Equine Drug Transporters: A Mini-Review and Veterinary Perspective
Abstract
:1. Introduction
2. Organ-Specific Role of Drug Transporters in ADME Processes
3. Species Differences in Drug Transporter Expression: Importance in Veterinary Medicine
4. Drug Transporter Expression and Localization in the Liver, Kidney, and Small Intestine of Horses
4.1. Transporter Mediated Drug Uptake
4.2. Transporter-Mediated Drug Efflux
4.2.1. P-glycoprotein (P-gp/ABCB1)
4.2.2. Breast Cancer Resistance Protein (BCRP/ABCG2)
4.2.3. Multidrug Resistance Proteins 1–6 (MRP1—MRP6/ABCC1—ABCC6)
4.2.4. Other Efflux Transporters
5. The Potential Role of Transporters at Blood Tissue Barriers in Horses
6. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Mealey, K.L. Adverse Drug Reactions in Veterinary Patients Associated with Drug Transporters. Vet. Clin. N. Am. Small Anim. Pract. 2013, 43, 1067–1078. [Google Scholar] [CrossRef] [PubMed]
- César-Razquin, A.; Girardi, E.; Yang, M.; Brehme, M.; Saez-Rodriguez, J.; Superti-Furga, G. In silico Prioritization of Transporter-Drug Relationships from Drug Sensitivity Screens. Front. Pharmacol. 2018, 9, 1011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daneman, R.; Prat, A. The Blood-Brain Barrier. Cold Spring Harbor Perspect Biol. 2015, 7, a020412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexander, S.P.H.; Kelly, E.; Mathie, A.; Peters, J.A.; Veale, E.L.; Armstrong, J.F.; Faccenda, E.; Harding, S.D.; Pawson, A.J.; Sharman, J.L.; et al. Pharmacology 2019/2020: Transporters. Br. J. Pharmacol. 2019, 176, S397–S493. [Google Scholar] [CrossRef] [PubMed]
- Koepsell, H. The SLC22 family with transporters of organic cations, anions and zwitterions. Mol. Aspects Med. 2013, 34, 413–435. [Google Scholar] [CrossRef] [PubMed]
- Pochini, L.; Scalise, M.; Galluccio, M.; Indiveri, C. OCTN cation transporters in health and disease: Role as drug targets and assay development. J. Biomol. Screen. 2013, 18, 851–867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orelle, C.; Mathieu, K.; Jault, J.M. Multidrug ABC transporters in bacteria. Res. Microbiol. 2019, 170, 381–391. [Google Scholar] [CrossRef] [PubMed]
- Robey, R.W.; Pluchino, K.M.; Hall, M.D.; Fojo, A.T.; Bates, S.E.; Gottesman, M.M. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat. Rev. Cancer 2018, 18, 452–464. [Google Scholar] [CrossRef] [PubMed]
- Khojasteh, S.C.H.; Cornelis, E.C.A.; Wong, H. Drug Metabolism and Pharmacokinetics Quick Guide; Springer: New York, NY, USA, 2011. [Google Scholar]
- Lin, W.; Flarakos, J.; Du, Y.; Hu, W.Y.; He, H.D.; Mangold, J.; Tanaka, S.K.; Villano, S. Pharmacokinetics, Distribution, Metabolism, and Excretion of Omadacycline following a Single Intravenous or Oral Dose of C-14-Omadacycline in Rats. Antimicrob. Agents Chemother. 2017, 61, e01784-16. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Zhou, S.F.; Huynh, H.; Chan, E. Significant intestinal excretion, one source of variability in pharmacokinetics of COL-3, a chemically modified tetracycline. Pharm. Res. 2005, 22, 397–404. [Google Scholar] [CrossRef]
- Estudante, M.; Morais, J.G.; Soveral, G.; Benet, L.Z. Intestinal drug transporters: An overview. Adv. Drug Deliv. Rev. 2013, 65, 1340–1356. [Google Scholar] [CrossRef] [PubMed]
- Oswald, S. Organic Anion Transporting Polypeptide (OATP) transporter expression, localization and function in the human intestine. Pharmacol. Ther. 2019, 195, 39–53. [Google Scholar] [CrossRef] [PubMed]
- Boll, M.; Markovich, D.; Weber, W.M.; Korte, H.; Daniel, H.; Murer, H. Expression cloning of a cDNA from rabbit small intestine relted to proton-coupled transport of peptides, beta-lactam antibiotics and ACE-inhibitors. Pflug. Arch. 1994, 429, 146–149. [Google Scholar] [CrossRef]
- Wenzel, U.; Thwaites, D.T.; Daniel, H. Stereoselective uptake of beta-lactam antibiotics by the intestinal peptide transporter. Br. J. Pharmacol. 1995, 116, 3021–3027. [Google Scholar] [CrossRef]
- Marquez, B.; Van Bambeke, F. ABC Multidrug Transporters: Target for Modulation of Drug Pharmacokinetics and Drug-Drug Interactions. Curr. Drug Targets 2011, 12, 600–620. [Google Scholar] [CrossRef]
- Jetter, A.; Kullak-Ublick, G.A. Drugs and hepatic transporters: A review. Pharmacol. Res. 2020, 154, 104324. [Google Scholar] [CrossRef]
- Chu, X.Y.; Bleasby, K.; Evers, R. Species differences in drug transporters and implications for translating preclinical findings to humans. Expert Opin. Drug Metab. Toxicol. 2013, 9, 237–252. [Google Scholar] [CrossRef]
- Basit, A.; Radi, Z.; Vaidya, V.S.; Karasu, M.; Prasad, B. Kidney Cortical Transporter Expression across Species Using Quantitative Proteomics. Drug Metab. Dispos. 2019, 47, 802–808. [Google Scholar] [CrossRef] [PubMed]
- Arimori, K.; Nakano, M. Drug exsorption from blood into the gastrointestinal tract. Pharm. Res. 1998, 15, 371–376. [Google Scholar] [CrossRef]
- Mayer, U.; Wagenaar, E.; Beijnen, J.H.; Smit, J.W.; Meijer, D.K.F.; van Asperen, J.; Borst, P.; Schinkel, A.H. Substantial excretion of digoxin via the intestinal mucosa and prevention of long-term digoxin accumulation in the brain by the mdr1a P-glycoprotein. Br. J. Pharmacol. 1996, 119, 1038–1044. [Google Scholar] [CrossRef]
- Ramirez, C.J.; Minch, J.D.; Gay, J.M.; Lahmers, S.M.; Guerra, D.J.; Haldorson, G.J.; Schneider, T.; Mealey, K.L. Molecular genetic basis for fluoroquinolone-induced retinal degeneration in cats. Pharm. Genom. 2011, 21, 66–75. [Google Scholar] [CrossRef]
- Eberl, S.; Renner, B.; Neubert, A.; Reisig, M.; Bachmakov, I.; Konig, J.; Dorje, F.; Murdter, T.E.; Ackermann, A.; Dormann, H.; et al. Role of P-glycoprotein inhibition for drug interactions: Evidence from in vitro and pharmacoepidemiological studies. Clin. Pharm. 2007, 46, 1039–1049. [Google Scholar] [CrossRef]
- Liao, M.X.; Zhu, Q.; Zhu, A.; Gemski, C.; Ma, B.L.; Guan, E.; Li, A.P.; Xiao, G.Q.; Xia, C.Q. Comparison of uptake transporter functions in hepatocytes in different species to determine the optimal model for evaluating drug transporter activities in humans. Xenobiotica 2019, 49, 852–862. [Google Scholar] [CrossRef]
- Thamm, D.; Dow, S. How companion animals contribute to the fight against cancer in humans. Vet. Ital. 2009, 45, 111–120. [Google Scholar]
- Gallegos, R.P.; Nockel, P.J.; Rivard, A.L.; Bianco, R.W. The current state of in-vivo pre-clinical animal models for heart valve evaluation. J. Heart Valve Dis. 2005, 14, 423–432. [Google Scholar]
- Cotman, C.W.; Head, E. The Canine (Dog) Model of Human Aging and Disease: Dietary, Environmental and Immunotherapy Approaches. J. Alzheimers Dis. 2008, 15, 685–707. [Google Scholar] [CrossRef] [PubMed]
- Lindner, S.; Halwachs, S.; Wassermann, L.; Honscha, W. Expression and subcellular localization of efflux transporter ABCG2/BCRP in important tissue barriers of lactating dairy cows, sheep and goats. J. Vet. Pharmacol. Ther. 2013, 36, 562–570. [Google Scholar] [CrossRef] [PubMed]
- Pulido, M.M.; Molina, A.J.; Merino, G.; Mendoza, G.; Prieto, J.G.; Alvarez, A.I. Interaction of enrofloxacin with breast cancer resistance protein (BCRP/ABCG2): Influence of flavonoids and role in milk secretion in sheep. J. Vet. Pharmacol. Ther. 2006, 29, 279–287. [Google Scholar] [CrossRef]
- Scarth, J.P.; Teale, P.; Kuuranne, T. Drug metabolism in the horse: A review. Drug Test. Anal. 2011, 3, 19–53. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.L.; Little, D.; Blikslager, A.T.; Papich, M.G. Mucosal permeability of water-soluble drugs in the equine jejunum: A preliminary investigation. J. Vet. Pharmacol. Ther. 2006, 29, 379–385. [Google Scholar] [CrossRef]
- Serpa, P.B.S.; Brooks, M.B.; Diverse, T.; Ness, S.; Birschmann, I.; Papich, M.G.; Stokol, T. Pharmacokinetics and Pharmacodynamics of an Oral Formulation of Apixaban in Horses After Oral and Intravenous Administration. Front. Vet. Sci. 2018, 5, 304. [Google Scholar] [CrossRef]
- Zhang, D.L.; He, K.; Herbst, J.J.; Kolb, J.; Shou, W.; Wang, L.F.; Balimane, P.V.; Han, Y.H.; Gan, J.P.; Frost, C.E.; et al. Characterization of Efflux Transporters Involved in Distribution and Disposition of Apixaban. Drug Metab. Dispos. 2013, 41, 827–835. [Google Scholar] [CrossRef] [Green Version]
- Linardi, R.L.; Stokes, A.M.; Andrews, F.M. The effect of P-Glycoprotein on methadone hydrochloride flux in equine intestinal mucosa. J. Vet. Pharmacol. Ther. 2013, 36, 43–50. [Google Scholar] [CrossRef]
- Zhang, D.L.; He, K.; Raghavan, N.; Wang, L.F.; Crain, E.J.; He, B.; Xin, B.M.; Luettgen, J.M.; Wong, P.C. Metabolism, pharmacokinetics and pharmacodynamics of the factor Xa inhibitor apixaban in rabbits. J. Thromb. Thrombolysis 2010, 29, 70–80. [Google Scholar] [CrossRef]
- Pochini, L.; Galluccio, M.; Scalise, M.; Console, L.; Indiveri, C. OCTN: A Small Transporter Subfamily with Great Relevance to Human Pathophysiology, Drug Discovery, and Diagnostics. SLAS Discov. Adv. Life Sci. Drug Dicov. 2019, 24, 89–110. [Google Scholar] [CrossRef]
- Ivanyuk, A.; Livio, F.; Biollaz, J.; Buclin, T. Renal Drug Transporters and Drug Interactions. Clin. Pharm. 2017, 56, 825–892. [Google Scholar] [CrossRef]
- Badee, J.; Achour, B.; Rostami-Hodjegan, A.; Galetin, A. Meta-Analysis of Expression of Hepatic Organic Anion-Transporting Polypeptide (OATP) Transporters in Cellular Systems Relative to Human Liver Tissue. Drug Metab. Dispos. 2015, 43, 424–432. [Google Scholar] [CrossRef] [Green Version]
- Shitara, Y.; Maeda, K.; Ikejiri, K.; Yoshida, K.; Horie, T.; Sugiyama, Y. Clinical significance of organic anion transporting polypeptides (OATPs) in drug disposition: Their roles in hepatic clearance and intestinal absorption. Biopharm. Drug Dispos. 2013, 34, 45–78. [Google Scholar] [CrossRef]
- Konig, J.; Cui, Y.H.; Nies, A.T.; Keppler, D. A novel human organic anion transporting polypeptide localized to the basolateral hepatocyte membrane. Am. J. Physiol. Gastroint. Liver Physiol. 2000, 278, G156–G164. [Google Scholar] [CrossRef]
- Szekely, V.; Patik, I.; Ungvari, O.; Telbisz, A.; Szakacs, G.; Bakos, E.; Ozvegy-Laczka, C. Fluorescent probes for the dual investigation of MRP2 and OATP1B1 function and drug interactions. Eur. J. Pharm. Sci. 2020, 151, 105395. [Google Scholar] [CrossRef]
- Hestand, M.S.; Kalbfleisch, T.S.; Coleman, S.J.; Zeng, Z.; Liu, J.Z.; Orlando, L.; MacLeod, J.N. Annotation of the Protein Coding Regions of the Equine Genome. PLoS ONE 2015, 10, e0124375. [Google Scholar] [CrossRef]
- Gui, C.S.; Hagenbuch, B. Cloning/characterization of the canine organic anion transporting polypeptide 1b4 (Oatp1b4) and classification of the canine OATP/SLCO members. Comp. Biochem. Physiol. C-Toxicol. Pharmacol. 2010, 151, 393–399. [Google Scholar] [CrossRef] [Green Version]
- Hagenbuch, B.; Meier, P.J. Organic anion transporting polypeptides of the OATP/SLC21 family: Phylogenetic classification as OATP/SLCO superfamily, new nomenclature and molecular/functional properties. Pflug. Arch. 2004, 447, 653–665. [Google Scholar] [CrossRef] [Green Version]
- Ogura, K.; Choudhuri, S.; Klaassen, C.D. Full-length cDNA cloning and genomic organization of the mouse liver-specific organic anion transporter-1 (lst-1). Biochem. Biophys. Res. Commun. 2000, 272, 563–570. [Google Scholar] [CrossRef] [PubMed]
- Tweedie, D.; Polli, J.W.; Berglund, E.G.; Huang, S.M.; Zhang, L.; Poirier, A.; Chu, X.; Feng, B.; Int Transporter, C. Transporter Studies in Drug Development: Experience to Date and Follow-Up on Decision Trees From the International Transporter Consortium. Clin. Pharmacol. Ther. 2013, 94, 113–125. [Google Scholar] [CrossRef] [PubMed]
- Shitara, Y.; Hirano, M.; Sato, H.; Sugiyama, Y. Gemfibrozil and its glucuronide inhibit the organic anion transporting polypeptide 2 (OATP2/OATP1B1 : SLC21A6)-mediated hepatic uptake and CYP2C8-mediated metabolism of cerivastatin: Analysis of the mechanism of the clinically relevant drug-drug interaction between cerivastatin and gemfibrozil. J. Pharmacol. Exp. Ther. 2004, 311, 228–236. [Google Scholar]
- Backman, J.T.; Kyrklund, C.; Neuvonen, M.; Neuvonen, P.J. Gemfibrozil greatly increases plasma concentrations of cerivastatin. Clin. Pharmacol. Ther. 2002, 72, 685–691. [Google Scholar] [CrossRef]
- Tamai, I.; Nezu, J.; Uchino, H.; Sai, Y.; Oku, A.; Shimane, M.; Tsuji, A. Molecular identification and characterization of novel members of the human organic anion transporter (OATP) family. Biochem. Biophys. Res. Commun. 2000, 273, 251–260. [Google Scholar] [CrossRef]
- Brown, K.A.; Bouchard, N.; Lussier, J.G.; Sirois, J. Down-regulation of messenger ribonucleic acid encoding an importer of sulfoconjugated steroids during human chorionic gonadotropin-induced follicular luteinization in vivo. J. Steroid Biochem. Mol. Biol. 2007, 103, 10–19. [Google Scholar] [CrossRef]
- Drozdzik, M.; Groer, C.; Penski, J.; Lapczuk, J.; Ostrowski, M.; Lai, Y.R.; Prasad, B.; Unadkat, J.D.; Siegmund, W.; Oswald, S. Protein Abundance of Clinically Relevant Multidrug Transporters along the Entire Length of the Human Intestine. Mol. Pharm. 2014, 11, 3547–3555. [Google Scholar] [CrossRef]
- Nozawa, T.; Imai, K.; Nezu, J.I.; Tsuji, A.; Tamai, I. Functional characterization of pH-sensitive organic anion transporting polypeptide OATP-B in human. J. Pharmacol. Exp. Ther. 2004, 308, 438–445. [Google Scholar] [CrossRef] [Green Version]
- Keiser, M.; Kaltheuner, L.; Wildberg, C.; Muller, J.; Grube, M.; Partecke, L.I.; Heidecke, C.D.; Oswald, S. The Organic Anion-Transporting Peptide 2B1 Is Localized in the Basolateral Membrane of the Human Jejunum and Caco-2 Monolayers. J. Pharm. Sci. 2017, 106, 2657–2663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cvetkovic, M.; Leake, B.; Fromm, M.F.; Wilkinson, G.R.; Kim, R.B. OATP and P-glycoprotein transporters mediate the cellular uptake and excretion of fexofenadine. Drug Metab. Dispos. 1999, 27, 866–871. [Google Scholar]
- Olsen, L.; Ingvast-Larsson, C.; Larsson, P.; Brostrom, H.; Bondesson, U.; Sundqvist, M.; Tjalve, H. Fexofenadine in horses: Pharmacokinetics, pharmacodynamics and effect of ivermectin pretreatment. J. Vet. Pharmacol. Ther. 2006, 29, 129–135. [Google Scholar] [CrossRef]
- Glaeser, H.; Bailey, D.G.; Dresser, G.K.; Gregor, J.C.; Schwarz, U.I.; McGrath, J.S.; Jolicoeur, E.; Lee, W.; Leake, B.F.; Tirona, R.G.; et al. Intestinal drug transporter expression and the impact of grapefruit juice in humans. Clin. Pharmacol. Ther. 2007, 81, 362–370. [Google Scholar] [CrossRef]
- Dresser, G.K.; Kim, R.B.; Bailey, D.G. Effect of grapefruit juice volume on the reduction of fexofenadine bioavailability: Possible role of organic anion transporting polypeptides. Clin. Pharmacol. Ther. 2005, 77, 170–177. [Google Scholar] [CrossRef]
- Kamath, A.V.; Ming, Y.; Zhang, Y.P.; Chong, S.H. Effect of fruit juices on the oral bioavailability of fexofenadine in rats. J. Pharm. Sci. 2005, 94, 233–239. [Google Scholar] [CrossRef]
- Oswald, S.; Muller, J.; Neugebauer, U.; Schroter, R.; Herrmann, E.; Pavenstadt, H.; Ciarimboli, G. Protein Abundance of Clinically Relevant Drug Transporters in The Human Kidneys. Int. J. Mol. Sci. 2019, 20, 5303. [Google Scholar] [CrossRef] [Green Version]
- Burnell, J.M.; Kirby, W.M.M. Effectiveness of a new compound, Benemid, in elevating serum penicillin concentrations. J. Clin. Investig. 1951, 30, 697–700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morelle, J.; Labriola, L.; Lambert, M.; Cosyns, J.P.; Jouret, F.; Jadoul, M. Tenofovir-related acute kidney injury and proximal tubule dysfunction precipitated by diclofenac: A case of drug-drug interaction. Clin. Nephrol. 2009, 71, 567–570. [Google Scholar] [CrossRef] [Green Version]
- Schmitz, D.G. Toxins affecting the urinary system. Vet. Clin. N. Am. Equine Pract. 2007, 23, 677–690. [Google Scholar] [CrossRef] [PubMed]
- Gai, Z.B.; Visentin, M.; Hiller, C.; Krajnc, E.; Li, T.Z.; Zhen, J.H.; Kullak-Ublick, G.A. Organic Cation Transporter 2 Overexpression May Confer an Increased Risk of Gentamicin-Induced Nephrotoxicity. Antimicrob. Agents Chemother. 2016, 60, 5573–5580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shugarts, S.; Benet, L.Z. The Role of Transporters in the Pharmacokinetics of Orally Administered Drugs. Pharm. Res. 2009, 26, 2039–2054. [Google Scholar] [CrossRef] [Green Version]
- Mealey, K.L.; Fidel, J. P-Glycoprotein Mediated Drug Interactions in Animals and Humans with Cancer. J. Vet. Intern. Med. 2015, 29, 1–6. [Google Scholar] [CrossRef]
- Collett, A.; Higgs, N.B.; Sims, E.; Rowland, M.; Warhurst, G. Modulation of the permeability of H-2 receptor antagonists cimetidine and ranitidine by P-glycoprotein in rat intestine and the human colonic cell line Caco-2. J. Pharmacol. Exp. Ther. 1999, 288, 171–178. [Google Scholar]
- Schinkel, A.H.; Wagenaar, E.; Vandeemter, L.; Mol, C.; Borst, P. Absence of the Mdr1a P-Glycoprotein in Mice Affects Tissue Distribution and Pharmacokinetics of Dexamethasone, Digonxin, and Cyclosporine-A. J. Clin. Investig. 1995, 96, 1698–1705. [Google Scholar] [CrossRef] [Green Version]
- Schinkel, A.H.; Smit, J.J.M.; Vantellingen, O.; Beijnen, J.H.; Wagenaar, E.; Vandeemter, L.; Mol, C.; Vandervalk, M.A.; Robanusmaandag, E.C.; Teriele, H.P.J.; et al. Disruption of the mouse Mdr1a p-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 1994, 77, 491–502. [Google Scholar] [CrossRef]
- Callaghan, R.; Riordan, J.R. Synthetic and natural opiates interact with p-glycoprotein in multidrug-resistant cells. J. Biol. Chem. 1993, 268, 16059–16064. [Google Scholar]
- Kavallaris, M.; Madafiglio, J.; Norris, M.D.; Haber, M. Resistance to tetracycline, a hydrophilic antibiotic, is mediated by p-glycoprtein in human multidrug-resistant cells. Biochem. Biophys. Res. Commun. 1993, 190, 79–85. [Google Scholar] [CrossRef]
- Schuetz, E.G.; Schinkel, A.H.; Relling, M.V.; Schuetz, J.D. P-glycoprotein: A major determinant of rifampicin-inducible expression of cytochrome P4503A in mice and humans. Proc. Natl. Acad. Sci. USA 1996, 93, 4001–4005. [Google Scholar] [CrossRef] [Green Version]
- Takano, M.; Hasegawa, R.; Fukuda, T.; Yumoto, R.; Nagai, J.; Murakami, T. Interaction with P-glycoprotein and transport of erythromycin, midazolam and ketoconazole in Caco-2 cells. Eur. J. Pharmacol. 1998, 358, 289–294. [Google Scholar] [CrossRef]
- Sugie, M.; Asakura, E.; Zhao, Y.L.; Torita, S.; Nadai, M.; Baba, K.; Kitaichi, K.; Takagi, K.; Takagi, K.; Hasegawa, T. Possible involvement of the drug transporters P glycoprotein and multidrug resistance-associated protein Mrp2 in disposition of azithromycin. Antimicrob. Agents Chemother. 2004, 48, 809–814. [Google Scholar] [CrossRef] [Green Version]
- Fohner, A.E.; Sparreboom, A.; Altman, R.B.; Klein, T.E. PharmGKB summary: Macrolide antibiotic pathway, pharmacokinetics/pharmacodynamics. Pharm. Genom. 2017, 27, 164–167. [Google Scholar] [CrossRef] [Green Version]
- Susanto, M.; Benet, L.Z. Can the enhanced renal clearance of antibiotics in cystic fibrosis patients be explained by P-glycoprotein transport? Pharm. Res. 2002, 19, 457–462. [Google Scholar] [CrossRef]
- Yamazaki, M.; Neway, W.E.; Ohe, T.; Chen, I.W.; Rowe, J.F.; Hochman, J.H.; Chiba, M.; Lin, J.H. In vitro substrate identification studies for P-glycoprotein-mediated transport: Species difference and predictability of in vivo results. J. Pharmacol. Exp. Ther. 2001, 296, 723–735. [Google Scholar]
- Baltes, S.; Gastens, A.M.; Fedrowitz, M.; Potschka, H.; Kaever, V.; Loscher, W. Differences in the transport of the antiepileptic drugs phenytoin, levetiracetarn and carbamazepine by human and mouse P-glycoprotein. Neuropharmacology 2007, 52, 333–346. [Google Scholar] [CrossRef]
- Tyden, E.; Tallkvist, J.; Tjazlve, H.; Larsson, P. P-glycoprotein in intestines, liver, kidney and lymphocytes in horse. J. Vet. Pharmacol. Ther. 2009, 32, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Martinez, M.; Modric, S.; Sharkey, M.; Troutman, L.; Walker, L.; Mealey, K. The pharmacogenomics of P-glycoprotein and its role in veterinary medicine. J. Vet. Pharmacol. Ther. 2008, 31, 285–300. [Google Scholar] [CrossRef]
- Mealey, K.L. Therapeutic implications of the MDR-1 gene. J. Vet. Pharmacol. Ther. 2004, 27, 257–264. [Google Scholar] [CrossRef]
- Geyer, J.; Janko, C. Treatment of MDR1 Mutant Dogs with Macrocyclic Lactones. Curr. Pharm. Biotechnol. 2012, 13, 969–986. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.H.; Yamazaki, M. Role of P-glycoprotein in pharmacokinetics—Clinical implications. Clin. Pharm. 2003, 42, 59–98. [Google Scholar] [CrossRef] [PubMed]
- Berggren, S.; Gall, C.; Wollnitz, N.; Ekelund, M.; Karlbom, U.; Hoogstraate, J.; Schrenk, D.; Lennernas, H. Gene and protein expression of P-glycoprotein, MRP1, MRP2, and CYP3A4 in the small and large human intestine. Mol. Pharm. 2007, 4, 252–257. [Google Scholar] [CrossRef]
- Ikemura, K.; Yamamoto, M.; Miyazaki, S.; Mizutani, H.; Iwamoto, T.; Okuda, M. MicroRNA-145 Post-transcriptionally Regulates the Expression and Function of P-glycoprotein in Intestinal Epithelial Cells. Mol. Pharmacol. 2013, 83, 399–405. [Google Scholar] [CrossRef] [Green Version]
- Gomes, B.C.; Honrado, M.; Armada, A.; Viveiros, M.; Rueff, J.; Rodrigues, A.S. ABC Efflux Transporters and the Circuitry of miRNAs: Kinetics of Expression in Cancer Drug Resistance. Int. J. Mol. Sci. 2020, 21, 2985. [Google Scholar] [CrossRef] [Green Version]
- McKenzie, H.C. Disorders of Foals. In Equine Internal Medicine; Stephen, M., Reed, W.M.B., Debra, C.S., Eds.; Elsevier: St. Louis, MO, USA, 2018; pp. 1365–1459. [Google Scholar]
- Venner, M.; Astheimer, K.; Lammer, M.; Giguere, S. Efficacy of Mass Antimicrobial Treatment of Foals with Subclinical Pulmonary Abscesses Associated with Rhodococcus equi. J. Vet. Intern. Med. 2013, 27, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Peters, J.; Block, W.; Oswald, S.; Freyer, J.; Grube, M.; Kroemer, H.K.; Lammer, M.; Lutjohann, D.; Venner, M.; Siegmund, W. Oral Absorption of Clarithromycin Is Nearly Abolished by Chronic Comedication of Rifampicin in Foals. Drug Metab. Dispos. 2011, 39, 1643–1649. [Google Scholar] [CrossRef]
- Berlin, S.; Spieckermann, L.; Oswald, S.; Keiser, M.; Lumpe, S.; Ullrich, A.; Grube, M.; Hasan, M.; Venner, M.; Siegmund, W. Pharmacokinetics and Pulmonary Distribution of Clarithromycin and Rifampicin after Concomitant and Consecutive Administration in Foals. Mol. Pharm. 2016, 13, 1089–1099. [Google Scholar] [CrossRef]
- Giguere, S.; Cohen, N.D. Controversies in therapy of infections caused by Rhodococcus equi in foals. Equine Vet. Educ. 2018, 30, 336–341. [Google Scholar] [CrossRef]
- Hildebrand, F.; Venner, M.; Giguere, S. Efficacy of Gamithromycin for the Treatment of Foals with Mild to Moderate Bronchopneumonia. J. Vet. Intern. Med. 2015, 29, 333–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venner, M.; Credner, N.; Lammer, M.; Giguere, S. Comparison of tulathromycin, azithromycin and azithromycin-rifampin for the treatment of mild pneumonia associated with Rhodococcus equi. Vet. Rec. 2013, 173, 397. [Google Scholar] [CrossRef]
- Peters, J.; Eggers, K.; Oswald, S.; Block, W.; Lutjohann, D.; Lammer, M.; Venner, M.; Siegmund, W. Clarithromycin Is Absorbed by an Intestinal Uptake Mechanism That Is Sensitive to Major Inhibition by Rifampicin: Results of a Short-Term Drug Interaction Study in Foals. Drug Metab. Dispos. 2012, 40, 522–528. [Google Scholar] [CrossRef] [Green Version]
- Riesenberg, A.; Fessler, A.T.; Erol, E.; Prenger-Berninghoff, E.; Stamm, I.; Bose, R.; Heusinger, A.; Klarmann, D.; Werckenthin, C.; Schwarz, S. MICs of 32 antimicrobial agents for Rhodococcus equi isolates of animal origin. J. Antimicrob. Chemother. 2014, 69, 1045–1049. [Google Scholar] [CrossRef]
- Gokbulut, C.; McKellar, Q.A. Anthelmintic drugs used in equine species. Vet. Parasitol. 2018, 261, 27–52. [Google Scholar] [CrossRef]
- Didier, A.; Loor, F. The abamectin derivative ivermectin is a potent P-glycoprotein inhibitor. Anticancer Drugs 1996, 7, 745–751. [Google Scholar] [CrossRef]
- Olsen, L.; Ingvast-Larsson, C.; Bondesson, U.; Brostrom, H.; Tjalve, H.; Larsson, P. Cetirizine in horses: Pharmacokinetics and effect of ivermectin pretreatment. J. Vet. Pharmacol. Ther. 2007, 30, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Benedetti, M.S.; Plisnier, M.; Kaise, J.; Maier, L.; Baltes, E.; Arendt, C.; McCracken, N. Absorption, distribution, metabolism and excretion of C-14 levocetirizine, the R enantiomer of cetirizine, in healthy volunteers. Eur. J. Clin. Pharmacol. 2001, 57, 571–582. [Google Scholar] [CrossRef]
- Mao, Q.C.; Unadkat, J.D. Role of the Breast Cancer Resistance Protein (BCRP/ABCG2) in Drug Transport-an Update. Aaps J. 2015, 17, 65–82. [Google Scholar] [CrossRef] [Green Version]
- Tyden, E.; Bjornstrom, H.; Tjalve, H.; Larsson, P. Expression and localization of BCRP, MRP1 and MRP2 in intestines, liver and kidney in horse. J. Vet. Pharmacol. Ther. 2010, 33, 332–340. [Google Scholar] [CrossRef]
- Ijzer, J.; Schotanus, B.A.; Borght, S.V.; Roskams, T.A.D.; Kisjes, R.; Penning, L.C.; Rothuizen, J.; van den Ingh, T. Characterisation of the hepatic progenitor cell compartment in normal liver and in hepatitis: An immunohistochemical comparison between dog and man. Vet. J. 2010, 184, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Eldasher, L.M.; Wen, X.; Little, M.S.; Bircsak, K.M.; Yacovino, L.L.; Aleksunes, L.M. Hepatic and renal Bcrp transporter expression in mice treated with perfluorooctanoic acid. Toxicology 2013, 306, 108–113. [Google Scholar] [CrossRef] [Green Version]
- Vander Borght, S.; Libbrecht, L.; Katoonizadeh, A.; van Pelt, J.; Cassiman, D.; Nevens, F.; Van Lommel, A.; Petersen, B.E.; Fevery, J.; Jansen, P.L.; et al. Breast cancer resistance protein (BCRP/ABCG2) is expressed by progenitor cells/reactive ductules and hepatocytes and its expression pattern is influenced by disease etiology and species type: Possible functional consequences. J. Histochem. Cytochem. 2006, 54, 1051–1059. [Google Scholar] [CrossRef] [Green Version]
- Shimano, K.; Satake, M.; Okaya, A.; Kitanaka, J.; Kitanaka, N.; Takemura, M.; Sakagami, M.; Terada, N.; Tsujimura, T. Hepatic oval cells have the side population phenotype defined by expression of ATP-binding cassette transporter ABCG2/BCRP1. Am. J. Pathol. 2003, 163, 3–9. [Google Scholar] [CrossRef] [Green Version]
- DeNotta, S.L.; Divers, T.J. Clinical Pathology in the Adult Sick Horse: The Gastrointestinal System and Liver. Vet. Clin. N. Am. Equine Pract. 2020, 36, 105–120. [Google Scholar] [CrossRef] [PubMed]
- Hira, D.; Terada, T. BCRP/ABCG2 and high-alert medications: Biochemical, pharmacokinetic, pharmacogenetic, and clinical implications. Biochem. Pharmacol. 2018, 147, 201–210. [Google Scholar] [CrossRef]
- Nies, A.T.; Jedlitschky, G.; Konig, J.; Herold-Mende, C.; Steiner, H.H.; Schmitt, H.P.; Keppler, D. Expression and immunolocalization of the multidrug resistance proteins, Mrp1-Mrp6 (ABCC1-ABCC6), in human brain. Neuroscience 2004, 129, 349–360. [Google Scholar] [CrossRef]
- Schinkel, A.H.; Jonker, J.W. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: An overview. Adv. Drug Deliv. Rev. 2003, 55, 3–29. [Google Scholar] [CrossRef]
- Keppler, D.; Konig, J. Hepatic secretion of conjugated drugs and endogenous substances. Semin. Liver Dis. 2000, 20, 265–272. [Google Scholar] [CrossRef]
- Motohashi, H.; Inui, K. Multidrug and toxin extrusion family SLC47: Physiological, pharmacokinetic and toxicokinetic importance of MATE1 and MATE2-K. Mol. Asp. Med. 2013, 34, 661–668. [Google Scholar] [CrossRef]
- Gessner, A.; Konig, J.; Fromm, M.F. Clinical Aspects of Transporter-Mediated Drug-Drug Interactions. Clin. Pharmacol. Ther. 2019, 105, 1386–1394. [Google Scholar] [CrossRef]
- Telbisz, A.; Homolya, L. Recent advances in the exploration of the bile salt export pump (BSEP/ABCB11) function. Expert Opin. Ther. Targets 2016, 20, 501–514. [Google Scholar] [CrossRef] [Green Version]
- Lam, P.; Soroka, C.J.; Boyer, J.L. The Bile Salt Export Pump: Clinical and Experimental Aspects of Genetic and Acquired Cholestatic Liver Disease. Semin. Liver Dis. 2010, 30, 125–133. [Google Scholar] [CrossRef] [Green Version]
- Byrne, J.A.; Strautnieks, S.S.; Mieli-Vergani, G.; Higgins, C.F.; Linton, K.J.; Thompson, R.J. The human bile salt export pump: Characterization of substrate specificity and identification of inhibitors. Gastroenterology 2002, 123, 1649–1658. [Google Scholar] [CrossRef]
- Kenna, J.G.; Taskar, K.S.; Battista, C.; Bourdet, D.L.; Brouwer, K.L.R.; Brouwer, K.R.; Dai, D.; Funk, C.; Hafey, M.J.; Lai, Y.R.; et al. Can Bile Salt Export Pump Inhibition Testing in Drug Discovery and Development Reduce Liver Injury Risk? An International Transporter Consortium Perspective. Clin. Pharmacol. Ther. 2018, 104, 916–932. [Google Scholar] [CrossRef] [Green Version]
- Ebrahimi, Z.; Talaei, S.; Aghamiri, S.; Goradel, N.H.; Jafarpour, A.; Negahdari, B. Overcoming the blood-brain barrier in neurodegenerative disorders and brain tumours. IET Nanobiotechnol. 2020, 14, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.H.; Walker, J.B.; Minic, Z.; Liu, F.C.; Goshgarian, H.; Mao, G.Z. Transporter protein and drug-conjugated gold nanoparticles capable of bypassing the blood-brain barrier. Sci. Rep. 2016, 6, 25794. [Google Scholar] [CrossRef]
- Chaves, C.; Campanelli, F.; Chapy, H.; Gomez-Zepeda, D.; Glacial, F.; Smirnova, M.; Taghi, M.; Pallud, J.; Perriere, N.; Decleves, X.; et al. An Interspecies Molecular and Functional Study of Organic Cation Transporters at the Blood-Brain Barrier: From Rodents to Humans. Pharmaceutics 2020, 12, 308. [Google Scholar] [CrossRef] [Green Version]
- Braun, C.; Sakamoto, A.; Fuchs, H.; Ishiguro, N.; Suzuki, S.; Cui, Y.H.; Klinder, K.; Watanabe, M.; Terasaki, T.; Sauer, A. Quantification of Transporter and Receptor Proteins in Dog Brain Capillaries and Choroid Plexus: Relevance for the Distribution in Brain and CSF of Selected BCRP and P-gp Substrates. Mol. Pharm. 2017, 14, 3436–3447. [Google Scholar] [CrossRef] [PubMed]
- Talcott, P. Toxicological Problems. In Equine Internal Medicine; Stephen, M., Reed, W.M.B., Debra, C.S., Eds.; Elsevier: St. Louis, MO, USA, 2018; pp. 1460–1512. [Google Scholar]
- Norman, T.E.; Chaffin, M.K.; Norton, P.L.; Coleman, M.C.; Stoughton, W.B.; Mays, T. Concurrent Ivermectin and Solanum spp. Toxicosis in a Herd of Horses. J. Vet. Intern. Med. 2012, 26, 1439–1442. [Google Scholar] [CrossRef] [Green Version]
- Vellonen, K.S.; Hellinen, L.; Mannermaa, E.; Ruponen, M.; Urtti, A.; Kidron, H. Expression, activity and pharmacokinetic impact of ocular transporters. Adv. Drug Deliv. Rev. 2018, 126, 3–22. [Google Scholar] [CrossRef] [Green Version]
- Nizanski, W.; Levy, X.; Ochota, M.; Pasikowska, J. Pharmacological Treatment for Common Prostatic Conditions in Dogs—Benign Prostatic Hyperplasia and Prostatitis: An Update. Reprod. Domest. Anim. 2014, 49, 8–15. [Google Scholar] [CrossRef]
- Miller, S.R.; Cherrington, N.J. Transepithelial transport across the blood-testis barrier. Reproduction 2018, 156, R187–R194. [Google Scholar] [CrossRef]
- Tetro, N.; Moushaev, S.; Rubinchik-Stern, M.; Eyal, S. The Placental Barrier: The Gate and the Fate in Drug Distribution. Pharm. Res. 2018, 35, 71. [Google Scholar] [CrossRef]
- Gedeon, C.; Koren, G. Designing pregnancy centered medications: Drugs which do not cross the human placenta. Placenta 2006, 27, 861–868. [Google Scholar] [CrossRef]
- Santschi, E.M.; Papich, M.G. Pharmacokinetics of gentamicin in mares in late pregnancy and early lactation. J. Vet. Pharmacol. Ther. 2000, 23, 359–363. [Google Scholar] [CrossRef] [PubMed]
- Haritova, A.M.; Krastev, S.Z.; Santos, R.R.; Schrickx, J.A.; Fink-Gremmels, J. ABC Transporters in the Eyes of Dogs and Implications in Drug Therapy. Curr. Eye Res. 2013, 38, 271–277. [Google Scholar] [CrossRef]
- Juliano, R.L.; Ling, V. Surface Glycoprotein Modulating Drug Permeability In Chinese-Hamster Ovary Cell Mutants. Biochim. Biophys. Acta 1976, 455, 152–162. [Google Scholar] [CrossRef]
Equine Transporter | NCBI Protein Accession # | Equine Tissue Distribution | Human Transporter (% Homology) | Function (Human) + | Reference |
---|---|---|---|---|---|
P-gp | XP_014594657 | Intestine (apical) Liver (apical) Kidney (apical primarily) Lymphocytes | P-gp (90%) | efflux | [34,78] |
Bcrp | XP_005608692 | Intestine (apical) Liver (apical, intracytoplasmic) Kidney (apical) | BCRP (86%) | efflux | [100] |
Mrp1 | NP_001075232 | Intestine (intracytoplasmic) | MRP1 (90%) | efflux | [100] |
Mrp2 | XP_001500757 | Intestine (apical) Liver (apical) Kidney (apical, some basolateral) | MRP2 (83%) | efflux | [100] |
Oatp2b1 * | NP_001075258 | Liver Kidney Brain Spleen Ovarian follicle Heart Skeletal muscle Testis Skin | OATP2B1 (80%) | uptake | [50] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosa, B. Equine Drug Transporters: A Mini-Review and Veterinary Perspective. Pharmaceutics 2020, 12, 1064. https://doi.org/10.3390/pharmaceutics12111064
Rosa B. Equine Drug Transporters: A Mini-Review and Veterinary Perspective. Pharmaceutics. 2020; 12(11):1064. https://doi.org/10.3390/pharmaceutics12111064
Chicago/Turabian StyleRosa, Brielle. 2020. "Equine Drug Transporters: A Mini-Review and Veterinary Perspective" Pharmaceutics 12, no. 11: 1064. https://doi.org/10.3390/pharmaceutics12111064
APA StyleRosa, B. (2020). Equine Drug Transporters: A Mini-Review and Veterinary Perspective. Pharmaceutics, 12(11), 1064. https://doi.org/10.3390/pharmaceutics12111064