google Scholar] [Green Version]
- Kalogeropoulos, N.; Spyros, J.; Elena, T.; Ioannis, M.; Vaios, T. Chemical composition, antioxidant activity and antimicrobial properties of propolis extracts from Greece and Cyprus. Food Chem. 2009, 116, 452–461. [Google Scholar] [CrossRef]
- Meisner, D.; Mezei, M. Liposome ocular delivery systems. Adv. Drug Deliv. Rev. 1995, 16, 75–93. [Google Scholar] [CrossRef]
- Gregoriadis, G.; Florence, A.T. Liposomes in drug delivery. Drugs 1993, 45, 15–28. [Google Scholar] [CrossRef]
- Sweeney, L.G.; Wang, Z.; Loebenberg, R.; Wong, J.P.; Lange, C.F. Spray-freeze-dried liposomal ciprofloxacin powder for inhaled aerosol drug delivery. Int. J. Pharm. 2005, 305, 180–185. [Google Scholar] [CrossRef] [PubMed]
- van Winden, E.C.; Crommelin, D.J. Short term stability of freeze-dried, lyoprotected liposomes. J. Control. Release 1999, 58, 69–86. [Google Scholar] [CrossRef]
- Okada, J.I.; Cohen, S.; Langer, R. In vitro evaluation of polymerized liposomes as an oral drug delivery system. Pharm. Res. 1995, 12, 576–582. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Rogers, J. Polymer-coated liposomes; stability and release of ASA from carboxymethyl chitin-coated liposomes. J. Control. Release 1991, 17, 217–224. [Google Scholar] [CrossRef]
- Werner, C.; Wendel, A. Hepatic uptake and antihepatotoxic properties of vitamin E and liposomes in the mouse. Chem.-Biol. Interact. 1990, 75, 83–92. [Google Scholar] [CrossRef]
- Harashima, H.; Sakata, K.; Funato, K.; Kiwada, H. Enhanced hepatic uptake of liposomes through complement activation depending on the size of liposomes. Pharm. Res. 1994, 11, 402–406. [Google Scholar] [CrossRef]
- Batzri, S.; Korn, E.D. Single bilayer liposomes prepared without sonication. Biochim. Biophys. Acta (BBA)-Biomembr. 1973, 298, 1015–1019. [Google Scholar] [CrossRef]
- Szoka, J.F. The future of liposomal drug delivery. Biotechnol. Appl. Biochem. 1990, 12, 496–500. [Google Scholar]
- Fatouros, D.; Gortzi, O.; Klepetsanis, P.; Antimisiaris, S.G.; Stuart, M.C.; Brisson, A.; Ioannou, P.V. Preparation and properties of arsonolipid containing liposomes. Chem. Phys. Lipids 2001, 109, 75–89. [Google Scholar] [CrossRef]
- Klein, R. The detection of oxidation in liposome preparations. Biochim. Biophys. Acta (BBA)-Lipids Lipid Metab. 1970, 210, 486–489. [Google Scholar] [CrossRef]
- Olson, F.; Hunt, C.A.; Szoka, F.C.; Vail, W.J.; Papahadjopoulos, D. Preparation of liposomes of defined size distribution by extrusion through polycarbonate membranes. Biochim. Biophys. Acta (BBA)-Biomembr. 1979, 557, 9–23. [Google Scholar] [CrossRef]
- Frisken, B.; Asman, C.; Patty, P. Studies of vesicle extrusion. Langmuir 2000, 16, 928–933. [Google Scholar] [CrossRef]
- Nayar, R.; Hope, M.J.; Cullis, P.R. Generation of large unilamellar vesicles from long-chain saturated phosphatidylcholines by extrusion technique. Biochim. Biophys. Acta (BBA)-Biomembr. 1989, 986, 200–206. [Google Scholar] [CrossRef]
- Martin, F.J.; Morano, J.K. Liposome Extrusion Method. U.S. Patent 4,737,323, 12 March 1988. [Google Scholar]
- El Hady, F.K.A.; Hegazi, A.G. Egyptian propolis: 2. Chemical composition, antiviral and antimicrobial activities of East Nile Delta propolis. Z. Nat. C 2002, 57, 386–394. [Google Scholar] [CrossRef] [PubMed]
- Fueldner, H.H. Characterization of a third phase transition in multilamellar dipalmitoyllecithin liposomes. Biochemistry 1981, 20, 5707–5710. [Google Scholar] [CrossRef] [PubMed]
- Woisky, R.G.; Salatino, A. Analysis of propolis: Some parameters and procedures for chemical quality control. J. Apic. Res. 1998, 37, 99–105. [Google Scholar] [CrossRef]
- Yuan, J.; Liu, J.; Hu, Y.; Fan, Y.; Wang, D.; Guo, L.; Nguyen, T.L.; Zhao, X.; Liu, X.; Liu, C.; et al. The immunological activity of propolis flavonoids liposome on the immune response against ND vaccine. Int. J. Biol. Macromol. 2012, 51, 400–405. [Google Scholar] [CrossRef] [PubMed]
- Juliano, R.; Stamp, D. The effect of particle size and charge on the clearance rates of liposomes and liposome encapsulated drugs. Biochem. Biophys. Res. Commun. 1975, 63, 651–658. [Google Scholar] [CrossRef]
- Choudhari, M.K.; Haghniaz, R.; Rajwade, J.M.; Paknikar, K.M. Anticancer activity of Indian stingless bee propolis: An in vitro study. Evid.-Based Complement. Altern. Med. 2013, 2013, 928280. [Google Scholar] [CrossRef]
- Mouse, H.A.; Mounir, T.; Abdeslam, J.; Lahcen, A.; Rachida, A.; Abderrahmane, C.; Abdelmajid, Z. Evaluation of the in vitro and in vivo anticancer properties of Moroccan propolis extracts. Rev. Bras. Farmacogn. 2012, 22, 558–567. [Google Scholar] [CrossRef] [Green Version]
- Oršolić, N.; Šaranović, A.B.; Bašić, I. Direct and indirect mechanism (s) of antitumour activity of propolis and its polyphenolic compounds. Planta Med. 2006, 72, 20–27. [Google Scholar] [CrossRef]
- Carvalho, A.A.; Adriana, A.; Daiane, F.; Christiane, S.; Eduardo, M.; Ana, N.; Nunes, A.; Thamires, M.; Maria, R.; Sueli, Q.; et al. In vivo antitumoural activity and composition of an oil extract of Brazilian propolis. Food Chem. 2011, 126, 1239–1245. [Google Scholar] [CrossRef]
- Ambardekar, R.V.; Mahadik, K.R.; Paradkar, A.R.; Harsulkar, A.M. Enhancement of hepatoprotective efficacy of propolis by fabrication of liposomes, as a platform nano-formulation for multi-component natural medicine. Curr. Drug Deliv. 2012, 9, 477–486. [Google Scholar] [CrossRef] [PubMed]
- Patel, S. Emerging adjuvant therapy for cancer: Propolis and its constituents. J. Diet. Suppl. 2016, 13, 245–268. [Google Scholar] [CrossRef]
- Gardana, C.; Scaglianti, M.; Pietta, P.; Simonetti, P. Analysis of the polyphenolic fraction of propolis from different sources by liquid chromatography–tandem mass spectrometry. J. Pharm. Biomed. Anal. 2007, 45, 390–399. [Google Scholar] [CrossRef] [PubMed]
- Koshy, P.; Pacharane, S.; Chaudhry, A.; Jadhav, K.; Kadam, V. Drug particle engineering of poorly water soluble drugs. Der Pharm. Lett. 2010, 2, 65e76. [Google Scholar]
- Laouini, A.; Jaafar-Maalej, C.; Limayem-Blouza, I.; Sfar, S.; Charcosset, C.; Fessi, H. Preparation, characterization and applications of liposomes: State of the art. J. Colloid Sci. Biotechnol. 2012, 1, 147–168. [Google Scholar] [CrossRef]
- Chen, P.; Wang, H.; He, M.; Chen, B.; Yang, B.; Hu, B. Size-dependent cytotoxicity study of ZnO nanoparticles in HepG2 cells. Ecotoxicol. Environ. Saf. 2019, 171, 337–346. [Google Scholar] [CrossRef]
- Behzadi, S.; Serpooshan, V.; Tao, W.; Hamaly, A.; Alkawareek, Y.; Dreaden, C.; Brown, D.; Alkilany, M.; Farokhzad, C.; Mahmoudi, M. Cellular uptake of nanoparticles: Journey inside the cell. Chem. Soc. Rev. 2017, 46, 4218–4244. [Google Scholar] [CrossRef]
- Panyam, J.; Labhasetwar, V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev. 2003, 55, 329–347. [Google Scholar] [CrossRef]
- Salatin, S.; Dizaj, S.M.; Khosroushahi, A.Y. Effect of the surface modification, size, and shape on cellular uptake of nanoparticles. Cell Biol. Int. 2015, 39, 881–890. [Google Scholar] [CrossRef] [PubMed]
- Naguib, Y.W.; Cui, Z. Nanomedicine: The promise and challenges in cancer chemotherapy. In Nanomaterial; Springer: Berlin/Heidelberg, Germany, 2014; pp. 207–233. [Google Scholar]
- Bao, G.; Mitragotri, S.; Tong, S. Multifunctional nanoparticles for drug delivery and molecular imaging. Annu. Rev. Biomed. Eng. 2013, 15, 253–282. [Google Scholar] [CrossRef] [PubMed]
- Kalil, S.; Maugeri, F.; Rodrigues, M. Response surface analysis and simulation as a tool for bioprocess design and optimization. Process Biochem. 2000, 35, 539–550. [Google Scholar] [CrossRef]
- Kramar, A.; Turk, S.; Vrečer, F. Statistical optimisation of diclofenac sustained release pellets coated with polymethacrylic films. Int. J. Pharm. 2003, 256, 43–52. [Google Scholar] [CrossRef]
- Mu, Y.-D.; Zhu, B.; Guo, X.-F. Optimization Of Enzymatic Hydrolysis Conditions Of Rapeseed Protein By Rsm And Result Analysis. J. Henan Univ. Technol. (Nat. Sci. Ed.) 2009, 3. [Google Scholar]
- Kirby, C.; Clarke, J.; Gregoriadis, G. Effect of the cholesterol content of small unilamellar liposomes on their stability in vivo and in vitro. Biochem. J. 1980, 186, 591–598. [Google Scholar] [CrossRef] [PubMed]
- Padamwar, M.N.; Pokharkar, V.B. Development of vitamin loaded topical liposomal formulation using factorial design approach: Drug deposition and stability. Int. J. Pharm. 2006, 320, 37–44. [Google Scholar] [CrossRef]
- Bradford, A.; Atkinson, J.; Fuller, N.; Rand, R.P. The effect of vitamin E on the structure of membrane lipid assemblies. J. Lipid Res. 2003, 44, 1940–1945. [Google Scholar] [CrossRef] [Green Version]
- Jaafar-Maalej, C.; Diab, R.; Andrieu, V.; Elaissari, A.; Fessi, H. Ethanol injection method for hydrophilic and lipophilic drug-loaded liposome preparation. J. Liposome Res. 2010, 20, 228–243. [Google Scholar] [CrossRef]
- Gentine, P.; Bubel, A.; Crucifix, C.; Bourel-Bonnet, L.; Frisch, B. Manufacture of liposomes by isopropanol injection: Characterization of the method. J. Liposome Res. 2012, 22, 18–30. [Google Scholar] [CrossRef]
- Yang, K.; Delaney, J.T.; Schubert, U.S.; Fahr, A. Fast high-throughput screening of temoporfin-loaded liposomal formulations prepared by ethanol injection method. J. Liposome Res. 2012, 22, 31–41. [Google Scholar] [CrossRef] [PubMed]
Factors | Codes | Ranges and Levels | ||
---|---|---|---|---|
−1 | 0 | 1 | ||
Lipid molar concentration (LMC) | A | 40 | 60 | 80 |
Cholesterol percentage (CH%) | B | 20 | 43 | 66 |
Drug loading (DL) | C | 1.5 | 3.25 | 5 |
Test Number | A (LMC) | B (CH%) | C (DL) | Particle Size (nm) | PDI |
---|---|---|---|---|---|
1 | 40 | 66 | 3.25 | 110 ± 19.46 | 0.45 ± 0.01 |
2 | 60 | 43 | 3.25 | 276.6 ± 18.14 | 0.433 ± 0.038 |
3 | 80 | 20 | 3.25 | 883.4 ± 90.06 | 0.67 ± 0.02 |
4 | 60 | 20 | 5 | 189.7 ± 0.49 | 0.322 ± 0.005 |
5 | 40 | 43 | 5 | 85.8 ± 0.58 | 0.187 ± 0.007 |
6 | 80 | 43 | 5 | 1070 ± 111.29 | 0.749 ± 0.01 |
7 | 40 | 20 | 3.25 | 80.6 ± 1.03 | 0.201 ± 0.009 |
8 | 60 | 20 | 1.5 | 241.5 ± 2.39 | 0.175 ± 0.008 |
9 | 60 | 66 | 5 | 665.2 ± 49.12 | 0.785 ± 0.027 |
10 | 80 | 43 | 1.5 | 1678 ± 129.79 | 0.678 ± 0.02 |
11 | 80 | 66 | 3.25 | 1755 ± 194.5 | 1 ± 0.012 |
12 | 40 | 43 | 1.5 | 221 ± 11.53 | 0.303 ± 0.018 |
13 | 60 | 66 | 1.5 | 882.7 ± 274.2 | 0.875 ± 0.78 |
14 | 60 | 43 | 3.25 | 180 ± 18.24 | 0.41 ± 0.008 |
15 | 60 | 43 | 3.25 | 221 ± 14.93 | 0.37 ± 0.02 |
16 | 60 | 43 | 3.25 | 246 ± 6.55 | 0.29 ± 0.05 |
17 | 60 | 43 | 3.25 | 260 ± 10.58 | 0.4 ± 0.01 |
Source | Sum of Squares | Df | Mean Square | F-Value | p-Value | Significance |
---|---|---|---|---|---|---|
Model | 14.90 | 6 | 2.48 | 37.49 | <0.0001 | HS |
A-LMC | 11.80 | 1 | 11.80 | 178.06 | <0.0001 | HS |
B-Ch. % | 1.57 | 1 | 1.57 | 23.75 | 0.0006 | HS |
C-DL | 0.4610 | 1 | 0.4610 | 6.96 | 0.0248 | S |
A² | 0.2124 | 1 | 0.2124 | 3.21 | 0.1037 | NS |
B² | 0.1156 | 1 | 0.1156 | 1.74 | 0.2160 | NS |
C² | 0.6484 | 1 | 0.6484 | 9.79 | 0.0107 | S |
Residual | 0.6625 | 10 | 0.0663 | |||
Lack of fit | 0.5409 | 6 | 0.0901 | 2.96 | 0.1562 | NS |
Pure error | 0.1217 | 4 | 0.0304 | |||
Cor total | 15.57 | 16 | ||||
R2 = 0.9574 | R2Adj.= 0.9319 | R2Pred. = 0.8488 |
Source | Sum of Squares | Df | Mean Square | F-Value | p-Value | Significance |
---|---|---|---|---|---|---|
Model | 0.9601 | 6 | 0.1600 | 19.63 | <0.0001 | HS |
A-LMC | 0.4782 | 1 | 0.4782 | 58.68 | <0.0001 | HS |
B-Ch. % | 0.3793 | 1 | 0.3793 | 46.54 | <0.0001 | HS |
C-DL | 0.0000 | 1 | 0.0000 | 0.0022 | 0.9634 | NS |
A² | 0.0205 | 1 | 0.0205 | 2.52 | 0.1436 | NS |
B² | 0.0710 | 1 | 0.0710 | 8.71 | 0.0145 | S |
C² | 0.0035 | 1 | 0.0035 | 0.4292 | 0.5271 | NS |
Residual | 0.0815 | 10 | 0.0082 | |||
Lack of fit | 0.0692 | 6 | 0.0115 | 3.75 | 0.1108 | NS |
Pure error | 0.0123 | 4 | 0.0031 | |||
Cor total | 1.04 | 16 | ||||
R2 = 0.9218 | R2Adj.= 0.8748 | R2Pred. = 0.7158 |
%EE | Spraying Prepared PP-Lip | TEIM PP-Lip |
57.43 ± 0.09% | 63.08 ± 1.13% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Refaat, H.; Naguib, Y.W.; Elsayed, M.M.A.; Sarhan, H.A.A.; Alaaeldin, E. Modified Spraying Technique and Response Surface Methodology for the Preparation and Optimization of Propolis Liposomes of Enhanced Anti-Proliferative Activity against Human Melanoma Cell Line A375. Pharmaceutics 2019, 11, 558. https://doi.org/10.3390/pharmaceutics11110558
Refaat H, Naguib YW, Elsayed MMA, Sarhan HAA, Alaaeldin E. Modified Spraying Technique and Response Surface Methodology for the Preparation and Optimization of Propolis Liposomes of Enhanced Anti-Proliferative Activity against Human Melanoma Cell Line A375. Pharmaceutics. 2019; 11(11):558. https://doi.org/10.3390/pharmaceutics11110558
Chicago/Turabian StyleRefaat, Hesham, Youssef W. Naguib, Mahmoud M. A. Elsayed, Hatem A. A. Sarhan, and Eman Alaaeldin. 2019. "Modified Spraying Technique and Response Surface Methodology for the Preparation and Optimization of Propolis Liposomes of Enhanced Anti-Proliferative Activity against Human Melanoma Cell Line A375" Pharmaceutics 11, no. 11: 558. https://doi.org/10.3390/pharmaceutics11110558
APA StyleRefaat, H., Naguib, Y. W., Elsayed, M. M. A., Sarhan, H. A. A., & Alaaeldin, E. (2019). Modified Spraying Technique and Response Surface Methodology for the Preparation and Optimization of Propolis Liposomes of Enhanced Anti-Proliferative Activity against Human Melanoma Cell Line A375. Pharmaceutics, 11(11), 558. https://doi.org/10.3390/pharmaceutics11110558