Pharmacokinetics and Metabolism of Acetyl Triethyl Citrate, a Water-Soluble Plasticizer for Pharmaceutical Polymers in Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Preparation of Calibration and Quality Control (QC) Standards
2.3. Validation of the Analytical Method
2.4. Pharmacokinetics Study in Rats
2.5. Sample Preparation
2.6. Pharmacokinetics Analysis
2.7. Metabolic Stability Assay
2.8. LC–MS/MS
2.9. LC–QTOF MS
3. Results and Discussion
3.1. Analytical Method Validation
3.1.1. Selectivity
3.1.2. Linearity
3.1.3. Precision and Accuracy
3.1.4. Extraction recovery, matrix effect, and process efficiency
3.1.5. Stability
3.2. Pharmacokinetic Study
3.3. Metabolism Study
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Snejdrova, E.; Dittrich, M. Pharmaceutically used plasticizers. In Recent Advances in Plasticizers; Mohammad, L., Ed.; IntechOpen: Rijeka, Croatia, 2012; pp. 45–68. [Google Scholar]
- Siepmann, J.; Lecomte, F.; Bodmeier, R. Diffusion-controlled drug delivery systems: Calculation of the required composition to achieve desired release profiles. J. Control. Release 1999, 60, 379–389. [Google Scholar] [CrossRef]
- Fukui, E.; Miyamura, N.; Yoneyama, T.; Kobayashi, M. Drug release from and mechanical properties of press-coated tablets with hydroxypropylmethylcellulose acetate succinate and plasticizers in the outer shell. Int. J. Pharm. 2001, 217, 33–43. [Google Scholar] [CrossRef]
- Goole, J.; Deleuze, P.; Vanderbist, F.; Amighi, K. New levodopa sustained-release floating minitablets coated with insoluble acrylic polymer. Eur. J. Pharm. Biopharm. 2008, 68, 310–318. [Google Scholar] [CrossRef] [PubMed]
- Fadda, H.M.; Khanna, M.; Santos, J.C.; Osman, D.; Gaisford, S.; Basit, A.W. The use of dynamic mechanical analysis (DMA) to evaluate plasticization of acrylic polymer films under simulated gastrointestinal conditions. Eur. J. Pharm. Biopharm. 2010, 76, 493–497. [Google Scholar] [CrossRef] [PubMed]
- Finkelstein, M.; Gold, H. Toxicology of the citric acid esters: Tributyl citrate, acetyl tributyl citrate, triethyl citrate, and acetyl triethyl citrate. Toxicol. Appl. Pharmacol. 1959, 1, 283–1298. [Google Scholar] [CrossRef]
- Johnson, W., Jr. Final report on the safety assessment of acetyl triethyl citrate, acetyl tributyl citrate, acetyl trihexyl citrate, and acetyl trioctyl citrate. Int. J. Toxicol. 2002, 21, 1–17. [Google Scholar] [PubMed]
- Xu, Y.; Gye, M.C. Developmental toxicity of dibutyl phthalate and citrate ester plasticizers in Xenopus laevis embryos. Chemosphere 2018, 204, 523–534. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Cheon, Y.P.; Lee, S.H. Hershberger Assays for Di-2-ethylhexyl Phthalate and Its Substitute Candidates. Dev. Reprod. 2018, 22, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Park, C.; Gye, M.C.; Lee, Y. Assessment of endocrine-disrupting activities of alternative chemicals for bis(2-ethylhexyl)phthalate. Environ. Res. 2019, 172, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Takeshita, A.; Igarashi-Migitaka, J.; Nishiyama, K.; Takahashi, H.; Takeuchi, Y.; Koibuchi, N. Acetyl Tributyl Citrate, the Most Widely Used Phthalate Substitute Plasticizer, Induces Cytochrome P450 3A through Steroid and Xenobiotic Receptor. Toxicol. Sci. 2011, 123, 460–470. [Google Scholar] [CrossRef] [PubMed]
- Lide, D.R.; Milne, G.W.A. CRC Handbook of Data on Organic Compounds, 3rd ed.; CRC Press: Boca Raton, FL, USA, 1993. [Google Scholar]
- Pfannhauser, W.; Eberhardt, R.; Woidich, H. Aroma analysis in food chemistry by GC/MS techniques: Determination of natural and artificial coconut flavor. Microchim. Acta 1982, 77, 159–167. [Google Scholar] [CrossRef]
- Thoma, K.; Heckenmuller, H. Thin layer chromatographic detection of emollients in gastric juice-resistant coatings. 2. The pharmaceutic technology and analysis of gastric juice-resistant dosage forms. Pharmazie 1986, 41, 328–332. [Google Scholar] [PubMed]
- Gutierrez-Rocca, J.C.; McGinity, J.W. Influence of water soluble and insoluble plasticizers on the physical and mechanical properties of acrylic resin copolymers. Int. J. Pharm. 1994, 103, 293–301. [Google Scholar] [CrossRef]
- Christia, C.; Poma, G.; Harrad, S.; de Wit, C.A.; Sjostrom, Y.; Leonards, P.; Lamoree, M.; Covaci, A. Occurrence of legacy and alternative plasticizers in indoor dust from various EU countries and implications for human exposure via dust ingestion and dermal absorption. Environ. Res. 2019, 171, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Bodmeier, R.; Paeratakul, O. Determination of Plasticizers Commonly Used in Pharmaceutical Dosage Forms by High Performance Liquid Chromatography. J. Liq. Chromatogr. 1991, 14, 365–375. [Google Scholar] [CrossRef]
- Food and Drug Administration. Guidance for Industry: Bioanalytical Method Validation. 2018. Available online: https://www.fda.gov/downloads/Drugs/Guidances/ucm070107.pdf (accessed on 18 February 2019).
- Rehman, S.U.; Kim, I.S.; Choi, M.S.; Luo, Z.; Yao, G.; Xue, Y.; Zhang, Y.; Yoo, H.H. Evaluation of Metabolic stability of kinsenoside, an antidiabetic candidate, in rat and human liver microsomes. Mass Spectrom. Lett. 2015, 6, 48–51. [Google Scholar] [CrossRef]
- Park, J.S.; Rehman, S.U.; Kim, I.S.; Choi, M.S.; Lee, J.S.; In, S.; Yoo, H.H. Tentative identification of in vitro metabolites of 5-APDB, a synthetic benzofuran, by LC-Q/TOF-MS. J. Chromatogr. B 2016, 1033, 296–300. [Google Scholar] [CrossRef] [PubMed]
- Toutain, P.L.; Bousquet-Mélou, A. Plasma terminal half-life. J. Vet. Pharmacol. Ther. 2004, 27, 427–439. [Google Scholar] [CrossRef] [PubMed]
- Toutain, P.L.; Bousquet-Mélou, A. Volumes of distribution. J. Vet. Pharmacol. Ther. 2004, 27, 441–453. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Choi, M.S.; Ji, Y.S.; Kim, I.S.; Kim, G.B.; Bae, I.Y.; Gye, M.C.; Yoo, H.H. Pharmacokinetic Properties of Acetyl Tributyl Citrate, a Pharmaceutical Excipient. Pharmaceutics 2018, 10, 177. [Google Scholar] [CrossRef] [PubMed]
QC level | Nominal (ng/mL) | Intra-day (n = 5) | Inter-run (n = 3) | ||
---|---|---|---|---|---|
Accuracy (%) | CV (%) | Accuracy (%) | CV (%) | ||
LLOQ | 10 | 101.5 | 8.0 | 98.2 | 6.9 |
Low | 30 | 102.9 | 6.8 | 98.2 | 3.3 |
Mid | 300 | 100.7 | 4.5 | 99.8 | 2.6 |
High | 1600 | 89.1 | 3.0 | 94.0 | 7.4 |
Stability Test | % Recovery | ||
---|---|---|---|
50 ng/mL | 1600 ng/mL | ||
Short-term | (RT a for 8 h) | 96.3 ± 3.6 | 97.9 ± 7.0 |
Long-term | (−20 °C for 21 day) | 90.8 ± 6.1 | 97.3 ± 7.5 |
Freeze–thaw | (−20 °C, 3 cycles) | 105.8 ± 8.7 | 111.6 ± 4.9 |
Post-preparative | (4 °C for 12 h) | 95.1 ± 4.6 | 91.0 ± 4.3 |
Parameter | IV (10 mg/kg, n = 6) | PO (500 mg/kg, n = 6) | ||
---|---|---|---|---|
GM | 95% CI | GM | 95% CI | |
AUC (ng·h/mL) | 78.1 | 64.5–95.7 | 529.6 | 379.4–893.9 |
Tmax (h) a | - | - | 0.5 | 0.25–0.5 |
Cmax (ng/mL) | 1219.6 | 1049.6–1427.6 | 444.5 | 271.8–834.3 |
T1/2 (h) | 0.03 | 0.02–0.03 | 1.03 | 0.75–1.46 |
Vz (L/kg) | 4.6 | 3.7–5.8 | 215.6 b | 8.1–733.2 |
Cl (L/h/kg) | 125.1 | 105.0–150.6 | 145.5 c | 47.6–333.1 |
MRT (h) | 0.03 | 0.03–0.04 | 6.56 | 3.58–12.63 |
Name | RT | Proposed Elemental Composition [M+H]+ | Exact Mass | Measured Mass | Error (ppm) |
---|---|---|---|---|---|
ATEC | 17.4 | C14H22O8 | 319.1387 | 319.1388 | −0.3 |
Acetyl diethyl citrate | 11.5 | C12H18O8 | 291.1074 | 291.1075 | −0.3 |
Diethyl citrate | 7.7 | C10H17O7 | 250.1047 | 250.1057 | −4.0 |
Monoethyl citrate | 3.4 | C8H12O7 | 221.0656 | 221.0655 | 0.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.; Ji, Y.S.; Rehman, S.U.; Choi, M.S.; Gye, M.C.; Yoo, H.H. Pharmacokinetics and Metabolism of Acetyl Triethyl Citrate, a Water-Soluble Plasticizer for Pharmaceutical Polymers in Rats. Pharmaceutics 2019, 11, 162. https://doi.org/10.3390/pharmaceutics11040162
Kim H, Ji YS, Rehman SU, Choi MS, Gye MC, Yoo HH. Pharmacokinetics and Metabolism of Acetyl Triethyl Citrate, a Water-Soluble Plasticizer for Pharmaceutical Polymers in Rats. Pharmaceutics. 2019; 11(4):162. https://doi.org/10.3390/pharmaceutics11040162
Chicago/Turabian StyleKim, Hyeon, Young Seok Ji, Shaheed Ur Rehman, Min Sun Choi, Myung Chan Gye, and Hye Hyun Yoo. 2019. "Pharmacokinetics and Metabolism of Acetyl Triethyl Citrate, a Water-Soluble Plasticizer for Pharmaceutical Polymers in Rats" Pharmaceutics 11, no. 4: 162. https://doi.org/10.3390/pharmaceutics11040162
APA StyleKim, H., Ji, Y. S., Rehman, S. U., Choi, M. S., Gye, M. C., & Yoo, H. H. (2019). Pharmacokinetics and Metabolism of Acetyl Triethyl Citrate, a Water-Soluble Plasticizer for Pharmaceutical Polymers in Rats. Pharmaceutics, 11(4), 162. https://doi.org/10.3390/pharmaceutics11040162