Multivariate Statistical Optimization of Tablet Formulations Incorporating High Doses of a Dry Herbal Extract
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Herbal Tablet Formulation
2.3. Statistical Experimental Design
2.4. Evaluation of Herbal Tablet Formulation
3. Results and Discussion
3.1. Evaluation of Tablet Quality Attributes
3.2. Formulation Optimization Using D-optimal Mixture Design
+ 0.062955X1X2 + 9.76549×10−4X1X3 + 0.37591X1X4
+ 0.044394X1X5 − 0.013977X2X3 + 0.36834X2X4 + 0.012109X2X5
+ 0.39642X3X4 + 0.053652X3X5 + 0.30752X4X5
− 5.51489×10−4X1X2X3,
− 4.20430×10−4X1X2 + 3.60975×10−4X1X3 − 0.033621X1X4 + 0.019548X1X5
+ 1.92707×10−3X2X3 − 0.033377X2X4 + 0.020832X2X5 − 0.036365X3X4
+ 0.019589X3X5 − 9.98355×10−3X4X5,
+ 1.39135X1X2 + 0.028424X1X3 − 0.049960X1X4
+ 0.013923X2X3 + 0.049232X2X5 + 0.049465X3X5
− 0.077349X1X2X3,
− 7.99739×10−4X1X2 − 4.51043×10−5X1X3 − 0.039370X1X4 + 0.022078X1X5
+ 3.16603×10−3X2X3 − 0.026998X2X4 + 0.022847X2X5 − 0.039099X3X4
+ 0.024016X3X5 − 0.019296X4X5,
3.3. Formulation Optimization Using Partial Least Squares Model
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chauhan, B.; Kumar, G.; Kalam, N.; Ansari, S.H. Current concepts and prospects of herbalnutraceutical: A review. J. Adv. Pharm. Technol. Res. 2013, 4, 4–8. [Google Scholar] [CrossRef] [PubMed]
- Song, X.Y.; Li, Y.D.; Shi, Y.P.; Jin, L.; Chen, J. Quality control of traditional Chinese medicines: A review. Chin. J. Nat. Med. 2013, 11, 596–607. [Google Scholar] [CrossRef]
- Pan, S.; Neeraj, A.; Srivastava, K.S.; Kishore, P.; Danquah, M.K.; Sarethy, I.P. A Proposal for a Quality System for Herbal Products. J. Pharm. Sci. 2013, 102, 4230–4241. [Google Scholar] [CrossRef] [PubMed]
- Soares, L.A.; Ortega, G.G.; Petrovick, P.R.; Schmidt, P.C. Optimization of tablets containing a high dose of spray-dried plant extract: A technical note. AAPS PharmSciTech 2005, 6, E367–E371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, K.K.; Chow, A.H. Impact of carbohydrate constituents on moistures or ption of herbal extracts. Pharm. Res. 2000, 17, 1133–1137. [Google Scholar] [CrossRef] [PubMed]
- Alabi, C.O.; Singh, I.; Odeku, O.A. Evaluation of natural and pregelatinized forms of three tropical starches as excipients in tramadol tablet formulation. J. Pharm. Investig. 2018, 48, 333–340. [Google Scholar] [CrossRef]
- Byeon, J.C.; Ahn, J.B.; Jang, W.S.; Lee, S.-E.; Choi, J.-S.; Park, J.-S. Recent formulation approaches to oral delivery of herbal medicines. J. Pharm. Investig. 2019, 49, 17–26. [Google Scholar] [CrossRef]
- DeSouza, K.; Petrovick, P.; Bassani, V.; Ortega, G.G. The adjuvants Aerosil 200 and Gelita-Sol-Pinfluence on the technological characteristics of spray-dried powders from Passiflora edulis var. flavicarpa. Drug Dev. Ind. Pharm. 2000, 26, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Shi, S.; Liu, A.; Tang, X. Combined application of extrusion-spheronization andhot-melt coating technologies for improving moisture-proofing of herbal extracts. J. Pharm. Sci. 2010, 99, 2444–2454. [Google Scholar] [CrossRef] [PubMed]
- Choi, D.H.; Kim, Y.-S.; Kim, D.-D.; Jeong, S.H. QbD based development and evaluation of topical microemulsion-based hydrogel against superficial fungal infections. J. Pharm. Investig. 2018. [Google Scholar] [CrossRef]
- Lawrence, X.Y.; Amidon, G.; Khan, M.A.; Hoag, S.W.; Polli, J.; Raju, G.; Woodcock, J. Understanding pharmaceutical quality by design. AAPS J. 2014, 16, 771–783. [Google Scholar]
- El-Malah, Y.; Nazzal, S.; Khanfar, N.M. D-optimal mixture design: Optimization of ternary matrix blends for controlled zero-order drug release from oral dosage forms. Drug Dev. Ind. Pharm. 2006, 32, 1207–1218. [Google Scholar] [CrossRef]
- Soh, J.L.; Wang, F.; Boersen, N.; Pinal, R.; Peck, G.E.; Carvajal, M.T.; Cheney, J.; Valthorsson, H.; Pazdan, J. Utility of multivariate analysis in modeling the effects of raw material properties and operating parameters on granule and ribbon properties prepared in roller compaction. Drug Dev. Ind. Pharm. 2008, 34, 1022–1035. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yan, B.; Gong, X.; Lawrence, X.Y.; Qu, H. Application of quality by design to the process development of botanical drug products: A case study. AAPS PharmSciTech 2013, 14, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.P.; Shi, X.; Kong, G.W.S.; Wang, C.C.; Wu, J.C.Y.; Lin, Z.X.; Li, T.C.; Chan, D.Y.L. The Therapeutic Effects of a Traditional Chinese Medicine Formula WuziYanzong Pillforthe Treatment of Oligoasthenozoospermia: A Meta-Analysis of Randomized Controlled Trials. Evid.-Based Complement. Altern. Med. 2018, 2018, 10. [Google Scholar] [CrossRef]
- Ji, H.-J.; Wang, D.-M.; Wu, Y.-P.; Niu, Y.-Y.; Jia, L.-L.; Liu, B.-W.; Feng, Q.-J.; Feng, M.-L. WuziYanzong pill, a Chinese polyherbal formula, alleviates testicular damage in mice induced by ionizing radiation. BMC Complement. Altern. Med. 2016, 16, 509. [Google Scholar] [CrossRef]
- Lee, K.W.; Bae, S.R.; Jeong, H.C.; Choi, J.B.; Choi, S.W.; Bae, W.J.; Kim, S.J.; Cho, H.J.; Ha, U.-S.; Hong, S.-H. A randomized, controlled study of treatment with ojayeonjonghwan for patients with late onset hypogonadism. The Aging Male 2018, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Muteki, K.; Swaminathan, V.; Sekulic, S.S.; Reid, G.L. De-risking pharmaceutical tablet manufacture through process understanding, latent variable modeling, and optimization technologies. AAPS PharmSciTech 2011, 12, 1324–1334. [Google Scholar] [CrossRef]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Lawrence, X.Y. Pharmaceutical quality by design: Product and process development, understanding, and control. Pharm. Res. 2008, 25, 781–791. [Google Scholar]
- Ansari, S.H.; Islam, F.; Sameem, M. Influence of nanotechnology on herbal drugs: A Review. J. Adv. Pharm. Technol. Res. 2012, 3, 142–146. [Google Scholar] [CrossRef] [PubMed]
- May, B.H.; Yang, A.W.; Zhang, A.L.; Owens, M.D.; Bennett, L.; Head, R.; Cobiac, L.; Li, C.G.; Hugel, H.; Story, D.F. Chinese herbal medicine for Mild Cognitive Impairment and Age Associated Memory Impairment: A review of randomised controlled trials. Biogerontology 2009, 10, 109–123. [Google Scholar] [CrossRef] [PubMed]
- Qusaj, Y.; Leng, A.; Alshihabi, F.; Krasniqi, B.; Vandamme, T. Development Strategies for Herbal Products Reducing the Influence of Natural Variancein Dry Masson Tableting Properties and Tablet Characteristics. Pharmaceutics 2012, 4, 501–516. [Google Scholar] [CrossRef] [PubMed]
- von Eggelkraut-Gottanka, S.G.; Abed, S.A.; Müller, W.; Schmidt, P.C. Roller compaction and tabletting of St.John’s wort plant dry extract using a gap width and force controlled roller compactor.I.Granulation and tabletting of eight different extract batches. Pharm. Dev. Technol. 2002, 7, 433–445. [Google Scholar] [CrossRef]
- Wah, C.L.; Hock, S.C.; Yun, T.K. Current scientific status and regulatory control of traditional/herbal medicinal products: Globalization challenges. Pharm. Eng. 2012, 32, 1–11. [Google Scholar]
- Disch, L.; Drewe, J.; Fricker, G. Dissolution Testing of Herbal Medicines: Challenges and Regulatory Standards in Europe, the United States, Canada, and Asia. Dissolut. Technol. 2017, 24, 6–12. [Google Scholar] [CrossRef]
- Desai, P.M.; Liew, C.V.; Heng, P.W.S. Review of disintegrants and the disintegration phenomena. J. Pharm. Sci. 2016, 105, 2545–2555. [Google Scholar] [CrossRef] [PubMed]
- Rudnic, E.; Lausier, J.; Chilamkurti, R.; Rhodes, C. Studies of the utility of cross linked polyvinlpolypyrrolidine as a tablet disintegrant. Drug Dev Ind. Pharm. 1980, 6, 291–309. [Google Scholar] [CrossRef]
- Shlieout, G.; Arnold, K.; Müller, G. Powder and mechanical properties of microcry stalline cellulose with different degrees of polymerization. AAPS PharmSciTech 2002, 3, 45–54. [Google Scholar] [CrossRef]
- Gallo, L.; Llabot, J.M.; Allemandi, D.; Bucalá, V.; Piña, J. Influence of spray-drying operating conditionson Rhamnus purshiana (Cáscara sagrada) extract powder physical properties. Powder Technol. 2011, 208, 205–214. [Google Scholar] [CrossRef]
- Zen, M.; Izzati, N.; AbdGani, S.S.; Shamsudin, R.; FardMasoumi, H.R. Theuse of D-optimal mixture design in optimizing development of okara tablet formulation as a dietary supplement. The Scientific World Journal 2015, 2015. [Google Scholar] [CrossRef]
- Huang, J.; Kaul, G.; Cai, C.; Chatlapalli, R.; Hernandez-Abad, P.; Ghosh, K.; Nagi, A. Quality by design case study: An integrated multivariate approach to drug product and process development. Inter. J. Pharm. 2009, 382, 23–32. [Google Scholar] [CrossRef] [PubMed]
Experimental Design | D-optimal Mixture Design | Partial Least Square | ||||
---|---|---|---|---|---|---|
Independent Variables | Low Level | High Level | Low Level | High Level | Low Level | High Level |
Wuzi Yanzong extract | 50 | 50 | 65 | 65 | 35 | 65 |
Croscarmellose sodium | 0 | 15 | 0 | 10 | 1 | 24 |
Crospovidone | 0 | 15 | 0 | 10 | 1 | 30 |
Microcrystalline cellulose | 15 | 44.3 | 20 | 31 | 18 | 45 |
Magnesium stearate | 1.5 | 4 | 2 | 4 | 1 | 5 |
Silicon dioxide | 1.5 | 6 | 2 | 5 | 1 | 6 |
Run | CCS (%) | Cros. (%) | MCC (%) | Mg St (%) | SiO2 (%) | Disintegration Time (min) | Hardness (kp) |
---|---|---|---|---|---|---|---|
1 | 7.4 | 7.4 | 28.6 | 2.7 | 3.7 | 26.6 ± 1.3 | 6.6 ± 0.2 |
2 | 0.0 | 15.0 | 27.1 | 1.9 | 6.0 | 24.0 ± 1.5 | 5.9 ± 0.3 |
3 | 8.7 | 6.5 | 26.8 | 2.6 | 5.4 | 24.6 ± 1.2 | 5.8 ± 0.4 |
4 | 15.0 | 12.9 | 15.6 | 4.0 | 2.4 | 21.2 ± 0.9 | 5.1 ± 0.4 |
5 | 7.4 | 7.4 | 28.6 | 2.7 | 3.7 | 26.6 ± 1.8 | 6.5 ± 0.7 |
6 | 0.0 | 3.1 | 36.9 | 4.0 | 6.0 | 36.0 ± 2.1 | 6.4 ± 0.2 |
7 | 0.0 | 15.0 | 28.4 | 4.0 | 2.6 | 30.0 ± 1.8 | 6.8 ± 0.5 |
8 | 13.4 | 15.0 | 17.3 | 2.7 | 1.6 | 20.6 ± 1.1 | 5.6 ± 0.4 |
9 | 15.0 | 0.0 | 31.8 | 1.6 | 1.6 | 37.2 ± 2.3 | 7.5 ± 0.6 |
10 | 7.4 | 7.4 | 28.6 | 2.7 | 3.7 | 26.8 ± 1.7 | 6.4 ± 0.5 |
11 | 7.2 | 15.0 | 17.8 | 4.0 | 6.0 | 16.6 ± 1.0 | 4.4 ± 0.3 |
12 | 11.7 | 2.1 | 29.3 | 1.5 | 5.4 | 29.4 ± 0.8 | 6.2 ± 0.1 |
13 | 14.9 | 14.9 | 15.0 | 1.5 | 3.6 | 18.2 ± 0.9 | 5.0 ± 0.0 |
14 | 0.0 | 0.0 | 44.3 | 4.0 | 1.7 | 46.4 ± 2.6 | 8.3 ± 0.4 |
15 | 5.6 | 11.0 | 30.4 | 1.5 | 1.5 | 25.2 ± 1.2 | 7.6 ± 0.2 |
16 | 8.4 | 12.7 | 21.4 | 1.5 | 6.0 | 16.8 ± 1.4 | 5.1 ± 0.5 |
17 | 0.0 | 11.3 | 35.7 | 1.5 | 1.5 | 33.8 ± 1.7 | 8.3 ± 0.7 |
18 | 6.9 | 2.7 | 33.8 | 2.8 | 3.7 | 34.4 ± 2.5 | 7.0 ± 0.6 |
19 | 15.0 | 10.9 | 15.4 | 2.7 | 6.0 | 17.6 ± 0.7 | 4.1 ± 0.1 |
20 | 15.0 | 1.1 | 24.0 | 4.0 | 6.0 | 28.4 ± 1.4 | 5.0 ± 0.2 |
21 | 0.0 | 0.0 | 42.7 | 1.5 | 5.8 | 40.2 ± 2.0 | 7.4 ± 0.4 |
Model Statistics | Disintegration Time (Y1) | Hardness (Y2) |
---|---|---|
Model, p-value | <0.0001 | <0.0001 |
R2 | 0.9999 | 0.9991 |
Adjust R2 | 0.9995 | 0.9971 |
Predicted R2 | 0.9868 | 0.9876 |
Standard deviation | 0.18 | 0.064 |
PRESS | 17.30 | 0.36 |
Lack of fit, p-value | 0.2251 | 0.9613 |
No. | CCS (%) | Cros (%) | MCC (%) | Mg St. (%) | SiO2 (%) | Disintegration Time (min) | Hardness (kp) |
---|---|---|---|---|---|---|---|
1 | 10.0 | 15.0 | 22.0 | 1.5 | 1.5 | 18.8 | 6.5 |
2 | 11.3 | 13.7 | 22.0 | 1.5 | 1.5 | 18.9 | 6.5 |
3 | 8.2 | 15.0 | 23.0 | 1.5 | 2.3 | 19.2 | 6.5 |
4 | 2.6 | 14.5 | 27.1 | 1.5 | 4.3 | 22.8 | 6.5 |
5 | 5.3 | 15.0 | 24.7 | 2.9 | 2.1 | 23.4 | 6.5 |
Run | CCS (%) | Cros (%) | MCC (%) | Mg St. (%) | SiO2 (%) | Disintegration Time (min) | Hardness (kp) |
---|---|---|---|---|---|---|---|
1 | 7.4 | 3.6 | 20.0 | 2.0 | 2.0 | 28.9 ± 1.4 | 6.5 ± 0.3 |
2 | 0.0 | 9.7 | 20.0 | 3.3 | 2.0 | 29.9 ± 1.2 | 6.3 ± 0.2 |
3 | 0.0 | 0.0 | 28.6 | 2.0 | 4.4 | 36.5 ± 1.9 | 6.4 ± 0.5 |
4 | 0.0 | 0.0 | 26.0 | 4.0 | 5.0 | 34.9 ± 2.1 | 5.1 ± 0.2 |
5 | 5.7 | 0.0 | 25.3 | 2.0 | 2.0 | 39.1 ± 1.8 | 7.1 ± 0.4 |
6 | 0.0 | 10.0 | 20.0 | 2.0 | 3.0 | 27.2 ± 1.0 | 6.2 ± 0.1 |
7 | 0.0 | 0.0 | 28.6 | 4.0 | 2.4 | 41.1 ± 2.8 | 6.7 ± 0.1 |
8 | 0.0 | 6.6 | 20.1 | 4.0 | 4.3 | 28.9 ± 0.5 | 5.0 ± 0.2 |
9 | 10.0 | 0.0 | 20.0 | 2.4 | 2.6 | 33.7 ± 1.3 | 6.0 ± 0.5 |
10 | 0.0 | 6.9 | 20.7 | 2.3 | 5.0 | 26.2 ± 0.6 | 5.1 ± 0.4 |
11 | 8.0 | 0.0 | 20.0 | 2.0 | 5.0 | 29.2 ± 1.2 | 5.0 ± 0.3 |
12 | 9.0 | 0.0 | 20.0 | 4.0 | 2.0 | 35.9 ± 1.0 | 5.8 ± 0.5 |
13 | 0.0 | 4.8 | 26.2 | 2.0 | 2.0 | 36.1 ± 1.7 | 7.4 ± 0.5 |
14 | 5.0 | 3.2 | 20.0 | 3.1 | 3.8 | 27.8 ± 1.8 | 5.3 ± 0.3 |
15 | 0.0 | 0.0 | 31.0 | 2.0 | 2.0 | 41.7 ± 1.3 | 7.8 ± 0.6 |
16 | 2.6 | 5.6 | 22.6 | 2.0 | 2.2 | 27.6 ± 1.6 | 6.8 ± 0.5 |
17 | 2.6 | 1.8 | 23.4 | 4.0 | 3.3 | 33.5 ± 1.2 | 5.7 ± 0.4 |
18 | 3.4 | 6.1 | 20.0 | 2.3 | 3.2 | 25.7 ± 0.4 | 5.9 ± 0.1 |
19 | 2.9 | 2.9 | 22.9 | 2.9 | 3.3 | 30.5 ± 2.5 | 6.0 ± 0.4 |
20 | 2.9 | 2.9 | 22.9 | 2.9 | 3.3 | 30.6 ± 1.8 | 5.9 ± 0.3 |
21 | 2.9 | 2.9 | 22.9 | 2.9 | 3.3 | 30.4 ± 1.1 | 6.1 ± 0.3 |
Model Statistics | Disintegration Time (Y1) | Hardness (Y2) |
---|---|---|
Model, p-value | <0.0001 | <0.0001 |
R2 | 0.9980 | 0.9978 |
Adjust R2 | 0.9956 | 0.9926 |
Predicted R2 | 0.9419 | 0.9411 |
Standard deviation | 0.32 | 0.067 |
PRESS | 26.87 | 0.72 |
Lack of fit, p-value | 0.0691 | 0.9310 |
No. | CCS (%) | Cros (%) | MCC (%) | Mg St. (%) | SiO2 (%) | Disintegration Time (min) | Hardness (kp) |
---|---|---|---|---|---|---|---|
1 | 3.4 | 7.2 | 20.2 | 2.0 | 2.2 | 26.0 | 6.5 |
2 | 3.3 | 7.6 | 20.0 | 2.0 | 2.1 | 26.1 | 6.5 |
3 | 3.7 | 7.2 | 20.0 | 2.0 | 2.1 | 26.1 | 6.5 |
4 | 3.5 | 6.6 | 20.6 | 2.0 | 2.3 | 26.1 | 6.5 |
5 | 2.2 | 8.6 | 20.0 | 2.0 | 2.2 | 26.3 | 6.5 |
WYE (%) | CCS (%) | Cros (%) | MCC (%) | Mg St. (%) | SiO2 (%) | Disintegration Time (min) | Hardness (Kp) |
---|---|---|---|---|---|---|---|
50 | 2 | 5 | 40 | 1.5 | 1.5 | 37.0 ± 1.6 | 8.6 ± 0.8 |
50 | 5 | 2 | 40 | 1.5 | 1.5 | 38.4 ± 1.5 | 8.5 ± 0.3 |
50 | 3 | 9 | 34 | 1 | 3 | 29.8 ± 1.2 | 7.7 ± 0.5 |
50 | 3 | 9 | 34 | 3 | 1 | 31.8 ± 0.7 | 7.8 ± 0.4 |
50 | 6 | 6 | 34 | 1 | 3 | 31.0 ± 1.1 | 7.7 ± 0.6 |
50 | 6 | 6 | 34 | 3 | 1 | 32.8 ± 1.0 | 7.7 ± 0.2 |
50 | 9 | 3 | 34 | 1 | 3 | 32.2 ± 1.3 | 7.6 ± 0.5 |
50 | 9 | 3 | 34 | 3 | 1 | 34.2 ± 1.5 | 7.7 ± 0.1 |
50 | 2 | 16 | 26 | 2 | 4 | 24.0 ± 0.4 | 6.4 ± 0.0 |
50 | 2 | 16 | 26 | 4 | 2 | 26.2 ± 1.2 | 6.6 ± 0.4 |
50 | 2 | 16 | 26 | 3 | 3 | 25.4 ± 1.6 | 6.5 ± 0.2 |
50 | 8 | 10 | 26 | 2 | 4 | 25.2 ± 1.1 | 6.3 ± 0.3 |
50 | 8 | 10 | 26 | 4 | 2 | 27.2 ± 1.3 | 6.5 ± 0.3 |
50 | 8 | 10 | 26 | 3 | 3 | 26.6 ± 1.8 | 6.4 ± 0.3 |
50 | 14 | 4 | 26 | 2 | 4 | 27.0 ± 1.3 | 6.2 ± 0.6 |
50 | 14 | 4 | 26 | 4 | 2 | 29.2 ± 1.9 | 6.4 ± 0.1 |
50 | 14 | 4 | 26 | 3 | 3 | 28.4 ± 1.4 | 6.3 ± 0.3 |
50 | 3 | 21 | 18 | 4 | 4 | 21.6 ± 1.1 | 5.1 ± 0.2 |
50 | 3 | 21 | 18 | 2 | 6 | 17.4 ± 0.5 | 4.7 ± 0.0 |
50 | 10 | 14 | 18 | 4 | 4 | 22.0 ± 1.1 | 5.0 ± 0.7 |
50 | 10 | 14 | 18 | 2 | 6 | 17.8 ± 0.6 | 4.6 ± 0.1 |
50 | 17 | 7 | 18 | 4 | 4 | 23.4 ± 1.9 | 5.0 ± 0.3 |
50 | 17 | 7 | 18 | 2 | 6 | 19.2 ± 2.0 | 4.6 ± 0.2 |
65 | 1 | 2 | 28 | 2 | 2 | 37.2 ± 1.5 | 7.5 ± 0.3 |
65 | 1 | 3 | 26 | 3 | 2 | 36.0 ± 1.8 | 7.0 ± 0.5 |
65 | 3 | 1 | 26 | 2 | 3 | 34.8 ± 1.5 | 6.8 ± 0.4 |
65 | 2 | 5 | 23 | 3 | 2 | 31.2 ± 1.9 | 7.0 ± 0.4 |
65 | 4 | 4 | 23 | 2 | 2 | 31.2 ± 1.6 | 6.9 ± 0.7 |
65 | 5 | 2 | 23 | 2 | 3 | 31.4 ± 1.2 | 6.4 ± 0.3 |
65 | 3 | 8 | 20 | 2 | 2 | 27.0 ± 1.1 | 6.6 ± 0.6 |
65 | 4 | 6 | 20 | 3 | 2 | 29.0 ± 1.8 | 6.2 ± 0.3 |
65 | 5 | 4 | 20 | 3 | 3 | 29.0 ± 1.3 | 5.8 ± 0.8 |
65 | 6 | 3 | 20 | 2 | 4 | 26.8 ± 1.8 | 5.6 ± 0.2 |
65 | 4 | 3 | 20 | 4 | 4 | 29.0 ± 1.1 | 5.0 ± 0.8 |
65 | 8 | 2 | 20 | 2 | 3 | 28.6 ± 0.3 | 6.0 ± 0.3 |
35 | 3 | 15 | 45 | 1 | 1 | 20.8 ± 0.7 | 9.2 ± 0.6 |
35 | 6 | 10 | 45 | 3 | 1 | 23.6 ± 1.0 | 8.9 ± 0.5 |
35 | 4 | 8 | 45 | 4 | 4 | 26.6 ± 1.5 | 8.7 ± 0.8 |
35 | 11 | 5 | 45 | 1 | 3 | 25.6 ± 1.3 | 8.9 ± 0.7 |
35 | 4 | 18 | 39 | 2 | 2 | 19.8 ± 1.1 | 8.5 ± 0.1 |
35 | 7 | 14 | 39 | 3 | 2 | 20.8 ± 0.8 | 8.4 ± 0.8 |
35 | 10 | 10 | 39 | 3 | 3 | 22.4 ± 1.6 | 8.3 ± 0.3 |
35 | 15 | 5 | 39 | 2 | 4 | 23.4 ± 1.2 | 8.2 ± 0.9 |
35 | 5 | 25 | 32 | 2 | 1 | 16.8 ± 0.8 | 7.7 ± 0.2 |
35 | 8 | 20 | 32 | 2 | 3 | 18.0 ± 0.9 | 7.6 ± 0.6 |
35 | 10 | 18 | 32 | 1 | 4 | 17.2 ± 1.1 | 7.6 ± 0.8 |
35 | 16 | 12 | 32 | 4 | 1 | 18.0 ± 0.8 | 7.6 ± 0.4 |
35 | 14 | 10 | 32 | 4 | 5 | 19.6 ± 0.9 | 7.4 ± 0.5 |
35 | 5 | 30 | 24 | 3 | 3 | 18.8 ± 1.4 | 6.7 ± 0.4 |
35 | 13 | 20 | 24 | 5 | 3 | 17.2 ± 1.0 | 6.7 ± 0.5 |
35 | 15 | 16 | 24 | 5 | 5 | 16.8 ± 0.7 | 6.6 ± 0.6 |
35 | 20 | 10 | 24 | 5 | 6 | 16.6 ± 0.6 | 6.4 ± 0.3 |
35 | 24 | 8 | 24 | 3 | 6 | 17.2 ± 0.3 | 6.3 ± 0.4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, E.; Kim, U.; Lee, B.-J.; Moon, C. Multivariate Statistical Optimization of Tablet Formulations Incorporating High Doses of a Dry Herbal Extract. Pharmaceutics 2019, 11, 79. https://doi.org/10.3390/pharmaceutics11020079
Oh E, Kim U, Lee B-J, Moon C. Multivariate Statistical Optimization of Tablet Formulations Incorporating High Doses of a Dry Herbal Extract. Pharmaceutics. 2019; 11(2):79. https://doi.org/10.3390/pharmaceutics11020079
Chicago/Turabian StyleOh, Euichaul, Uijung Kim, Beom-Jin Lee, and Cheol Moon. 2019. "Multivariate Statistical Optimization of Tablet Formulations Incorporating High Doses of a Dry Herbal Extract" Pharmaceutics 11, no. 2: 79. https://doi.org/10.3390/pharmaceutics11020079
APA StyleOh, E., Kim, U., Lee, B. -J., & Moon, C. (2019). Multivariate Statistical Optimization of Tablet Formulations Incorporating High Doses of a Dry Herbal Extract. Pharmaceutics, 11(2), 79. https://doi.org/10.3390/pharmaceutics11020079