Pharmacogenomic Characterization in Bipolar Spectrum Disorders
Abstract
:1. Introduction
2. Clinical Classification of Bipolar Spectrum Disorders
- Bipolar I disorder (BDI): The characteristic that primarily characterizes this condition is alternating manic and depressive episodes. BDI is characterized by the appearance of one or more manic or mixed episodes (an overt phase of mania concomitant with a full-blown phase of depression) lasting at least a week. Patients with BDI can also experience episodes of major depression.
- Bipolar II disorder (BDII): This condition is characterized by alternating depressive and hypomanic episodes. Type II bipolar disorder is a mental disease similar to type I bipolar disorder, with moods that cycle between highs and lows, although in BDII the “highs” never reach a complete mania state (hypomania). Subjects with bipolar II disorder suffer more frequently from depressive episodes than from hypomania. Given that hypomania can be confused with normal happiness or even normal functioning, bipolar II disorder can often be misdiagnosed as a unipolar depression.
- Cyclothymia: This condition is characterized by the alternation of mild depressive episodes and mild hypomanic episodes. In cyclothymia, a person has hypomania (as in bipolar II disorder) that frequently alternates with short periods of mild depression. When present, however, the symptoms of depression do not last long.
- Bipolar disorder not otherwise specified (more recently labeled “not elsewhere classified”): in bipolar disorder not elsewhere classified, people have symptoms of mania or hypomania that are too low or too brief to meet the diagnostic criteria for a syndrome.
3. Pharmacological Treatments of Bipolar Spectrum Disorders
3.1. Lithium
3.2. Antiepileptics as Mood Stabilizers
3.2.1. Valproic Acid
3.2.2. Carbamazepine
3.2.3. Lamotrigine
3.3. Atypical Antipsychotics
3.4. Benzodiazepines
3.5. Antidepressants
3.6. Associations
4. Genetics of Bipolar Spectrum Disorders
5. Pharmacogenomics of Bipolar Spectrum Disorder
5.1. Pharmacogenomics of Pharmacodynamic Pathways
5.2. Pharmacogenomics of Pharmacokinetic Pathways
6. Conclusions
Funding
Conflicts of Interest
References
- Bobo, W.V. The diagnosis and management of bipolar I and II disorders: Clinical practice update. Mayo Clin. Proc. 2017, 92, 1532–1551. [Google Scholar] [CrossRef] [Green Version]
- Ghaemi, S.N.; Sachs, G.S.; Chiou, A.M.; Pandurangi, A.K.; Goodwin, F.K. Is bipolar disorder still underdiagnosed? Are antidepressants overutilized? J. Affect. Disord. 1999, 52, 135–144. [Google Scholar] [CrossRef]
- Ghaemi, S.N.; Hsu, D.J.; Soldani, F.; Goodwin, F.K. Antidepressants in bipolar disorder: The case for caution. Bipolar Disord. 2003, 5, 421–433. [Google Scholar] [CrossRef] [Green Version]
- Grande, I.; Berk, M.; Birmaher, B.; Vieta, E. Bipolar disorder. Lancet 2016, 387, 1561–1572. [Google Scholar] [CrossRef]
- Yatham, L.N.; Kennedy, S.H.; Parikh, S.V.; Schaffer, A.; Bond, D.J.; Frey, B.N.; Sharma, V.; Goldstein, B.I.; Rej, S.; Beaulieu, S.; et al. Canadian Network for Mood and Anxiety Treatments (CANMAT) and International Society for Bipolar Disorders (ISBD) 2018 guidelines for the management of patients with bipolar disorder. Bipolar Disord. 2018, 20, 97–170. [Google Scholar] [CrossRef]
- Benazzi, F. Bipolar disorder—Focus on bipolar II disorder and mixed depression. Lancet 2018, 369, 935–945. [Google Scholar] [CrossRef]
- Phillips, M.L.; Kupfer, D.J. Bipolar disorder diagnosis: Challenges and future directions. Lancet 2013, 381, 1663–1671. [Google Scholar] [CrossRef] [Green Version]
- Scott, J.; Leboyer, M. Consequences of delayed diagnosis of bipolar disorders. Encephale 2011, 37, S173–S175. [Google Scholar] [CrossRef]
- Edvardsen, J.; Torgersen, S.; Røysamb, E.; Lygren, S.; Skre, I.; Onstad, S.; Oien, P.A. Heritability of bipolar spectrum disorders. Unity or heterogeneity? J. Affect Disord. 2008, 106, 229–240. [Google Scholar] [CrossRef] [Green Version]
- Angst, J. The bipolar spectrum. Br. J. Psychiatry 2007, 190, 189–191. [Google Scholar] [CrossRef] [Green Version]
- Dias, V.V.; Balanzá-Martinez, V.; Soeiro-de-Souza, M.G.; Moreno, R.A.; Figueira, M.L.; Machado-Vieira, R.; Vieta, E. Pharmacological approaches in bipolar disorders and the impact on cognition: A critical overview. Acta Psychiatr. Scand. 2012, 126, 315–331. [Google Scholar] [CrossRef]
- Manji, H.K.; Quiroz, J.A.; Payne, J.L.; Singh, J.; Lopes, B.P.; Viegas, J.S.; Zarate, C.A. The underlying neurobiology of bipolar disorder. World Psychiatry 2003, 2, 136. [Google Scholar]
- Chee, I.S.; Lee, S.W.; Kim, J.L.; Wang, S.K.; Shin, Y.O.; Shin, S.C.; Lee, Y.H.; Hwang, H.M.; Lim, M.R. 5-HT2A receptor gene promoter polymorphism–1438A/G and bipolar disorder. Psychiatric Genet. 2001, 11, 111–114. [Google Scholar] [CrossRef]
- Du, L.; Bakish, D.; Lapierre, Y.D.; Ravindran, A.V.; Hrdina, P.D. Association of polymorphism of serotonin 2A receptor gene with suicidal ideation in major depressive disorder. Am. J. Med. Genet. 2000, 96, 56–60. [Google Scholar] [CrossRef]
- Fortinguerra, S.; Buriani, A.; Sorrenti, V.; Lenzi, M.; Giusti, P. Molecular network-selected pharmacogenomics in a case of bipolar spectrum disorder. Pharmacogenomics 2017, 18, 1631–1642. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Arlington, VA, USA, 2013. [Google Scholar]
- Henderson, D.K.; Gillespie, R.D. Textbook of Psychiatry, 6th ed.; Humphrey Milford Oxford University Press: London, UK, 1944; p. 3. [Google Scholar]
- Baastrup, P.C.; Schou, M. Lithium as a prophylactic agent: Its effect against recurring depression and manic depressive psychosis. Arch. Gen. Psychiatry 1967, 16, 162–172. [Google Scholar] [CrossRef]
- Shen, W.W. Clinical Psychopharmacology in the Twenty-First Century, Revised Edition; Hochi Publishing Company: Taipei, Taiwan, 2004. (In Mandarin) [Google Scholar]
- Ramachandraiah, C.T.; Subramaniam, N.; Tancer, M. The story of antipsychotics: Past and present. Indian J. Psychiatry 2009, 51, 324. [Google Scholar] [CrossRef]
- Shen, W.W. A history of antipsychotic drug development. Compr. Psychiatry 1999, 40, 407–414. [Google Scholar] [CrossRef]
- Seeman, P. Atypical antipsychotics: Mechanism of action. Focus 2004, 47, 27–58. [Google Scholar] [CrossRef] [Green Version]
- Malhi, G.S.; Tanious, M.; Das, P.; Coulston, C.M.; Berk, M. Potential mechanisms of action of lithium in bipolar disorder. CNS Drugs 2013, 27, 135–153. [Google Scholar] [CrossRef]
- Marmol, F. Lithium: Bipolar disorder and neurodegenerative diseases Possible cellular mechanisms of the therapeutic effects of lithium. Prog. Neuropsychopharmacol. Biol. Psychiatry 2008, 32, 1761–1771. [Google Scholar] [CrossRef]
- Pisanu, C.; Squassina, A.; Alda, M.; Severino, G. Pharmacogenomics of bipolar disorder. In Personalized Psychiatry, 1st ed.; Baune, B., Ed.; Elsevier Academic Press: Amsterdam, The Netherlands, 2019; Chapter 32; ISBN 9780128131763. [Google Scholar]
- Spina, E.; Perugi, G. Antiepileptic drugs: Indications other than epilepsy. Epileptic Disord. 2004, 6, 57–75. [Google Scholar]
- Landmark, C.J. Antiepileptic drugs in non-epilepsy disorders. CNS Drugs 2008, 22, 27–47. [Google Scholar] [CrossRef]
- Friedman, S.D.; Dager, S.R.; Parow, A.; Hirashima, F.; Demopulos, C.; Stoll, A.L.; Lyoo, I.K.; Dunner, D.L.; Renshaw, P.F. Lithium and valproic acid treatment effects on brain chemistry in bipolar disorder. Biol. Psychiatry 2004, 56, 340–348. [Google Scholar] [CrossRef]
- Chiu, C.T.; Wang, Z.; Hunsberger, J.G.; Chuang, D.M. Therapeutic potential of mood stabilizers lithium and valproic acid: Beyond bipolar disorder. Pharmacol. Rev. 2013, 65, 105–142. [Google Scholar] [CrossRef] [Green Version]
- Macritchie, K.; Geddes, J.; Scott, J.; Haslam, D.R.; Goodwin, G. Valproic acid, valproate and divalproex in the maintenance treatment of bipolar disorder. Cochrane Database Syst. Rev. 2001. [Google Scholar] [CrossRef]
- Denicoff, K.D.; Smith-Jackson, E.E.; Disney, E.R.; Ali, S.O.; Leverich, G.S.; Post, R.M. Comparative prophylactic efficacy of lithium, carbamazepine, and the combination in bipolar disorder. J. Clin. Psychiatry 1997, 58, 470–478. [Google Scholar] [CrossRef]
- Kowatch, R.A.; Suppes, T.; Carmody, T.J.; Bucci, J.P.; Hume, J.H.; Kromelis, M.; Emslie, G.J.; Weinberg, W.A.; Rush, A.J. Effect size of lithium, divalproex sodium, and carbamazepine in children and adolescents with bipolar disorder. J. Am. Acad. Child. Adolesc. Psychiatry 2000, 39, 713–720. [Google Scholar] [CrossRef]
- Tohen, M.; Castillo, J.; Pope, H.G.; Herbstein, J. Concomitant use of valproate and carbamazepine in bipolar and schizoaffective disorders. J. Clin. Psychopharmacol. 1994, 14, 67–70. [Google Scholar] [CrossRef]
- Calabrese, J.R.; Bowden, C.L.; Sachs, G.; Yatham, L.N.; Behnke, K.; Mehtonen, O.P.; Montgomery, P.; Ascher, J.; Paska, W.; Earl, N.; et al. A placebo-controlled 18-month trial of lamotrigine and lithium maintenance treatment in recently depressed patients with bipolar I disorder. J. Clin. Psychiatry 2003, 64, 1013–1024. [Google Scholar] [CrossRef]
- Lee, C.Y.; Fu, W.M.; Chen, C.C.; Su, M.J.; Liou, H.H. Lamotrigine inhibits postsynaptic AMPA receptor and glutamate release in the dentate gyrus. Epilepsia 2008, 49, 888–897. [Google Scholar] [CrossRef] [PubMed]
- Yatham, L.N.; Goldstein, J.M.; Vieta, E.; Bowden, C.L.; Grunze, H.; Post, R.M.; Suppes, T.; Calabrese, J.R. Atypical antipsychotics in bipolar depression: Potential mechanisms of action. J. Clin. Psychiatry 2005, 66, 40–48. [Google Scholar] [PubMed]
- Meltzer, H.Y.; Massey, B.W. The role of serotonin receptors in the action of atypical antipsychotic drugs. Curr. Opin. Pharmacol. 2011, 11, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Meltzer, H.Y. The mechanism of action of novel antipsychotic drugs. Schizophr. Bull. 1991, 17, 263–287. [Google Scholar] [CrossRef] [Green Version]
- Thase, M.E.; Macfadden, W.; Weisler, R.H.; Chang, W.; Paulsson, B.; Khan, A.; Calabrese, J.R. BOLDER II Study Group. Efficacy of quetiapine monotherapy in bipolar I and II depression: A double-blind, placebo-controlled study (the BOLDER II study). J. Clin. Psychopharmacol. 2006, 26, 600–609. [Google Scholar] [CrossRef]
- Fornaro, M.; De Berardis, D.; Perna, G.; Solmi, M.; Veronese, N.; Orsolini, L.; Buonaguro, E.F.; Iasevoli, F.; Köhler, C.A.; Carvalho, A.F.; et al. Lurasidone in the treatment of bipolar depression: Systematic review of systematic reviews. Biomed Res. Int. 2017, 2017, 3084859. [Google Scholar] [CrossRef] [Green Version]
- Freeman, M.P.; Freeman, S.A.; McElroy, S.L. The comorbidity of bipolar and anxiety disorders: Prevalence, psychobiology, and treatment issues. J. Affect. Disord. 2002, 68, 1–23. [Google Scholar] [CrossRef]
- Ghaemi, S.N.; Boiman, E.E.; Goodwin, F.K. Diagnosing bipolar disorder and the effect of antidepressants: A naturalistic study. J. Clin. Psychiatry 2000, 61. [Google Scholar] [CrossRef]
- El-Mallakh, R.S.; Vöhringer, P.A.; Ostacher, M.M.; Baldassano, C.F.; Holtzman, N.S.; Whitham, E.A.; Thommi, S.B.; Goodwin, F.K.; Ghaemi, S.N. Antidepressants worsen rapid-cycling course in bipolar depression: A STEP-BD randomized clinical trial. J. Affect. Disord. 2015, 184, 318–321. [Google Scholar] [CrossRef] [Green Version]
- King, S.; Jelen, L.A.; Horne, C.M.; Cleare, A.; Pariante, C.M.; Young, A.H.; Stone, J.M. Inflammation, Glutamate, and Cognition in Bipolar Disorder Type II: A Proof of Concept Study. Front. Psychiatry 2019, 10, 66. [Google Scholar] [CrossRef] [Green Version]
- Jun, C.; Choi, Y.; Lim, S.M.; Bae, S.; Hong, Y.S.; Kim, J.E.; Lyoo, I.K. Disturbance of the glutamatergic system in mood disorders. Exp. Neurobiol. 2014, 23, 28–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalandadze, A.; Wu, Y.; Robinson, M.B. Protein Kinase C Activation Decreases Cell Surface Expression of the GLT-1 Subtype of Glutamate Transporter requirement of a carboxyl-terminal domain and partial dependence on serine 486. J. Biol. Chem. 2002, 277, 45741–45750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guillet, B.A.; Velly, L.J.; Canolle, B.F.M.M.; Masmejean, F.M.; Nieoullon, A.L.; Pisano, P. Differential regulation by protein kinases of activity and cell surface expression of glutamate transporters in neuron-enriched cultures. Neurochem. Int. 2005, 46, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Boehmer, C.; Palmada, M.; Rajamanickam, J.; Schniepp, R.; Amara, S.; Lang, F. Post-translational regulation of EAAT2 function by co-expressed ubiquitin ligase Nedd4-2 is impacted by SGK kinases. J. Neurochem. 2006, 97, 911–921. [Google Scholar] [CrossRef] [PubMed]
- Sattler, R.; Rothstein, J.D. Regulation and dysregulation of glutamate transporters. In Neurotransmitter Transporters; Springer: Berlin/Heidelberg, Germany, 2006; pp. 277–303. [Google Scholar]
- Martínez-Villarreal, J.; García Tardón, N.; Ibáñez, I.; Giménez, C.; Zafra, F. Cell surface turnover of the glutamate transporter GLT-1 is mediated by ubiquitination/deubiquitination. Glia 2012, 60, 1356–1365. [Google Scholar] [CrossRef]
- Rang, H.P.; Dale, M.M.; Ritter, J.M.; Moore, P.K. Ch. 10. In Pharmacology, 5th ed.; Elsevier Churchill Livingstone: London, UK, 2010; ISBN 978-0-443-07145-4. [Google Scholar]
- González-gonzález, I.M.; García-tardón, N.; Giménez, C.; Zafra, F. PKC-dependent endocytosis of the GLT1 glutamate transporter depends on ubiquitylation of lysines located in a C-terminal cluster. Glia 2008, 56, 963–974. [Google Scholar] [CrossRef]
- Reynolds, G.P. Receptor mechanisms of antipsychotic drug action in bipolar disorder—Focus on asenapine. Ther. Adv. Psychopharm. 2011, 1, 197–204. [Google Scholar] [CrossRef] [Green Version]
- Smoller, J.W.; Finn, C.T. Family, twin, and adoption studies of bipolar disorder. Am. J. Med. Genet. Part C Semin. Med. Genet. 2003, 123, 48–58. [Google Scholar] [CrossRef]
- Stahl, E.A.; Breen, G.; Forstner, A.J.; McQuillin, A.; Ripke, S.; Trubetskoy, V.; Mattheisen, M.; Wang, Y.; Coleman, J.R.; Gaspar, H.A.; et al. Genome-wide association study identifies 30 loci associated with bipolar disorder. Nature Genet. 2019, 51, 793. [Google Scholar] [CrossRef]
- Kessler, R.C.; Rubinow, D.R.; Holmes, C.; Abelson, J.M.; Zhao, S. The epidemiology of DSM-III-R bipolar I disorder in a general population survey. Psychol. Med. 1997, 27, 1079–1089. [Google Scholar] [CrossRef]
- Gershon, E.S.; Hamovit, J.; Guroff, J.J.; Dibble, E.; Leckman, J.F.; Sceery, W.; Targum, S.D.; Nurnberger, J.I., Jr.; Goldin, L.R.; Bunney, W.E., Jr. A family study of schizoaffective, bipolar I, bipolar II, unipolar, and normal control probands. Arch. Gen. Psychiatry 1982, 39, 1157–1167. [Google Scholar] [CrossRef] [PubMed]
- Andreasen, N.C.; Rice, J.; Endicott, J.; Coryell, W.; Grove, W.M.; Reich, T. Familial rates of affective disorder: A report from the National Institute of Mental Health Collaborative Study. Arch. Gen. Psychiatry 1987, 44, 461–469. [Google Scholar] [CrossRef] [PubMed]
- Heun, R.; Maier, W. The distinction of bipolar II disorder from bipolar I and recurrent unipolar depression: Results of a controlled family study. Acta Psychiatr. Scand. 1993, 87, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Barnett, J.H.; Smoller, J.W. The genetics of bipolar disorder. Neuroscience 2009, 164, 331–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craddock, N.; Sklar, P. Genetics of bipolar disorder. Lancet 2013, 381, 1654–1662. [Google Scholar] [CrossRef]
- Ferreira, M.A.; O’Donovan, M.C.; Meng, Y.A.; Jones, I.R.; Ruderfer, D.M.; Jones, L.; Fan, J.; Kirov, G.; Perlis, R.H.; Green, E.K.; et al. Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nature Genet. 2008, 40, 1056. [Google Scholar] [CrossRef] [Green Version]
- Psychiatric GWAS Consortium Bipolar Disorder Working Group. Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nature Genet. 2011, 43, 977. [Google Scholar] [CrossRef]
- Saiz-Rodríguez, M.; Belmonte, C.; Román, M.; Ochoa, D.; Jiang-Zheng, C.; Koller, D.; Mejía, G.; Zubiaur, P.; Wojnicz, A.; Abad-Santos, F. Effect of ABCB1 C3435T polymorphism on pharmacokinetics of antipsychotics and antidepressants. Basic. Clin. Pharmacol. Toxicol. 2018, 123, 474–485. [Google Scholar] [CrossRef]
- Buriani, A.; Fortinguerra, S.; Carrara, M.; Pelkonen, O. Systems network pharmaco-toxicology in the study of herbal medicines. In Toxicology of Herbal Products; Springer: Cham, Germany, 2017; pp. 129–164. [Google Scholar]
- Table of Pharmacogenomic Biomarkers in Drug Labeling (FDA). Available online: https://www.fda.gov/drugs/science-and-research-drugs/table-pharmacogenomic-biomarkers-drug-labeling (accessed on 1 September 2019).
- Pharmgkb. Available online: https://www.pharmgkb.org (accessed on 1 September 2019).
- The DrugBank database. Available online: https://www.drugbank.ca/ (accessed on 1 September 2019).
- GeneCards®: The Human Gene Database. Available online: https://www.genecards.org/ (accessed on 1 September 2019).
- Phillips, E.J.; Sukasem, C.; Whirl-Carrillo, M.; Müller, D.J.; Dunnenberger, H.M.; Chantratita, W.; Goldspiel, B.; Chen, Y.T.; Carleton, B.C.; George, A.L., Jr.; et al. Clinical pharmacogenetics implementation consortium guideline for HLA genotype and use of carbamazepine and oxcarbazepine: 2017 update. Clin. Pharmacol. Ther. 2018, 103, 574–581. [Google Scholar] [CrossRef] [Green Version]
- Smith, R.M. Advancing psychiatric pharmacogenomics using drug development paradigms. Pharmacogenomics 2017, 18, 1459–1467. [Google Scholar] [CrossRef]
- Luzum, J.A.; Pakyz, R.E.; Elsey, A.R.; Haidar, C.E.; Peterson, J.F.; Whirl-Carrillo, M.; Handelman, S.K.; Palmer, K.; Pulley, J.M.; Beller, M.; et al. The Pharmacogenomics Research Network Translational Pharmacogenetics Program: Outcomes and metrics of pharmacogenetic implementations across diverse healthcare systems. Clin. Pharmacol. Ther. 2017, 102, 502–510. [Google Scholar] [CrossRef]
- Mas, S.; Gassó, P.; Lafuente, A.; Bioque, M.; Lobo, A.; Gonzàlez-Pinto, A.; Olmeda, M.S.; Corripio, I.; Llerena, A.; Cabrera, B.; et al. Pharmacogenetic study of antipsychotic induced acute extrapyramidal symptoms in a first episode psychosis cohort: Role of dopamine, serotonin and glutamate candidate genes. Pharmacogenom. J. 2016, 16, 439. [Google Scholar] [CrossRef]
- Taylor, S. Association between COMT Val158Met and psychiatric disorders: A comprehensive meta-analysis. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2018, 177, 199–210. [Google Scholar] [CrossRef] [Green Version]
- Al Maruf, A.; Greenslade, A.; Arnold, P.D.; Bousman, C. Antidepressant pharmacogenetics in children and young adults: A systematic review. J. Affect. Disord. 2019, 254, 98–108. [Google Scholar] [CrossRef]
- Serretti, A.; Calati, R.; Mandelli, L.; De Ronchi, D. Serotonin transporter gene variants and behavior: A comprehensive review. Curr. Drug Targets 2006, 7, 1659–1669. [Google Scholar] [CrossRef]
- Qesseveur, G.; Petit, A.C.; Nguyen, H.T.; Dahan, L.; Colle, R.; Rotenberg, S.; Seif, I.; Robert, P.; David, D.; Guilloux, J.P.; et al. Genetic dysfunction of serotonin 2A receptor hampers response to antidepressant drugs: A translational approach. Neuropharmacology 2016, 105, 142–153. [Google Scholar] [CrossRef]
- Lin, J.Y.; Jiang, M.Y.; Kan, Z.M.; Chu, Y. Influence of 5-HTR2A genetic polymorphisms on the efficacy of antidepressants in the treatment of major depressive disorder: A meta-analysis. J. Affect. Disord. 2014, 168, 430–438. [Google Scholar] [CrossRef]
- Niitsu, T.; Fabbri, C.; Bentini, F.; Serretti, A. Pharmacogenetics in major depression: A comprehensive meta-analysis. Prog. Neuropsychopharmacol. Biol. Psychiatry 2013, 45, 183–194. [Google Scholar] [CrossRef]
- Kishi, T.; Yoshimura, R.; Fukuo, Y.; Okochi, T.; Matsunaga, S.; Umene-Nakano, W.; Nakamura, J.; Serretti, A.; Correll, C.U.; Kane, J.M.; et al. The serotonin 1A receptor gene confer susceptibility to mood disorders: Results from an extended meta-analysis of patients with major depression and bipolar disorder. Eur. Arch. Psychiatry Clin. Neurosci. 2013, 263, 105–118. [Google Scholar] [CrossRef]
- Illi, A.; Setälä-Soikkeli, E.; Viikki, M.; Poutanen, O.; Huhtala, H.; Mononen, N.; Lehtimäki, T.; Leinonen, E.; Kampman, O. HTR1A, 5-HTR2A, 5-HTR6, TPH1 and TPH2 polymorphisms and major depression. Neuroreport 2009, 20, 1125–1128. [Google Scholar] [CrossRef]
- Risselada, A.J.; Vehof, J.; Bruggeman, R.; Wilffert, B.; Cohen, D.; Al Hadithy, A.F.; Arends, J.; Mulder, H. Association between HTR2C gene polymorphisms and the metabolic syndrome in patients using antipsychotics: A replication study. Pharmacogenom. J. 2012, 12, 62. [Google Scholar] [CrossRef] [Green Version]
- Rico-Gomis, J.M.; Palazón-Bru, A.; Triano-García, I.; Mahecha-García, L.F.; García-Monsalve, A.; Navarro-Ruiz, A.; Villagordo-Peñalver, B.; Jiménez-Abril, J.; Martínez-Hortelano, A.; Francisco Gil-Guillén, V. Association between the HTR2C rs1414334 C/G gene polymorphism and the development of the metabolic syndrome in patients treated with atypical antipsychotics. PeerJ 2016, 4, e2163. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.P.; Robinson, D.G.; Gallego, J.A.; John, M.; Yu, J.; Addington, J.; Tohen, M.; Kane, J.M.; Malhotra, A.K.; Lencz, T. Association of a schizophrenia risk variant at the DRD2 locus with antipsychotic treatment response in first-episode psychosis. Schizophr. Bull. 2015, 41, 1248–1255. [Google Scholar] [CrossRef] [Green Version]
- Eum, S.; Schneiderhan, M.E.; Brown, J.T.; Lee, A.M.; Bishop, J.R. Pharmacogenetic evaluation to assess breakthrough psychosis with aripiprazole long-acting injection: A case report. BMC Psychiatry 2017, 17, 238. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.P.; Lencz, T.; Malhotra, A.K. D2 receptor genetic variation and clinical response to antipsychotic drug treatment: A meta-analysis. Am. J. Psychiatry 2010, 167, 763–772. [Google Scholar] [CrossRef] [Green Version]
- Keers, R.; Bonvicini, C.; Scassellati, C.; Uher, R.; Placentino, A.; Giovannini, C.; Rietschel, M.; Henigsberg, N.; Kozel, D.; Mors, O. Variation in GNB3 predicts response and adverse reactions to antidepressants. J. Psychopharmacol. 2011, 25, 867–874. [Google Scholar] [CrossRef]
- Amare, A.T.; Schubert, K.O.; Hou, L.; Clark, S.R.; Papiol, S.; Heilbronner, U.; Degenhardt, F.; Tekola-Ayele, F.; Hsu, Y.H.; Shekhtman, T.; et al. Association of polygenic score for schizophrenia and HLA antigen and inflammation genes with response to lithium in bipolar affective disorder: A genome-wide association study. JAMA Psychiatry 2018, 75, 65–74. [Google Scholar]
- van Huis-Tanja, L.H.; Ewing, E.; van der Straaten, R.J.H.M.; Swen, J.J.; Baak-Pablo, R.F.; Punt, C.J.A.; Gelderblom, A.J.; Guchelaar, H.J. Clinical validation study of genetic markers for capecitabine efficacy in metastatic colorectal cancer patients. Pharmacogenet. Genom. 2015, 25, 279–288. [Google Scholar] [CrossRef]
- Clark, S.L.; Souza, R.P.; Adkins, D.E.; Åberg, K.; Bukszár, J.; McClay, J.L.; Sullivan, P.F.; van den Oord, E.J. Genome-wide association study of patient and clinician rated global impression severity during antipsychotic treatment. Pharmacogenet. Genom. 2013, 23, 69. [Google Scholar] [CrossRef] [Green Version]
- Almoguera, B.; Riveiro-Alvarez, R.; López-Castromán, J.; Dorado, P.; Vaquero-Lorenzo, C.; Fernandez-Piqueras, J.; Llerena, A.; Abad-Santos, F.; Baca-García, E.; Dal-Ré, R.; et al. Association of common genetic variants with risperidone adverse events in a Spanish schizophrenic population. Pharmacogenom. J. 2013, 13, 197. [Google Scholar] [CrossRef] [Green Version]
- Ikeda, M.; Yamanouchi, Y.; Kinoshita, Y.; Kitajima, T.; Yoshimura, R.; Hashimoto, S.; O’Donovan, M.C.; Nakamura, J.; Ozaki, N.; Iwata, N. Variants of dopamine and serotonin candidate genes as predictors of response to risperidone treatment in first-episode schizophrenia. Pharmacogenomics 2008, 9, 1437–1443. [Google Scholar] [CrossRef]
- López-Rodríguez, R.; Cabaleiro, T.; Ochoa, D.; Román, M.; Borobia, A.M.; Carcas, A.J.; Ayuso, C.; Novalbos, J.; Abad-Santos, F. Pharmacodynamic genetic variants related to antipsychotic adverse reactions in healthy volunteers. Pharmacogenomics 2013, 14, 1203–1214. [Google Scholar] [CrossRef]
- Squassina, A.; Manchia, M.; Borg, J.; Congiu, D.; Costa, M.; Georgitsi, M.; Chillotti, C.; Ardau, R.; Mitropoulos, K.; Severino, G.; et al. Evidence for association of an ACCN1 gene variant with response to lithium treatment in Sardinian patients with bipolar disorder. Pharmacogenomics 2011, 12, 1559–1569. [Google Scholar] [CrossRef]
- Lane, H.Y.; Liu, Y.C.; Huang, C.L.; Chang, Y.C.; Wu, P.L.; Lu, C.T.; Chang, W.H. Risperidone-related weight gain: Genetic and nongenetic predictors. J. Clin. Psychopharmacol. 2006, 26, 128–134. [Google Scholar] [CrossRef]
- Anttila, V.; Winsvold, B.S.; Gormley, P.; Kurth, T.; Bettella, F.; McMahon, G.; Kallela, M.; Malik, R.; de Vries, B.; Terwindt, G.; et al. Genome-wide meta-analysis identifies new susceptibility loci for migraine. Nat. Genet. 2013, 45, 912. [Google Scholar] [CrossRef]
- Silberberg, G.; Levit, A.; Collier, D.; Clair, D.S.; Munro, J.; Kerwin, R.W.; Tondo, L.; Floris, G.; Breen, G.; Navon, R. Stargazin involvement with bipolar disorder and response to lithium treatment. Pharmacogenet. Genom. 2008, 18, 403–412. [Google Scholar] [CrossRef]
- Xiong, Y.; Wei, Z.; Huo, R.; Wu, X.; Shen, L.; Li, Y.; Shao, L.; Li, J.; Zeng, Z.; Li, T.; et al. A pharmacogenetic study of risperidone on chemokine (C-C motif) ligand 2 (CCL2) in Chinese Han schizophrenia patients. Prog. Neuropsychopharmacol. Biol. Psychiatry 2014, 51, 153–158. [Google Scholar] [CrossRef]
- Nurmi, E.L.; Spilman, S.L.; Whelan, F.; Scahill, L.L.; Aman, M.G.; McDougle, C.J.; Arnold, L.E.; Handen, B.; Johnson, C.; Sukhodolsky, D.G.; et al. Moderation of antipsychotic-induced weight gain by energy balance gene variants in the RUPP autism network risperidone studies. Transl. Psychiatry 2013, 3, e274. [Google Scholar] [CrossRef]
- Vázquez-Bourgon, J.; Arranz, M.J.; Mata, I.; Pelayo-Terán, J.M.; Pérez-Iglesias, R.; Medina-González, L.; Carrasco-Marín, E.; Vázquez-Barquero, J.L.; Crespo-Facorro, B. Serotonin transporter polymorphisms and early response to antipsychotic treatment in first episode of psychosis. Psychiatr. Res. 2010, 175, 189–194. [Google Scholar] [CrossRef]
- Xu, Q.; Wu, X.; Li, M.; Huang, H.; Minica, C.; Yi, Z.; Wang, G.; Shen, L.; Xing, Q.; Shi, Y.; et al. Association studies of genomic variants with treatment response to risperidone, clozapine, quetiapine and chlorpromazine in the Chinese Han population. Pharmacogenom. J. 2016, 16, 357. [Google Scholar] [CrossRef]
- Drugs@FDA: Drug Product Depakene (Valproic Acid), NDA018081, REMEDYREPACK INC. Available online: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&varApplNo=018081 (accessed on 1 September 2019).
- Terzić, T.; Kastelic, M.; Dolžan, V.; Kores Plesničar, B. Genetic polymorphisms in dopaminergic system and treatment-resistant schizophrenia. Psychiatr. Danub. 2016, 28, 127–131. [Google Scholar]
- Hong, C.J.; Liou, Y.J.; Bai, Y.M.; Chen, T.T.; Wang, Y.C.; Tsai, S.J. Dopamine receptor D2 gene is associated with weight gain in schizophrenic patients under long-term atypical antipsychotic treatment. Pharmacogenet. Genom. 2010, 20, 359–366. [Google Scholar] [CrossRef]
- Lencz, T.; Robinson, D.G.; Xu, K.; Ekholm, J.; Sevy, S.; Gunduz-Bruce, H.; Woerner, M.G.; Kane, J.M.; Goldman, D.; Malhotra, A.K. DRD2 promoter region variation as a predictor of sustained response to antipsychotic medication in first-episode schizophrenia patients. Am. J. Psychiatry 2006, 163, 529–531. [Google Scholar] [CrossRef]
- Cabaleiro, T.; López-Rodríguez, R.; Román, M.; Ochoa, D.; Novalbos, J.; Borobia, A.; Carcas, A.; Abad-Santos, F. Pharmacogenetics of quetiapine in healthy volunteers: Association with pharmacokinetics, pharmacodynamics, and adverse effects. Int. Clin. Psychopharmacol. 2015, 30, 82–88. [Google Scholar] [CrossRef]
- Perlis, R.H.; Fijal, B.; Dharia, S.; Houston, J.P. Pharmacogenetic investigation of response to duloxetine treatment in generalized anxiety disorder. Pharmacogenom. J. 2013, 13, 280. [Google Scholar] [CrossRef]
- Porcelli, S.; Balzarro, B.; Lee, S.J.; Han, C.; Patkar, A.A.; Pae, C.U.; Serretti, A. PDE7B, NMBR and EPM2A variants and schizophrenia: A case-control and pharmacogenetics study. Neuropsychobiology 2016, 73, 160–168. [Google Scholar] [CrossRef]
- Monteleone, P.; Milano, W.; Petrella, C.; Canestrelli, B.; Maj, M. Endocannabinoid Pro129Thr FAAH functional polymorphism but not 1359G/A CNR1 polymorphism is associated with antipsychotic-induced weight gain. J. Clin. Psychopharmacol. 2010, 30, 441–445. [Google Scholar] [CrossRef]
- Mao, Y.M.; Liu, Z.Q.; Chen, B.L.; Guo, D.; Han, C.T.; Yang, L.J.; Wang, S.Y.; Fan, L.; Zhou, H.H. Effect of 393T> C polymorphism of GNAS1 gene on dobutamine response in Chinese healthy subjects. J. Clin. Pharmacol. 2009, 49, 929–936. [Google Scholar] [CrossRef]
- Alakus, H.; Warnecke-Eberz, U.; Bollschweiler, E.; Mönig, S.P.; Vallböhmer, D.; Brabender, J.; Drebber, U.; Baldus, S.E.; Riemann, K.; Siffert, W.; et al. GNAS1 T393C polymorphism is associated with histopathological response to neoadjuvant radiochemotherapy in esophageal cancer. Pharmacogenom. J. 2009, 9, 202. [Google Scholar] [CrossRef] [Green Version]
- Noordam, R.; Direk, N.; Sitlani, C.M.; Aarts, N.; Tiemeier, H.; Hofman, A. Identifying genetic loci associated with antidepressant drug response with drug-gene interaction models in a population-based study. J. Psychiatr. Res. 2015, 62, 31–37. [Google Scholar] [CrossRef]
- Balan, S.; Sathyan, S.; Radha, S.K.; Joseph, V.; Radhakrishnan, K.; Banerjee, M. GABRG2, rs211037 is associated with epilepsy susceptibility, but not with antiepileptic drug resistance and febrile seizures. Pharmacogenet. Genom. 2013, 23, 605–610. [Google Scholar] [CrossRef]
- Chen, C.H.; Lee, C.S.; Lee, M.T.M.; Ouyang, W.C.; Chen, C.C.; Chong, M.Y.; Wu, J.Y.; Tan, H.K.; Lee, Y.C.; Chuo, L.J.; et al. Variant GADL1 and response to lithium therapy in bipolar I disorder. N. Engl. J. Med. 2014, 370, 119–128. [Google Scholar] [CrossRef]
- Wang, L.; Fang, C.; Zhang, A.; Du, J.; Yu, L.; Ma, J.; Feng, G.; Xing, Q.; He, L. The—1019 C/G polymorphism of the 5-HT1A receptor gene is associated with negative symptom response to risperidone treatment in schizophrenia patients. J. Clin. Psychopharmacol. 2008, 22, 904–909. [Google Scholar] [CrossRef]
- Stevenson, J.M.; Reilly, J.L.; Harris, M.S.H.; Patel, S.R.; Weiden, P.J.; Prasad, K.M.; Badner, J.A.; Nimgaonkar, V.L.; Keshavan, M.S.; Sweeney, J.A.; et al. Antipsychotic pharmacogenomics in first episode psychosis: A role for glutamate genes. Transl. Psychiatry 2016, 6, e739. [Google Scholar] [CrossRef] [Green Version]
- Hung, C.C.; Ho, J.L.; Chang, W.L.; Tai, J.J.; Hsieh, T.J.; Hsieh, Y.W.; Liou, H.H. Association of genetic variants in six candidate genes with valproic acid therapy optimization. Pharmacogenomics 2011, 12, 1107–1117. [Google Scholar] [CrossRef] [Green Version]
- Fijal, B.A.; Kinon, B.J.; Kapur, S.; Stauffer, V.L.; Conley, R.R.; Jamal, H.H.; Kane, J.M.; Witte, M.M.; Houston, J.P. Candidate-gene association analysis of response to risperidone in African-American and white patients with schizophrenia. Pharmacogenom. J. 2009, 9, 311. [Google Scholar] [CrossRef]
- Lin, Y.F.; Huang, M.C.; Liu, H.C. Glycogen synthase kinase 3β gene polymorphisms may be associated with bipolar I disorder and the therapeutic response to lithium. J. Affect. Disord. 2013, 147, 401–406. [Google Scholar] [CrossRef]
- Li, L.J.; Hu, F.Y.; Wu, X.T.; An, D.M.; Yan, B.; Zhou, D. Predictive markers for carbamazepine and lamotrigine-induced maculopapular exanthema in Han Chinese. Epilepsy Res. 2013, 106, 296–300. [Google Scholar] [CrossRef]
- Koomdee, N.; Pratoomwun, J.; Jantararoungtong, T.; Theeramoke, V.; Tassaneeyakul, W.; Klaewsongkram, J.; Rerkpattanapipat, T.; Santon, S.; Puangpetch, A.; Intusoma, U.; et al. Association of HLA-A and HLA-B alleles with lamotrigine-induced cutaneous adverse drug reactions in the Thai population. Front. Pharmacol. 2017, 8, 879. [Google Scholar] [CrossRef]
- Kazeem, G.R.; Cox, C.; Aponte, J.; Messenheimer, J.; Brazell, C.; Nelsen, A.C. High-resolution HLA genotyping and severe cutaneous adverse reactions in lamotrigine-treated patients. Pharmacogenet. Genom. 2009, 19, 661–665. [Google Scholar] [CrossRef]
- Chen, Z.; Liew, D.; Kwan, P. Real-world cost-effectiveness of pharmacogenetic screening for epilepsy treatment. Neurology 2016, 86, 1086–1094. [Google Scholar] [CrossRef]
- Ramírez, E.; Bellón, T.; Tong, H.Y.; Borobia, A.M.; de Abajo, F.J.; Lerma, V.; Hidalgo, M.A.; Castañer, J.L.; Cabañas, R.; Fiandor, A.; et al. Significant HLA class I type associations with aromatic antiepileptic drug (AED)-induced SJS/TEN are different from those found for the same AED-induced DRESS in the Spanish population. Pharmacol. Res. 2017, 115, 168–178. [Google Scholar] [CrossRef]
- Drugs@FDA: Drug Product Tegretol (Carbamazepine), NDA016608, REMEDYREPACK INC. Available online: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&varApplNo=016608 (accessed on 1 September 2019).
- Wei, Z.; Wang, L.; Zhang, M.; Xuan, J.; Wang, Y.; Liu, B.; Shao, L.; Li, J.; Zeng, Z.; Li, T.; et al. A pharmacogenetic study of risperidone on histamine H3 receptor gene (HRH3) in Chinese Han schizophrenia patients. J. Psychopharmacol. 2012, 26, 813–818. [Google Scholar] [CrossRef]
- Wei, Z.; Wang, L.; Yu, T.; Wang, Y.; Sun, L.; Wang, T.; Huo, R.; Li, Y.; Wu, X.; Qin, S.; et al. Histamine H4 receptor polymorphism: A potential predictor of risperidone efficacy. J. Clin. Psychopharmacol. 2013, 33, 221–225. [Google Scholar] [CrossRef]
- Crisafulli, C.; Chiesa, A.; Han, C.; Lee, S.J.; Park, M.H.; Balzarro, B.; Andrisano, C.; Patkar, A.A.; Pae, C.U.; Serretti, A. Case-control association study for 10 genes in patients with schizophrenia: Influence of 5HTR1A variation rs10042486 on schizophrenia and response to antipsychotics. Eur. Arch. Psychiatry Clin. Neurosci. 2012, 262, 199–205. [Google Scholar] [CrossRef]
- Kato, M.; Fukuda, T.; Wakeno, M.; Okugawa, G.; Takekita, Y.; Watanabe, S.; Yamashita, M.; Hosoi, Y.; Azuma, J.; Kinoshita, T.; et al. Effect of 5-HT1A gene polymorphisms on antidepressant response in major depressive disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2009, 150, 115–123. [Google Scholar] [CrossRef]
- Correia, C.T.; Almeida, J.P.; Santos, P.E.; Sequeira, A.F.; Marques, C.E.; Miguel, T.S.; Abreu, R.L.; Oliveira, G.G.; Vicente, A.M. Pharmacogenetics of risperidone therapy in autism: Association analysis of eight candidate genes with drug efficacy and adverse drug reactions. Pharmacogenom. J. 2010, 10, 418. [Google Scholar] [CrossRef]
- Opgen-Rhein, C.; Brandl, E.J.; Müller, D.J.; Neuhaus, A.H.; Tiwari, A.K.; Sander, T.; Dettling, M. Association of HTR2C, but not LEP or INSIG2, genes with antipsychotic-induced weight gain in a German sample. Pharmacogenomics 2010, 11, 773–780. [Google Scholar] [CrossRef]
- Puangpetch, A.; Unaharassamee, W.; Jiratjintana, N.; Koomdee, N.; Sukasem, C. Genetic polymorphisms of HTR 2C, LEP and LEPR on metabolic syndromes in patients treated with atypical antipsychotic drugs. J. Pharm. Pharmacol. 2018, 70, 536–542. [Google Scholar] [CrossRef]
- Rico-Gomis, J.M.; Palazón-Bru, A.; Triano-García, I.; Fabián, L. Relationship between the rs1414334 C/G polymorphism in the HTR2C gene and smoking in patients treated with atypical antipsychotics. Adicciones 2018, 30, 123–130. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.C.; Zhang, J.; Wang, L.; Li, X.W.; Wang, Y.; Wei, Z.Y.; Ji, J.; Yang, F.P.; Wan, C.L.; Xu, Y.; et al. FHTR2C promoter polymorphisms are associated with risperidone efficacy in Chinese female patients. Pharmacogenomics 2010, 11, 685–692. [Google Scholar] [CrossRef]
- Ruaño, G.; Thompson, P.D.; Windemuth, A.; Seip, R.L.; Dande, A.; Sorokin, A.; Kocherla, M.; Smith, A.; Holford, T.R.; Wu, A.H. Physiogenomic association of statin-related myalgia to serotonin receptors. Muscle Nerve 2007, 36, 329–335. [Google Scholar] [CrossRef]
- Liu, Q.; Jamba, M.; Patrick, C., III; Padmanabhan, S.; Brennan, M.D. Targeted pharmacogenetic analysis of antipsychotic response in the CATIE study. Pharmacogenomics 2012, 13, 1227–1237. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, V.; Deshpande, S.N.; Nimgaonkar, V.L.; Lerer, B.; Thelma, B.K. Genetic correlates of olanzapine-induced weight gain in schizophrenia subjects from north India: Role of metabolic pathway genes. Pharmacogenomics 2008, 1055–1068. [Google Scholar] [CrossRef]
- Calarge, C.A.; Ellingrod, V.L.; Zimmerman, B.; Acion, L.; Sivitz, W.I.; Schlechte, J.A. Leptin promoter-2548G/A variants predict risperidone-associated weight gain in children and adolescents. Psychiat. Genet. 2009, 19, 320. [Google Scholar] [CrossRef]
- Li, H.; Wang, X.; Zhou, Y.; Ni, G.; Su, Q.; Chen, Z.; Li, J.; Chen, X.; Hou, X.; Xie, W.; et al. Association of LEPR and ANKK1 gene polymorphisms with weight gain in epilepsy patients receiving valproic acid. Int. J. Neuropsychoph. 2015, 18. [Google Scholar] [CrossRef] [Green Version]
- Malhotra, A.K.; Correll, C.U.; Chowdhury, N.I.; Müller, D.J.; Gregersen, P.K.; Lee, A.T.; Tiwari, A.K.; Kane, J.M.; Fleischhacker, W.W.; Kahn, R.S.; et al. Association between common variants near the melanocortin 4 receptor gene and severe antipsychotic drug-induced weight gain. Arch. Gen. Psychiatry 2012, 69, 904–912. [Google Scholar] [CrossRef] [Green Version]
- Czerwensky, F.; Leucht, S.; Steimer, W. MC4R rs489693: A clinical risk factor for second generation antipsychotic-related weight gain? Int. J. Neuropsychopharmacol. 2013, 16, 2103–2109. [Google Scholar] [CrossRef] [Green Version]
- Campos-de-Sousa, S.; Guindalini, C.; Tondo, L.; Munro, J.; Osborne, S.; Floris, G.; Pedrazzoli, M.; Tufik, S.; Breen, G.; Collier, D. Nuclear receptor Rev-Erb-α circadian gene variants and lithium carbonate prophylaxis in bipolar affective disorder. J. Biol. Rhythms 2010, 25, 132–137. [Google Scholar] [CrossRef]
- McCarthy, M.J.; Nievergelt, C.M.; Shekhtman, T.; Kripke, D.F.; Welsh, D.K.; Kelsoe, J.R. Functional genetic variation in the Rev-Erbα pathway and lithium response in the treatment of bipolar disorder. Genes Brain Behav. 2011, 10, 852–861. [Google Scholar] [CrossRef] [Green Version]
- Choong, E.; Polari, A.; Kamdem, R.H.; Gervasoni, N.; Spisla, C.; Sirot, E.J.; Bickel, G.G.; Bondolfi, G.; Conus, P.; Eap, C.B. Pharmacogenetic study on risperidone long-acting injection: Influence of cytochrome P450 2D6 and pregnane X receptor on risperidone exposure and drug-induced side-effects. J. Clin. Psychopharmacol. 2013, 33, 289–298. [Google Scholar] [CrossRef]
- Vandenberghe, F.; Guidi, M.; Choong, E.; von Gunten, A.; Conus, P.; Csajka, C.; Eap, C.B. Genetics-based population pharmacokinetics and pharmacodynamics of risperidone in a psychiatric cohort. Clin. Pharmacokinet. 2015, 54, 1259–1272. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Fan, J.; Gao, K.; Li, Z.; Yi, Z.; Wang, L.; Huang, J.; Yuan, C.; Hong, W.; Yu, S.; et al. Neurotrophic tyrosine kinase receptor type 2 (NTRK2) gene associated with treatment response to mood stabilizers in patients with bipolar I disorder. J. Mol. Neurosci. 2013, 50, 305–310. [Google Scholar] [CrossRef] [Green Version]
- Lane, H.Y.; Liu, Y.C.; Huang, C.L.; Chang, Y.C.; Wu, P.L.; Huang, C.H.; Tsai, G.E. RGS4 polymorphisms predict clinical manifestations and responses to risperidone treatment in patients with schizophrenia. J. Clin. Psychopharmacol. 2008, 28, 64–68. [Google Scholar] [CrossRef]
- Campbell, D.B.; Ebert, P.J.; Skelly, T.; Stroup, T.S.; Lieberman, J.; Levitt, P.; Sullivan, P.F. Ethnic stratification of the association of RGS4 variants with antipsychotic treatment response in schizophrenia. Biol. Psychiatry 2008, 63, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Need, A.C.; Keefe, R.S.; Ge, D.; Grossman, I.; Dickson, S.; McEvoy, J.P.; Goldstein, D.B. Pharmacogenetics of antipsychotic response in the CATIE trial: A candidate gene analysis. Eur. J. Hum. Genet. 2009, 17, 946. [Google Scholar] [CrossRef] [Green Version]
- Kumari, R.; Lakhan, R.; Garg, R.K.; Kalita, J.; Misra, U.K.; Mittal, B. Pharmacogenomic association study on the role of drug metabolizing, drug transporters and drug target gene polymorphisms in drug-resistant epilepsy in a north Indian population. Indian J. Hum. Genet. 2011, 17 (Suppl. 1), S32. [Google Scholar]
- Daci, A.; Beretta, G.; Vllasaliu, D.; Shala, A.; Govori, V.; Norata, G.D.; Krasniqi, S. Polymorphic variants of SCN1A and EPHX1 influence plasma carbamazepine concentration, metabolism and pharmacoresistance in a population of Kosovar Albanian epileptic patients. PLoS ONE 2015, 10, e0142408. [Google Scholar] [CrossRef] [Green Version]
- Thompson, C.H.; Kahlig, K.M.; George, A.L., Jr. SCN1A splice variants exhibit divergent sensitivity to commonly used antiepileptic drugs. Epilepsia 2011, 52, 1000–1009. [Google Scholar] [CrossRef] [Green Version]
- Haerian, B.S.; Baum, L.; Kwan, P.; Tan, H.J.; Raymond, A.A.; Mohamed, Z. SCN1A, SCN2A and SCN3A gene polymorphisms and responsiveness to antiepileptic drugs: A multicenter cohort study and meta-analysis. Pharmacogenomics 2013, 14, 1153–1166. [Google Scholar] [CrossRef]
- Kwan, P.; Poon, W.S.; Ng, H.K.; Kang, D.E.; Wong, V.; Ng, P.W.; Lui, C.H.; Sin, N.C.; Wong, K.S.; Baum, L. Multidrug resistance in epilepsy and polymorphisms in the voltage-gated sodium channel genes SCN1A, SCN2A, and SCN3A: Correlation among phenotype, genotype, and mRNA expression. Pharmacogenet. Genom. 2008, 18, 989–998. [Google Scholar] [CrossRef]
- Kwon, J.S.; Joo, Y.H.; Nam, H.J.; Lim, M.; Cho, E.Y.; Jung, M.H.; Choi, J.S.; Kim, B.; Kang, D.H.; Oh, S.; et al. Association of the glutamate transporter gene slc1a1 with atypical antipsychotics—Induced obsessive-compulsive symptoms. Arch. Gen. Psychiatry 2009, 66, 1233–1241. [Google Scholar] [CrossRef] [Green Version]
- Zai, C.C.; Tiwari, A.K.; Mazzoco, M.; de Luca, V.; Müller, D.J.; Shaikh, S.A.; Lohoff, F.W.; Freeman, N.; Voineskos, A.N.; Potkin, S.G.; et al. Association study of the vesicular monoamine transporter gene SLC18A2 with tardive dyskinesia. J. Psychiatr. Res. 2013, 47, 1760–1765. [Google Scholar] [CrossRef]
- Hongkaew, Y.; Medhasi, S.; Pasomsub, E.; Ngamsamut, N.; Puangpetch, A.; Vanwong, N.; Chamnanphon, M.; Limsila, P.; Suthisisang, C.; Wilffert, B.; et al. UGT1A1 polymorphisms associated with prolactin response in risperidone-treated children and adolescents with autism spectrum disorder. Pharmacogenom. J. 2018, 18, 740. [Google Scholar] [CrossRef]
- Serretti, A.; Pae, C.U.; Chiesa, A.; Mandelli, L.; De Ronchi, D. Influence of TAAR6 polymorphisms on response to aripiprazole. Prog. Neuropsychopharmacol. Biol. Psychiatry 2009, 33, 822–826. [Google Scholar] [CrossRef]
- Ma, J.Z.; Beuten, J.; Payne, T.J.; Dupont, R.T.; Elston, R.C.; Li, M.D. Haplotype analysis indicates an association between the DOPA decarboxylase (DDC) gene and nicotine dependence. Hum. Mol. Genet. 2005, 14, 1691–1698. [Google Scholar] [CrossRef] [Green Version]
- Tzvetkov, M.V.; Brockmöller, J.; Roots, I.; Kirchheiner, J. Common genetic variations in human brain-specific tryptophan hydroxylase-2 and response to antidepressant treatment. Pharmacogenet. Genom. 2008, 18, 495–506. [Google Scholar] [CrossRef]
- Relling, M.V.; Klein, T.E. CPIC: Clinical pharmacogenetics implementation consortium of the pharmacogenomics research network. Clin. Pharmacol. Ther. 2011, 89, 464–467. [Google Scholar] [CrossRef]
- Hicks, J.K.; Swen, J.J.; Thorn, C.F.; Sangkuhl, K.; Kharasch, E.D.; Ellingrod, V.L.; Skaar, T.C.; Müller, D.J.; Gaedigk, A.; Sting, J.C. Clinical Pharmacogenetics Implementation Consortium. Clinical Pharmacogenetics Implementation Consortium guideline for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants. Clin. Pharmacol. Ther. 2013, 93, 402–408. [Google Scholar] [CrossRef] [Green Version]
- Gross, T.; Daniel, J. Overview of pharmacogenomic testing in clinical practice. Ment. Health Clin. 2018, 8, 235–241. [Google Scholar] [CrossRef]
- Grover, S.; Bala, K.; Sharma, S.; Gourie-Devi, M.; Baghel, R.; Kaur, H.; Gupta, M.; Talwar, P.; Kukreti, R. Absence of a general association between ABCB1 genetic variants and response to antiepileptic drugs in epilepsy patients. Biochimie 2010, 92, 1207–1212. [Google Scholar] [CrossRef]
- Kuzman, M.R.; Medved, V.; Bozina, N.; Hotujac, L.; Sain, I.; Bilusic, H. The influence of 5-HT2C and MDR1 genetic polymorphisms on antipsychotic-induced weight gain in female schizophrenic patients. Psychiatry Res. 2008, 160, 308–315. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, Y.; Tsuneyama, N.; Fukui, N.; Sugai, T.; Watanabe, J.; Ono, S.; Saito, M.; Inoue, Y.; Someya, T. Effect of risperidone metabolism and P-glycoprotein gene polymorphism on QT interval in patients with schizophrenia. Pharmacogenom. J. 2014, 14, 452. [Google Scholar] [CrossRef]
- Wang, R.; Sun, X.; Deng, Y.S.; Qiu, X.W. ABCB1 1199G> A Polymorphism impacts transport ability of P-gp-mediated antipsychotics. DNA Cell Biol. 2018, 37, 325–329. [Google Scholar] [CrossRef]
- Mi, W.; Liu, F.; Liu, Y.; Du, B.; Xiao, W.; Li, L.; Huang, L.; Lu, T.; He, J.; Shi, L.; et al. Association of ABCB1 gene polymorphisms with efficacy and adverse reaction to risperidone or paliperidone in Han Chinese schizophrenic patients. Neurosci. Bull. 2016, 32, 547–549. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, X.; Li, H.; Zhang, J.; Chen, Z.; Xie, W.; Zhang, J.; Li, J.; Zhou, L.; Huang, M. Polymorphisms of ABCG2, ABCB1 and HNF4α are associated with Lamotrigine trough concentrations in epilepsy patients. Drug. Metab. Pharmacokinet. 2015, 30, 282–287. [Google Scholar] [CrossRef]
- Rafaniello, C.; Sessa, M.; Bernardi, F.F.; Pozzi, M.; Cheli, S.; Cattaneo, D. The predictive value of ABCB1, ABCG2, CYP3A4/5 and CYP2D6 polymorphisms for risperidone and aripiprazole plasma concentrations and the occurrence of adverse drug reactions. Pharmacogenom. J. 2018, 18, 422. [Google Scholar] [CrossRef]
- Wen, Z.P.; Fan, S.S.; Du, C.; Yin, T.; Zhou, B.T.; Peng, Z.F.; Xie, Y.Y.; Zhang, W.; Chen, Y.; Tang, J.; et al. Influence of acylpeptide hydrolase polymorphisms on valproic acid level in Chinese epilepsy patients. Pharmacogenomics 2016, 17, 1219–1225. [Google Scholar] [CrossRef]
- Grover, S.; Talwar, P.; Gourie-Devi, M.; Gupta, M.; Bala, K.; Sharma, S.; Baghel, R.; Kaur, H.; Sharma, A.; Kukreti, R. Genetic polymorphisms in sex hormone metabolizing genes and drug response in women with epilepsy. Pharmacogenomics 2010, 11, 1525–1534. [Google Scholar] [CrossRef]
- Tan, L.; Yu, J.T.; Sun, Y.P.; Ou, J.R.; Song, J.H.; Yu, Y. The influence of cytochrome oxidase CYP2A6, CYP2B6, and CYP2C9 polymorphisms on the plasma concentrations of valproic acid in epileptic patients. Clin. Neurol. Neurosurg. 2010, 112, 320–323. [Google Scholar] [CrossRef]
- Tay, J.K.; Tan, C.H.; Chong, S.A.; Tan, E.C. Functional polymorphisms of the cytochrome P450 1A2 (CYP1A2) gene and prolonged QTc interval in schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 2007, 31, 1297–1302. [Google Scholar] [CrossRef]
- Hodgson, K.; Tansey, K.; Dernovšek, M.Z.; Hauser, J.; Henigsberg, N.; Maier, W.; Mors, O.; Placentino, A.; Rietschel, M.; Souery, D.; et al. Genetic differences in cytochrome P450 enzymes and antidepressant treatment response. J. Psychopharmacol. 2014, 28, 133–141. [Google Scholar] [CrossRef]
- Grasmäder, K.; Verwohlt, P.L.; Rietschel, M.; Dragicevic, A.; Müller, M.; Hiemke, C.; Freymann, N.; Zobel, A.; Maier, W.; Rao, M.L. Impact of polymorphisms of cytochrome-P450 isoenzymes 2C9, 2C19 and 2D6 on plasma concentrations and clinical effects of antidepressants in a naturalistic clinical setting. Eur. J. Clin. Pharmacol. 2004, 60, 329–336. [Google Scholar] [CrossRef]
- Yokono, A.; Morita, S.; Someya, T.; Hirokane, G.; Okawa, M.; Shimoda, K. The effect of CYP2C19 and CYP2D6 genotypes on the metabolism of clomipramine in Japanese psychiatric patients. J. Clin. Psychopharmacol. 2001, 21, 549–555. [Google Scholar] [CrossRef]
- Smith, R.L.; Haslemo, T.; Refsum, H.; Molden, E. Impact of age, gender and CYP2C9/2C19 genotypes on dose-adjusted steady-state serum concentrations of valproic acid—A large-scale study based on naturalistic therapeutic drug monitoring data. Eur. J. Clin. Pharmacol. 2016, 72, 1099–1104. [Google Scholar] [CrossRef]
- Cabaleiro, T.; López-Rodríguez, R.; Ochoa, D.; Román, M.; Novalbos, J.; Abad-Santos, F. Polymorphisms influencing olanzapine metabolism and adverse effects in healthy subjects. Hum. Psychopharm. Clin. 2013, 28, 205–214. [Google Scholar] [CrossRef]
- Drugs@FDA: Drug Product ABILIFY (ARIPIPRAZOLE), NDA021436, Rebel Distributors Corp. Available online: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&varApplNo=021436 (accessed on 1 September 2019).
- Drugs@FDA: Drug Product PERSERIS (Risperidone), NDA210655, Indivior Inc. Available online: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&varApplNo=210655 (accessed on 1 September 2019).
- Findling, R.L.; Nucci, G.; Piergies, A.A.; Gomeni, R.; Bartolic, E.I.; Fong, R.; Carpenter, D.J.; Leeder, J.S.; Gaedigk, A.; Danoff, T.M. Multiple dose pharmacokinetics of paroxetine in children and adolescents with major depressive disorder or obsessive–compulsive disorder. Neuropsychopharmacology 2006, 31, 1274. [Google Scholar] [CrossRef]
- Spigset, O.; Granberg, K.; Hägg, S.; Norström, Å.; Dahlqvist, R. Relationship between fluvoxamine pharmacokinetics and CYP2D6/CYP2C19 phenotype polymorphisms. Eur. J. Clin. Pharmacol. 1997, 52, 129–133. [Google Scholar] [CrossRef]
- Gjestad, C.; Haslemo, T.; Andreassen, O.A.; Molden, E. 4β-Hydroxycholesterol level significantly correlates with steady-state serum concentration of the CYP3A4 substrate quetiapine in psychiatric patients. Br. J. Clin. Pharmacol. 2017, 83, 2398–2405. [Google Scholar] [CrossRef]
- Cuttle, L.; Munns, A.J.; Hogg, N.A.; Scott, J.R.; Hooper, W.D.; Dickinson, R.G.; Gillam, E.M. Phenytoin metabolism by human cytochrome P450: Involvement of P450 3A and 2C forms in secondary metabolism and drug-protein adduct formation. Drug. Metab. Dispos. 2000, 28, 945–950. [Google Scholar]
- Brandl, E.J.; Chowdhury, N.I.; Tiwari, A.K.; Lett, T.A.; Meltzer, H.Y.; Kennedy, J.L.; Müller, D.J. Genetic variation in CYP3A43 is associated with response to antipsychotic medication. J. Neural. Transm. 2015, 122, 29–34. [Google Scholar] [CrossRef]
- Kim, K.A.; Joo, H.J.; Lee, H.M.; Park, J.Y. Influence of ABCB1 and CYP3A5 genetic polymorphisms on the pharmacokinetics of quetiapine in healthy volunteers. Pharmacogenet. Genom. 2014, 24, 35–42. [Google Scholar] [CrossRef]
- Krishnaswamy, S.; Hao, Q.; Al-Rohaimi, A.; Hesse, L.M.; von Moltke, L.L.; Greenblatt, D.J. UDP glucuronosyltransferase (UGT) 1A6 pharmacogenetics: II. Functional impact of the three most common nonsynonymous UGT1A6 polymorphisms (S7A, T181A, and R184S). J. Pharmacol. Exp. Ther. 2015, 313, 1340–1346. [Google Scholar] [CrossRef]
- Mei, S.; Feng, W.; Zhu, L.; Yu, Y.; Yang, W.; Gao, B.; Wu, X.; Zhao, Z.; Fang, F. Genetic polymorphisms and valproic acid plasma concentration in children with epilepsy on valproic acid monotherapy. Seizure 2017, 51, 22–26. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.; Yang, L.Y.; Zhang, M.C.; Liu, S.Y. Correlation of the UGT1A4 gene polymorphism with serum concentration and therapeutic efficacy of lamotrigine in Han Chinese of Northern China. Eur. J. Clin. Pharmacol. 2014, 70, 941–946. [Google Scholar] [CrossRef]
- Chung, J.Y.; Cho, J.Y.; Yu, K.S.; Kim, J.R.; Lim, K.S.; Sohn, D.R.; Shin, S.G.; Jang, I.J. Pharmacokinetic and pharmacodynamic interaction of lorazepam and valproic acid in relation to UGT2B7 genetic polymorphism in healthy subjects. Clin. Pharmacol. Ther. 2008, 83, 595–600. [Google Scholar] [CrossRef]
- Wang, P.; Lin, X.Q.; Cai, W.K.; Xu, G.L.; Zhou, M.D.; Yang, M.; He, G.H. Effect of UGT2B7 genotypes on plasma concentration of valproic acid: A meta-analysis. Eur. J. Clin. Pharmacol. 2018, 74, 433–442. [Google Scholar] [CrossRef]
- Milosheska, D.; Lorber, B.; Vovk, T.; Kastelic, M.; Dolžan, V.; Grabnar, I. Pharmacokinetics of lamotrigine and its metabolite N-2-glucuronide: Influence of polymorphism of UDP-glucuronosyltransferases and drug transporters. Br. J. Clin. Pharmacol. 2016, 82, 399–411. [Google Scholar] [CrossRef] [Green Version]
Gene | Protein | SNPs | Drugs | Results | Level of Evidence (1A Strongest) | Ref. |
---|---|---|---|---|---|---|
ADCY1 | Adenylate cyclase 1 | rs1521470 | lithium | Patients with the AA genotype and bipolar affective disorder may have a decreased response to lithium as compared to patients with the AG or GG genotypes. | 3 | [88] |
ADCY2 | adenylate cyclase 2 | rs1544938 rs4702484 | antipsychotics | Patients with the CC genotype may have increased response to antipsychotics compared to patients with the GG genotype. | 3 | [89] |
ADRB2 | Adrenoceptor beta 2 | rs1042713 rs8050896 | risperidone paliperidone | Patients with the GG or AG genotype may have increased likelihood of sexual adverse events when treated with risperidone as compared to patients with the AA genotype. | 3 | [90,91] |
Patients with the TT genotype may have an increased response to risperidone as compared to patients with the AA or AT genotypes. | 3 | |||||
AKT1 | AKT serine/threonine kinase 1 | rs2494732 | risperidone paliperidone | Patients with the TT may have an increased response to risperidone as compared to patients with the CC or CT genotype. | 3 | [92] |
ANKK1 | Ankyrin repeat and kinase domain containing 1 | rs1800497 | valproic acid aripiprazole risperidone paliperidone | Patients with the AA genotype may have increased risk of side effects including hyperprolactinemia and weight gain, but decreased risk of tardive dyskinesia, as compared to patients with the AG or (GG: increased risk of tardive dyskinesia) genotype. | 2B | [93] |
ASIC2 | Acid sensing ion channel subunit 2 | rs11869731 | lithium | Patients with the CC genotype may have a better response to lithium. | 3 | [94] |
BDNF | Brain derived neurotrophic factor | rs6265 rs11030104 | antipsychotics antidepressants | Patients with the AA genotype and schizophrenia may show less resistance to treatment with antipsychotics as compared to patients with the AG or GG genotype. | 3 | [25,75,95] |
Patients with the CC genotype and depressive disorder may be more likely to respond to paroxetine but less likely to respond to citalopram or antidepressants as compared to patients with the CT or TT genotype. | 3 | |||||
CACNG2 | Calcium voltage-gated channel auxiliary subunit gamma 2 | rs2284018 rs2284017 | lithium | Patients with the CC or CT genotype may be more likely to respond to lithium. | 3 | [96,97] |
CCL2 | C-C motif chemokine ligand 2 | rs4586 | risperidone paliperidone | Patients with the GG genotype and schizophrenia may have a poorer response when treated with risperidone as compared to patients with the AA or AG genotype. | 3 | [98] |
CNR1 | Cannabinoid receptor 1 | rs1049353 rs806378 | aripiprazole clozapine haloperidol olanzapine quetiapine risperidone | Patients with the CC genotype and psychotic disorders may have an increased likelihood of weight gain as compared to patients with the CT and CC genotypes. | 3 | [99] |
COMT | catechol-O-methyltransferase | rs4818 rs4680 rs13306278 | antipsychotics SSRI | Patients with the GG genotype may have a better response to treatment. | 3 | [100,101] |
Patients with the AA genotype may have increased blood pressure when treated with antipsychotics as compared to patients with the GG genotype. | 3 | |||||
Patients with the CC genotype may have increased likelihood of remission when treated with Selective serotonin reuptake inhibitors compared to patients with the TT or CT genotype. | 2B | |||||
CPS1 | Carbamoyl-phosphate synthase 1 | complete gene sequencing | valproic acid Testing suggested by FDA and PMDA | Valproic acid is contraindicated in patients with known urea cycle disorders (UCDs), due to a risk for severe hyperammonemia. UCDs result from mutations in one of several genes, such as carbamoyl-phosphate synthetase 1 (CPS1) deficiency. | none | [102] |
DRD1 | Dopamine receptor D1 | rs4532 | lithium | Patients with the TT genotype may have an increased response to lithium as compared to patients with the CC genotype. | 4 | [103] |
DRD2 | Dopamine receptor D2 | rs1800497 rs1799978 | antipsychotics | Patients with the AA genotype may have increased risk of side effects including hyperprolactinemia and weight gain, but decreased risk of tardive dyskinesia, during treatment with antipsychotic drugs as compared to patients with the AG or GG genotype. | 2B | [93,104,105] |
DRD3 | Dopamine receptor D3 | rs6280 | quetiapine | People with TT genotype may have increased clearance of quetiapine compared with people with genotypes CC or CT. | 3 | [106,107] |
EPM2A | EPM2A, laforin glucan phosphatase | rs1415744 | chlorpromazine clozapine haloperidol olanzapine quetiapine risperidone | Patients with the CC genotype and schizophrenia may have increased response to chlorpromazine, clozapine, haloperidol, olanzapine, quetiapine, and risperidone compared to patients with the CT and TT genotypes. | 3 | [108] |
FAAH | Fatty acid amide hydrolase | rs324420 | aripiprazole clozapine haloperidol olanzapine quetiapine risperidone | Patients with the AA genotype and psychotic disorders who are treated with aripiprazole, clozapine, haloperidol, olanzapine, quetiapine, or risperidone may have an increased likelihood of weight gain of more than 7% of baseline body weight as compared to patients with the CC genotype. | 3 | [109,110,111,112] |
FAM177A1 | Family with sequence similarity 177 member A1 | rs79403677 | lithium | Patients with the GG genotype and bipolar affective disorder may have an increased response to lithium as compared to patients with the GT or TT genotypes. | 3 | [88] |
FAM178B | Family with sequence similarity 178 member B | rs6728642 | lithium | Patients with the AA genotype and bipolar affective disorder may have a decreased response to lithium as compared to patients with the AG or GG genotypes. | 3 | [88] |
FKBP5 | FKBP prolyl isomerase 5 | rs1360780 | clomipramine lithium paroxetine venlafaxine | Patients with the CC genotype may (1) have decreased response to antidepressants (2) have decreased, but not absent, risk for suicide ideation with paroxetine, venlafaxine, clomipramine, and lithium, as compared to patients with the CT or TT genotype. | 2B | [103] |
GABRA1 | Gamma-aminobutyric acid type A receptor alpha1 subunit | rs2279020 | carbamazepine phenytoin valproic acid | Patients with the GG genotype treated with antipsychotics may have increased risk for drug-resistance as compared to patients with the AA genotype. | 3 | [113] |
GADL1 | glutamate decarboxylase like 1 | rs17026688 | lithium | Allele T is associated with increased response to lithium when treated with lithium in people with bipolar disorder as compared to allele C. | none | [90,114] |
GNB3 | G protein subunit beta 3 | rs5443 | risperidone paliperidone olanzapine | Patients with the CC genotype and schizophrenia who are treated with olanzapine may have a decreased, but not absent, risk of weight gain as compared to patients with the CT or TT genotype. | 3 | [115] |
GRAMD1B | GRAM domain containing 1B | rs61123830 | lithium | Patients with the AA genotype and bipolar affective disorder may have a decreased response to lithium as compared to patients with the AG or GG genotypes. | 3 | [88] |
GRID2 | Glutamate ionotropic receptor delta type subunit 2 | rs1875705 | risperidone paliperidone | Patients with the GG genotype may have an increased response to risperidone as compared to patients with the AA and AG genotypes. | 3 | [116] |
GRIN2B | Glutamate ionotropic receptor NMDA type subunit 2B | rs1806201 rs1019385 rs1072388 | risperidone quetiapine valproic acid clozapine | Patients with the GG genotype who are treated with risperidone may have an increased likelihood of adverse reactions as compared to patients with the AA or AG genotype. | 3 | [117] |
Patients with the AA genotype who are treated with quetiapine may have an increased likelihood of neurological adverse reactions and sleepiness as compared to patients with the AG or GG genotype. | 3 | |||||
Patients with the CC genotype and epilepsy may require a decreased dose of valproic acid as compared to patients with the AA or AC genotype. | 3 | |||||
Patients with the GG genotype and schizophrenia may have a worse response when treated with clozapine as compared to patients with the AA or AG genotype. | 3 | |||||
GRM3 | Glutamate metabotropic receptor 3 | rs724226 | risperidone paliperidone | Patients with the GG genotype who are treated with risperidone may have more improvement in symptoms as compared to patients with the AA genotype. | 3 | [118] |
GRM7 | Glutamate metabotropic receptor 7 | rs2069062 | risperidone paliperidone | Patients with the CC genotype may have increased response to risperidone as compared to patients with the CG and GG genotypes. | 3 | [116] |
GSK3B | Glycogen synthase kinase 3 beta | rs334558 rs6438552 | lithium | Patients with the AA genotype and bipolar disorder may be less likely to respond to lithium as compared to patients with the GG or AG genotype. | 3 | [119] |
HLA-A | Major histocompatibility complex, class I, A | HLA-A*02:07:01 HLA-A*30:01:01 HLA-A*33:03 HLA-A*33:03:01 HLA-A*68:01:01:01 | carbamazepine valproic acid lamotrigine topiramate | Increased risk of severe cutaneous adverse reactions. | 2B | [120,121,122] |
HLA-A | Major histocompatibility complex, class I, A | HLA-A*31:01:02 | carbamazepine Testing recommended by HCSC and suggested by FDA and PMDA | Increased risk of severe cutaneous adverse reactions. | 1A | [70] |
HLA-B | Major histocompatibility complex, class I, B | HLA-B*13:02:01 HLA-B*38:01:01 | carbamazepine valproic acid lamotrigine topiramate | Increased risk of Stevens–Johnson syndrome, toxic epidermal necrolysis, and maculopapular exanthema. | 3 | [123,124] |
HLA-B | Major histocompatibility complex, class I, B | HLA-B*15:02:01 | carbamazepine Testing required by FDA and suggested by PMDA | Increased risk of Stevens–Johnson syndrome and toxic epidermal necrolysis. | 1A | [123,125] |
HLA-C | Major histocompatibility complex, class I, C | HLA-C*07:18 HLA-C*08:01 | carbamazepine valproic acid lamotrigine topiramate | Increased risk of Stevens–Johnson syndrome and toxic epidermal necrolysis. | 3 | [122] |
HLA-DQB1 | Major histocompatibility complex, class II, DQ beta 1 | HLA-DQB1*06:09 | carbamazepine valproic acid lamotrigine topiramate | Increased risk of severe cutaneous adverse reactions. | none | [122] |
HLA-DRB1 | major histocompatibility complex, class II, DR beta 1 | HLA-DRB1*13:01:01 | carbamazepine valproic acid lamotrigine topiramate | Increased risk of severe cutaneous adverse reactions. | none | [122] |
HNF4A | Hepatocyte nuclear factor 4 alpha | rs2071197 | lamotrigine | Patients with the AA genotype may have decreased concentrations of lamotrigine compared to patients with the AG and GG genotypes. | 3 | [115] |
HRH3 | Histamine receptor H3 | rs3787429 rs3787430 | risperidone paliperidone | Patients with the TT genotype and schizophrenia may have a better response when treated with risperidone as compared to patients with the CC or CT genotype. | 3 | [126] |
HRH4 | Histamine receptor H4 | rs4483927 | risperidone paliperidone | Patients with the TT genotype and schizophrenia may have a poorer response when treated with risperidone as compared to patients with the GT or GG genotype. | 3 | [127] |
HTR1A | 5-Hydroxytryptamine Receptor 1A | rs6295 rs10042486 rs1364043 | antidepressants amisulpride olanzapine quetiapine risperidone | Patients with the CC genotype may have a decreased likelihood of response to antidepressants as compared to patients with the GG or CG genotype. | 3 | [128,129,130] |
Patients with the TT genotype and schizophrenia may have a better response when treated with antipsychotics, including amisulpride, olanzapine, quetiapine, and risperidone, as compared to patients with the CC or CT genotype. | 3 | |||||
HTR1B | 5-hydroxytryptamine receptor 1B | rs130058 | clomipramine liothyronine lithium nefazodone venlafaxine | Patients with the AA genotype and depression who are treated with clomipramine, liothyronine, lithium, nefazodone, or venlafaxine may have an increased risk for suicidal ideation as compared to patients with the TT genotype. | 3 | [25,75] |
HTR2A | 5-Hydroxytryptamine Receptor 2A | rs7997012 rs9567733 rs6314 | citalopram antipsychotics antidepressants | Patients with the AA genotype who are treated with citalopram may be more likely to have improvement in symptoms as compared to patients with the GG genotype. | 2B | [25,75] |
Patients with the AA genotype and first episode psychosis (FEP) may have a decreased risk for extrapyramidal symptoms when treated with antipsychotics as compared to patients with the AG or GG genotype. | 3 | |||||
Patients with the AA genotype who are treated with antidepressants and other treatments may have a reduced response and reduced likelihood of remission as compared to patients with the AG or GG genotype. | 3 | |||||
HTR2C | 5-Hydroxytryptamine Receptor 2C | rs1414334 rs3813929 | antipsychotics | Male patients with the C genotype and female patients with the CC genotype may have an increased risk of developing metabolic syndrome and weight gain. | 2B | [131,132,133,134,135] |
Male patients with the C genotype who are treated with antipsychotics may have an increased risk of weight gain as compared to patients with the T genotype. | 2B | |||||
KCNMA1 | Potassium calcium-activated channel subfamily M alpha 1 | rs35793 | quetiapine | Allele G is associated with response to quetiapine. | none | [136] |
LEP | Leptin | rs7799039 rs4731426 | risperidone paliperidone olanzapine | Patients with the GG genotype may have an increased likelihood of weight gain when taking antipsychotics. | 3 | [137,138] |
LEPR | Leptin receptor | rs1137101 | valproic acid antipsychotics | Patients with the GG genotype and epilepsy may have lower weight gain when treated with valproic acid as compared to patients with the AA or AG genotype. | 3 | [139] |
Female patients with the GG genotype may have an increased likelihood of weight gain when treated with antipsychotics as compared to patients with the AA genotype. | 3 | |||||
MC4R | Melanocortin 4 receptor | rs489693 rs17782313 | antipsychotics | Patients with the CC genotype and disorders requiring antipsychotic treatment may have an increased risk of weight gain when treated with antipsychotics as compared to patients with the TT genotype. | 2B | [140,141] |
Patients with the AA genotype may have an increased likelihood of weight gain and hypertriglyceridemia when taking antipsychotics as compared to patients with the AC and CC genotypes. | 2B | |||||
MYO1H | Myosin IH | rs7959663 | lithium | Patients with the CC genotype and bipolar affective disorder may have a decreased response to lithium as compared to patients with the CG or GG genotypes. | 3 | [88] |
NR1D1 | Nuclear receptor subfamily 1 group D member 1 | rs2314339 rs2071427 | lithium | Patients with the CC or CT genotype and bipolar disorder may be more likely to respond to lithium as compared to patients with the TT genotype. | 3 | [142,143] |
Patients with the CC genotype and bipolar disorder may be less likely to respond to lithium as compared to patients with the TT genotype. | 3 | |||||
NR1I2 | Nuclear receptor subfamily 1 group I member 2 | rs7643645 rs2276707 | risperidone paliperidone | Patients with the AA genotype may have increased levels of the active metabolite of risperidone, 9-hydroxy-risperidone, as compared to those with the GG genotype. | 3 | [144,145,146] |
Patients with the CC genotype and psychiatric disorders may have decreased clearance of risperidone compared to patients with the CT or TT genotypes. | 3 | |||||
NTRK2 | Neurotrophic tyrosine kinase receptor type 2 | rs1387923 rs2769605 rs10465180 | lithium valproic acid clozapine | Patients with the AA genotype and bipolar disorder may have increased response to lithium as compared to patients with the AG or GG genotype. | 4 | [144] |
Patients with the CC genotype and schizophrenia who are treated with clozapine may have a decreased response to clozapine as compared to patients with the CT or TT genotype. | 3 | |||||
OR52E2 | Olfactory receptor family 52 subfamily E member 2 | rs16909440 | lithium | Patients with the CC genotype and bipolar disorder may have a poorer response to treatment with lithium as compared to patients with the CT or TT genotype. | 3 | [94] |
OTC | Ornithine carbamoyltransferase | complete gene sequencing | valproic acid Testing suggested by FDA and PMDA | Valproic acid is contraindicated in patients with known urea cycle disorders (UCD) due to a risk for severe hyperammonemia. UCDs result from mutations in one of several genes, such as ornithine transcarbamylase (OTC). | none | [102] |
PDE4D | Phosphodiesterase 4D | rs2164660 rs17382202 | quetiapine | Patients with the AA genotype may have an increased response to quetiapine as compared to patients with the AG or GG genotypes. | 3 | [90] |
Patients with the CC genotype may have a decreased response to quetiapine as compared to patients with the CT or TT genotypes. | 3 | |||||
POLG | DNA polymerase gamma, catalytic subunit | complete gene sequencing | divalprovex valproic acid Testing required by FDA and HCSC | Patients with the AA or AT may have an increased risk of hepatotoxicity as compared to patients with the CC genotype. | 3 | [102] |
PPA2 | Pyrophosphatase (inorganic) 2 | rs2636719 | risperidone paliperidone | Patients with the CC genotype may have an increased response to risperidone as compared to patients with the AA or AC genotypes. | 3 | [90] |
RGS4 | Regulator of G protein signaling 4 | rs2661319 rs951439 | risperidone paliperidone | Patients with the CT genotype treated with risperidone may have more improvement in symptoms as compared to the CC genotype or may have less improvement in symptoms as compared to the TT genotype. | 3 | [147,148] |
RIMS1 | Regulating synaptic membrane exocytosis 1 | rs502046 | quetiapine | Genotypes CC + CT are associated with decreased likelihood of discontinuation when treated with quetiapine. | none | [149] |
SCN1A | Sodium voltage-gated channel alpha subunit 1 | rs2298771 rs3812718 | carbamazepine phenytoin valproic acid lamotrigine topiramate oxcarbazepine | Patients with the CC genotype who are treated with mono or combination antiepileptic therapy may have an improved response. | 3 | [150,151,152] |
Patients with the CC genotype who are treated with phenytoin may require a lower dose. | 2B | |||||
SCN2A | Sodium voltage-gated channel alpha subunit 2 | rs17183814 rs2304016 | carbamazepine valproic acid lamotrigine | Patients with the GG genotype may be more likely to respond. | 3 | [153,154] |
SLC18A2 | solute carrier family 18 member 2 | rs363224 | antipsychotics | Genotypes AC + CC is associated with increased risk of tardive dyskinesia when treated with antipsychotics. | none | [155] |
SLC1A1 | Solute carrier family 1 member 1 | rs3780412 | clozapine olanzapine risperidone paliperidone | Allele C is associated with increased risk of obsessive-compulsive symptoms when treated with clozapine, olanzapine, and risperidone. | none | [156] |
SLC22A8 | Solute carrier family 22 member 8 | rs2276299 | risperidone paliperidone | Allele A is not associated with risk of hyperprolactinemia when treated with risperidone in children. | none | [157] |
SLC6A4 | Solute carrier family 6 member 4 | SLC6A4 HTTLPR long form (L allele) SLC6A4 HTTLPR short form (S allele) | antidepressants | HTTLPR short form (S allele)/HTTLPR long form (L allele) + HTTLPR short form (S allele)/HTTLPR short form (S allele) is associated with non-response when treated with antidepressants in people with mood disorders as compared to SLC6A4 HTTLPR long form (L allele)/HTTLPR long form (L allele). | 2B, 3 | [75,93,100] |
TAAR6 | Trace amine associated receptor 6 | rs4305746 | aripiprazole | Patients with the AA genotype may have faster improvement in brief psychiatric rating scale (BPRS) scores when treated with aripiprazole as compared to patients with the GG genotype. | 3 | [158] |
TNFRSF11A | TNF receptor superfamily member 11a | rs2980976 | risperidone paliperidone | Patients with schizophrenia and the AA genotype may have a decreased response to risperidone as compared to patients with the AG or GG genotypes. | 3 | [90] |
TPH1 | Tryptophan hydroxylase 1 | rs1799913 | lithium | Genotype TT is associated with decreased response to lithium in people with bipolar disorder. | none | [159] |
TPH2 | Tryptophan hydroxylase 2 | rs1487278 rs2171363 rs17110747 | quetiapine | Patients with the CC or CT genotype may respond better to antidepressant treatments as compared to patients with the TT genotype. | 3 | [160] |
TYMS | Thymidylate synthetase | rs3786362 | risperidone paliperidone | Allele A is associated with increased risk of hyperprolactinemia when treated with risperidone. | none | [114] |
ZNF804A | zinc finger protein 804A | rs62200793 | lithium | Patients with the CC genotype and bipolar affective disorder may have a decreased response to lithium as compared to patients with the CT or TT genotypes. | 3 | [88] |
Gene | Protein | SNPs | Drugs | Results | Level of Evidence (1A Strongest) | Ref. |
---|---|---|---|---|---|---|
ABCB1 | ATP binding cassette subfamily B member 1 | rs2032582 rs1045642 rs1128503 | carbamazepine phenobarbital phenytoin valproic acid amisulpiride aripiprazole olanzapine risperidone paliperidone | Patients with the CC genotype may have decreased risk for non-response as compared to patients with the TT genotype. | 3 | [164,165,166,167,168] |
Patients with the AA genotype may have decreased concentrations of oxcarbazepine and worse response as compared to patients with the AG and GG genotypes. | 3 | |||||
Patients with the AA genotype who responded to treatment with antipsychotics may require a decreased dose of antipsychotics as compared to patients with the CC genotype. | 3 | |||||
ABCG2 | ATP binding cassette subfamily G member | rs2231142 rs3114020 | risperidone paliperidone lamotrigine | Patients with the CC genotype may have increased concentrations of lamotrigine compared to patients with the TT genotype. | 3 | [169,170] |
APEH | Acylaminoacyl-peptide hydrolase | rs3816877 | valproic acid divalproex | Genotype CC is associated with increased concentrations of valproic acid in people with Epilepsy as compared to genotype CT. | none | [171] |
CYP1A1 | Cytochrome P450 family 1 subfamily A member 1 | rs2606345 | valproic acid, divalproex | Female patients with the AA genotype may have a poorer response when treated with antiepileptic drugs as compared to patients with the AC or CC genotype. | 3 | [172,173] |
CYP1A2 | cytochrome P450 family 1 subfamily A member 2 | rs762551 | antipsychotics chlorpromazinefluphenazine thioridazine trifluoperazine | Patients with the AA genotype may have decreased QT interval when treated with antipsychotics, chlorpromazine, fluphenazine, thioridazine, and trifluoperazine as compared to patients with genotype CC or AC. | 3 | [67,174] |
CYP2C19 * | cytochrome P450 family 2 subfamily C member 19 | CYP2C19 * 1 CYP2C19 * 17CYP2C19 * 2 CYP2C19 * 3 CYP2C19 * 4 | citalopram escitalopram sertraline clomipramine | Patients with the CYP2C19 * 1/* 1 genotype who are treated with citalopram or escitalopram may have an increased drug clearance/metabolism as compared to patients with CYP2C19 * 2, * 3, or * 4 allele and a decreased drug clearance/metabolism as compared to patients with CYP2C19 * 1/* 17 or * 17/* 17 genotype. | 1A | [67,175,176,177] |
Patients with the * 1/* 1 diplotype who are treated with sertraline may have lower dose-corrected drug plasma concentrations and increased clearance as compared to patients with one or two CYP2C19 no alleles (* 1/* 2 or * 2/* 2, * 2/* 3). | 1A | |||||
Patients with the CYP2C19 * 1/* 1 genotype may have 1) increased metabolism of clomipramine as compared to patients with CYP2C19 * 2 and * 3 alleles, 2) increased plasma levels of clomipramine as compared to patients with the CYP2C19 * 17/* 17 genotype. | 2A | |||||
CYP2C9 | cytochrome P450 family 2 subfamily C member 9 | CYP2C9 * 1 CYP2C9 * 2 CYP2C9 * 3 | valproic acid divalproex olanzapine | Patients with the * 1/* 1 genotype and bipolar disorder and other psychotic disorders may have increased dose of valproic acid compared to patients with the * 1/* 2 and * 1/* 3 genotypes. | 3 | [67,178,179] |
Individuals with the * 1/* 1 genotype were less likely to experience hypotension when receiving olanzapine as compared to individuals with the * 1/* 3, * 2/* 3 or * 3/* 6 genotype. | 3 | |||||
CYP2D6 * | cytochrome P450 family 2 subfamily D member 6 | CYP2D6 * 1 CYP2D6 * 10 CYP2D6 * 1xNCYP2D6 * 2 CYP2D6 * 2xNCYP2D6 * 3 CYP2D6 * 4 CYP2D6 * 5 CYP2D6 * 6 rs3892097 | paroxetine fluvoxamine risperidone clomipramine quetiapine valproic acid divalproex aripiprazole Testing suggested by FDA, EMA, DPWG and HCSC for aripiprazole, risperidone | Patients with the CYP2D6 * 1/* 1 genotype who are treated with paroxetine may have (1) a decreased clearance of paroxetine as compared to patients with more than two functional CYP2D6 alleles (* 1xN, * 2xN) and (2) an increased clearance of paroxetine as compared to patients with two non-functional CYP2D6 alleles (* 3, * 4, * 5, * 6) or * 10/* 10 genotype. | 1A | [67,180,181,182,183] |
Patients with the CYP2D6 * 1/* 1 genotype who are treated with fluvoxamine may have 1) decreased steady-state plasma concentration-to-dose (C/D) ratio as compared to patients with the * 1/* 5, * 1/* 10, * 5/* 10, * 10/* 10 genotype, 2) decreased plasma concentrations, 3) decreased risk of developing gastrointestinal side effects as compared to patients with the * 5/* 10, * 10/* 10 genotype, and 4) decreased AUC, Cmax and half-life time of fluvoxamine as compared to patients with two non-functional CYP2D6 alleles (poor metabolizer phenotypes). | 1A | |||||
Patients with the * 1 allele may have increased metabolism/clearance of risperidone as compared to patients with two reduced function alleles (* 10), one reduced function and one non-functional (* 4, * 5, or * 14) allele, or two non-functional alleles. | 2A | |||||
Patients with the CC genotype (CYP2D6 * 1/* 1) treated with tricyclic antidepressants (1) may have a decreased likelihood of switching treatment indicating a reduced risk of side effects (2) may require an increased dose of drug as compared to patients with the TT genotype (CYP2D6 * 4/* 4). | 1A | |||||
Patients with the CYP2D6 * 1/* 1 genotype treated with clomipramine may have (1) a decreased, but not absent, risk for side effects as compared to patients with the CYP2D6 * 4 allele, (2) increased plasma concentration of clomipramine and desmethyl clomipramine as compared to patients with a duplication of a functional CYP2D6 gene, (3) decreased plasma concentration of clomipramine and desmethyl clomipramine as compared to patients with two non-functional CYP2D6 alleles. | 1A | |||||
CYP3A4 | cytochrome P450 family 3 subfamily A member 4 | rs35599367 rs2242480 | risperidone carbamazepine | Patients with the AG genotype may have reduced clearance of risperidone compared to patients with the GG genotype. | 3 | [67,184,185] |
Patients with the CC genotype (CYP3A4 * 1/* 1) may have increased concentrations of carbamazepine as compared to patients with the CT (* 1/* 1G) or TT (* 1G/* 1G) genotype. | 3 | |||||
CYP3A43 | Cytochrome P450 family 3 subfamily A member 43 | rs680055 | aripiprazole clozapine haloperidol olanzapine quetiapine risperidone | Genotype CG is associated with increased response to antipsychotics, aripiprazole, clozapine, haloperidol, olanzapine, quetiapine, or risperidone in people with schizoaffective disorder or schizophrenia as compared to genotype CC. | none | [186] |
CYP3A5 | cytochrome P450 family 3 subfamily A member 5 | rs776746 rs10264272 | olanzapine carbamazepine | Individuals with the * 1A/* 1A genotype may have increased area under the curve (AUC) of olanzapine as compared to Individuals with the * 3A/* 3A genotype. | 3 | [67,187] |
Patients with the CC genotype (CYP3A5 * 3/* 3) may have decreased clearance and increased concentrations of carbamazepine, and require lower doses of the drug, as compared to patients with the CT (* 1/* 3) or TT (* 1/* 1) genotype. | 3 | |||||
EPHX2 | epoxide hydrolase 2 | rs59724122 | lithium | Patients with the CC genotype and bipolar affective disorder may have a decreased response to lithium as compared to patients with the CT or TT genotypes. | 3 | [88] |
UGT2B7 | UDP glucuronosyltransferase family 2 member B7 | rs7438284 rs7668258 rs12233719 rs28365063 | valproic acid divalproex lamotrigine oxicarbazepine | Patients with the CC genotype and epilepsy who are treated with valproic acid may have decreased concentrations of valproic acid as compared to patients with the TT genotypes. | 3 | [188,189,190,191,192,193] |
Patients with the AA genotype and epilepsy may have decreased clearance of lamotrigine compared to patients with the GG genotype. | 3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fortinguerra, S.; Sorrenti, V.; Giusti, P.; Zusso, M.; Buriani, A. Pharmacogenomic Characterization in Bipolar Spectrum Disorders. Pharmaceutics 2020, 12, 13. https://doi.org/10.3390/pharmaceutics12010013
Fortinguerra S, Sorrenti V, Giusti P, Zusso M, Buriani A. Pharmacogenomic Characterization in Bipolar Spectrum Disorders. Pharmaceutics. 2020; 12(1):13. https://doi.org/10.3390/pharmaceutics12010013
Chicago/Turabian StyleFortinguerra, Stefano, Vincenzo Sorrenti, Pietro Giusti, Morena Zusso, and Alessandro Buriani. 2020. "Pharmacogenomic Characterization in Bipolar Spectrum Disorders" Pharmaceutics 12, no. 1: 13. https://doi.org/10.3390/pharmaceutics12010013
APA StyleFortinguerra, S., Sorrenti, V., Giusti, P., Zusso, M., & Buriani, A. (2020). Pharmacogenomic Characterization in Bipolar Spectrum Disorders. Pharmaceutics, 12(1), 13. https://doi.org/10.3390/pharmaceutics12010013