Synchronized Optical and Acoustic Droplet Vaporization for Effective Sonoporation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of AuNDs
2.2. Phantom Design and Wide Focused Laser Beam Setup
2.3. Experimental Setup
2.4. Vaporization Signals Detection
2.5. Differential Inertial Cavitation Dose and Acoustic Pressure Measurement
2.6. Sonoporation Rate and Cell Death Rate Measurement
3. Results
3.1. Characterization of AuNDs
3.2. Synchronized Optical and Acoustic Droplet Vaporization
3.3. Periodical Cavitation Dynamics and the Relationship between Vaporization and Cavitation
3.4. Comparison of Vaporization and Cavitation Events
3.5. Synchronized ODV- and ADV-Based Sonoporation
3.6. Photoacoustic Imaging
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bouakaz, A.; Zeghimi, A.; Doinikov, A.A. Sonoporation: Concept and Mechanisms. Adv. Exp. Med. Biol. 2016, 880, 175–189. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Wang, T.Y.; Willmann, J.K. Sonoporation: Applications for Cancer Therapy. Adv. Exp. Med. Biol. 2016, 880, 263–291. [Google Scholar] [CrossRef] [PubMed]
- Hashizume, H.; Baluk, P.; Morikawa, S.; McLean, J.W.; Thurston, G.; Roberge, S.; Jain, R.K.; McDonald, D.M. Openings between defective endothelial cells explain tumor vessel leakiness. Am. J. Pathol. 2000, 156, 1363–1380. [Google Scholar] [CrossRef]
- Rapoport, N. Drug-Loaded Perfluorocarbon Nanodroplets for Ultrasound-Mediated Drug Delivery. Adv. Exp. Med. Biol. 2016, 880, 221–241. [Google Scholar] [CrossRef] [PubMed]
- Singh, Y.; Meher, J.G.; Raval, K.; Khan, F.A.; Chaurasia, M.; Jain, N.K.; Chourasia, M.K. Nanoemulsion: Concepts, development and applications in drug delivery. J. Control. Release Off. J. Control. Release Soc. 2017, 252, 28–49. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.Y.; Pitt, W.G. Acoustic droplet vaporization in biology and medicine. BioMed Res. Int. 2013, 2013, 404361. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y. Application of acoustic droplet vaporization in ultrasound therapy. J. Ther. Ultrasound 2015, 3, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pitt, W.G.; Singh, R.N.; Perez, K.X.; Husseini, G.A.; Jack, D.R. Phase transitions of perfluorocarbon nanoemulsion induced with ultrasound: A mathematical model. Ultrason. Sonochem. 2014, 21, 879–891. [Google Scholar] [CrossRef] [PubMed]
- Schad, K.C.; Hynynen, K. In vitro characterization of perfluorocarbon droplets for focused ultrasound therapy. Phys. Med. Biol. 2010, 55, 4933–4947. [Google Scholar] [CrossRef] [PubMed]
- Kripfgans, O.D.; Fabiilli, M.L.; Carson, P.L.; Fowlkes, J.B. On the acoustic vaporization of micrometer-sized droplets. J. Acoust. Soc. Am. 2004, 116, 272–281. [Google Scholar] [CrossRef] [PubMed]
- Lo, A.H.; Kripfgans, O.D.; Carson, P.L.; Rothman, E.D.; Fowlkes, J.B. Acoustic droplet vaporization threshold: Effects of pulse duration and contrast agent. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2007, 54, 933–946. [Google Scholar] [CrossRef] [PubMed]
- Sheeran, P.S.; Matsuura, N.; Borden, M.A.; Williams, R.; Matsunaga, T.O.; Burns, P.N.; Dayton, P.A. Methods of Generating Submicrometer Phase-Shift Perfluorocarbon Droplets for Applications in Medical Ultrasonography. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2017, 64, 252–263. [Google Scholar] [CrossRef] [PubMed]
- Shpak, O.; Verweij, M.; Vos, H.J.; de Jong, N.; Lohse, D.; Versluis, M. Acoustic droplet vaporization is initiated by superharmonic focusing. Proc. Natl. Acad. Sci. USA 2014, 111, 1697–1702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, R.; Wright, C.; Cherin, E.; Reznik, N.; Lee, M.; Gorelikov, I.; Foster, F.S.; Matsuura, N.; Burns, P.N. Characterization of submicron phase-change perfluorocarbon droplets for extravascular ultrasound imaging of cancer. Ultrasound Med. Biol. 2013, 39, 475–489. [Google Scholar] [CrossRef] [PubMed]
- Kripfgans, O.D.; Fowlkes, J.B.; Miller, D.L.; Eldevik, O.P.; Carson, P.L. Acoustic droplet vaporization for therapeutic and diagnostic applications. Ultrasound Med. Biol. 2000, 26, 1177–1189. [Google Scholar] [CrossRef]
- Kripfgans, O.D.; Fowlkes, J.B.; Woydt, M.; Eldevik, O.P.; Carson, P.L. In vivo droplet vaporization for occlusion therapy and phase aberration correction. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2002, 49, 726–738. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Liu, Y.; Zhao, J.; Zhou, M.; Bouchard, R.R.; Mitcham, T.; Wallace, M.; Stafford, R.J.; Li, C.; Gupta, S.; et al. In vitro and in vivo mapping of drug release after laser ablation thermal therapy with doxorubicin-loaded hollow gold nanoshells using fluorescence and photoacoustic imaging. J. Control. Release Off. J. Control. Release Soc. 2013, 172, 152–158. [Google Scholar] [CrossRef] [Green Version]
- Si, T.; Li, G.; Wu, Q.; Zhu, Z.; Luo, X.; Xu, R.X. Optical droplet vaporization of nanoparticle-loaded stimuli-responsive microbubbles. Appl. Phys. Lett. 2016, 108, 111109. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Y.; Niu, C.; Strohm, E.M.; Zheng, Y.; Ran, H.; Huang, R.; Zhou, D.; Gong, Y.; Wang, Z.; et al. Laser-Activatable PLGA Microparticles for Image-Guided Cancer Therapy In Vivo. Adv. Funct. Mater. 2014, 24, 7674–7680. [Google Scholar] [CrossRef]
- Strohm, E.; Rui, M.; Gorelikov, I.; Matsuura, N.; Kolios, M. Vaporization of perfluorocarbon droplets using optical irradiation. Biomed. Opt. Express 2011, 2, 1432–1442. [Google Scholar] [CrossRef] [Green Version]
- Wilson, K.; Homan, K.; Emelianov, S. Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging. Nat. Commun. 2012, 3, 618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, M.; Xiong, H.; Zou, H.; Li, M.; Li, P.; Zhou, Y.; Xu, Y.; Jian, J.; Liu, F.; Zhao, H.; et al. A laser-activated multifunctional targeted nanoagent for imaging and gene therapy in a mouse xenograft model with retinoblastoma Y79 cells. Acta Biomater. 2018, 70, 211–226. [Google Scholar] [CrossRef] [PubMed]
- Dove, J.D.; Mountford, P.A.; Murray, T.W.; Borden, M.A. Engineering optically triggered droplets for photoacoustic imaging and therapy. Biomed. Opt. Express 2014, 5, 4417–4427. [Google Scholar] [CrossRef] [PubMed]
- Hannah, A.S.; VanderLaan, D.; Chen, Y.S.; Emelianov, S.Y. Photoacoustic and ultrasound imaging using dual contrast perfluorocarbon nanodroplets triggered by laser pulses at 1064 nm. Biomed. Opt. Express 2014, 5, 3042–3052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jian, J.; Liu, C.; Gong, Y.; Su, L.; Zhang, B.; Wang, Z.; Wang, D.; Zhou, Y.; Xu, F.; Li, P.; et al. India ink incorporated multifunctional phase-transition nanodroplets for photoacoustic/ultrasound dual-modality imaging and photoacoustic effect based tumor therapy. Theranostics 2014, 4, 1026–1038. [Google Scholar] [CrossRef]
- Liu, W.W.; Liu, S.W.; Liou, Y.R.; Wu, Y.H.; Yang, Y.C.; Wang, C.R.; Li, P.C. Nanodroplet-Vaporization-Assisted Sonoporation for Highly Effective Delivery of Photothermal Treatment. Sci. Rep. 2016, 6, 24753. [Google Scholar] [CrossRef] [PubMed]
- Farny, C.H.; Wu, T.; Holt, R.G.; Murray, T.W.; Roy, R.A. Nucleating cavitation from laser-illuminated nano-particles. Acoust. Res. Lett. Online 2005, 6, 138. [Google Scholar] [CrossRef]
- McLaughlan, J.R.; Roy, R.A.; Ju, H.; Murray, T.W. Ultrasonic enhancement of photoacoustic emissions by nanoparticle-targeted cavitation. Opt. Lett. 2010, 35, 2127–2129. [Google Scholar] [CrossRef]
- Ju, H.; Roy, R.A.; Murray, T.W. Gold nanoparticle targeted photoacoustic cavitation for potential deep tissue imaging and therapy. Biomed. Opt. Express 2013, 4, 66–76. [Google Scholar] [CrossRef]
- Arnal, B.; Perez, C.; Wei, C.W.; Xia, J.; Lombardo, M.; Pelivanov, I.; Matula, T.J.; Pozzo, L.D.; O’Donnell, M. Sono-photoacoustic imaging of gold nanoemulsions: Part I. Exposure thresholds. Photoacoustics 2015, 3, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Arnal, B.; Wei, C.W.; Perez, C.; Nguyen, T.M.; Lombardo, M.; Pelivanov, I.; Pozzo, L.D.; O’Donnell, M. Sono-photoacoustic imaging of gold nanoemulsions: Part II. Real time imaging. Photoacoustics 2015, 3, 11–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, C.W.; Xia, J.; Lombardo, M.; Perez, C.; Arnal, B.; Larson-Smith, K.; Pelivanov, I.; Matula, T.; Pozzo, L.; O’Donnell, M. Laser-induced cavitation in nanoemulsion with gold nanospheres for blood clot disruption: In vitro results. Opt. Lett. 2014, 39, 2599–2602. [Google Scholar] [CrossRef] [PubMed]
- Reznik, N.; Williams, R.; Burns, P.N. Investigation of vaporized submicron perfluorocarbon droplets as an ultrasound contrast agent. Ultrasound Med. Biol. 2011, 37, 1271–1279. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.; Russakow, D.; Rodgers, T.; Sarkar, K.; Cochran, M.; Wheatley, M.A. Determination of the interfacial rheological properties of a poly(DL-lactic acid)-encapsulated contrast agent using in vitro attenuation and scattering. Ultrasound Med. Biol. 2013, 39, 1277–1291. [Google Scholar] [CrossRef]
- Lai, C.Y.; Wu, C.H.; Chen, C.C.; Li, P.C. Quantitative relations of acoustic inertial cavitation with sonoporation and cell viability. Ultrasound Med. Biol. 2006, 32, 1931–1941. [Google Scholar] [CrossRef]
- Fan, Z.; Kumon, R.E.; Deng, C.X. Mechanisms of microbubble-facilitated sonoporation for drug and gene delivery. Ther. Deliv. 2014, 5, 467–486. [Google Scholar] [CrossRef] [Green Version]
- Helfield, B.; Chen, X.; Watkins, S.C.; Villanueva, F.S. Biophysical insight into mechanisms of sonoporation. Proc. Natl. Acad. Sci. USA 2016, 113, 9983–9988. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.; Chang, N.; Wang, R.; Liu, X.; Guo, S.; Wang, S.; Zong, Y.; Wan, M. Acoustic droplet vaporization and inertial cavitation thresholds and efficiencies of nanodroplets emulsions inside the focused region using a dual-frequency ring focused ultrasound. Ultrason. Sonochem. 2018, 48, 532–537. [Google Scholar] [CrossRef]
- Patel, N.B.; Tan, B.; Venkatakrishnan, K. Study of nanostructure growth with nanoscale apex induced by femtosecond laser irradiation at megahertz repetition rate. Nanoscale Res. Lett. 2013, 8, 185. [Google Scholar] [CrossRef]
- Zijlstra, P.; Chon, J.W.; Gu, M. Effect of heat accumulation on the dynamic range of a gold nanorod doped polymer nanocomposite for optical laser writing and patterning. Opt. Express 2007, 15, 12151–12160. [Google Scholar] [CrossRef]
- Longsine-Parker, W.; Wang, H.; Koo, C.; Kim, J.; Kim, B.; Jayaraman, A.; Han, A. Microfluidic electro-sonoporation: A multi-modal cell poration methodology through simultaneous application of electric field and ultrasonic wave. Lab Chip 2013, 13, 2144–2152. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Wan, J.M.; Yu, A.C. Membrane perforation and recovery dynamics in microbubble-mediated sonoporation. Ultrasound Med. Biol. 2013, 39, 2393–2405. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.-W.; Huang, S.-H.; Li, P.-C. Synchronized Optical and Acoustic Droplet Vaporization for Effective Sonoporation. Pharmaceutics 2019, 11, 279. https://doi.org/10.3390/pharmaceutics11060279
Liu W-W, Huang S-H, Li P-C. Synchronized Optical and Acoustic Droplet Vaporization for Effective Sonoporation. Pharmaceutics. 2019; 11(6):279. https://doi.org/10.3390/pharmaceutics11060279
Chicago/Turabian StyleLiu, Wei-Wen, Sy-Han Huang, and Pai-Chi Li. 2019. "Synchronized Optical and Acoustic Droplet Vaporization for Effective Sonoporation" Pharmaceutics 11, no. 6: 279. https://doi.org/10.3390/pharmaceutics11060279
APA StyleLiu, W. -W., Huang, S. -H., & Li, P. -C. (2019). Synchronized Optical and Acoustic Droplet Vaporization for Effective Sonoporation. Pharmaceutics, 11(6), 279. https://doi.org/10.3390/pharmaceutics11060279