A Critical Review on Emerging Trends in Dry Powder Inhaler Formulation for the Treatment of Pulmonary Aspergillosis
Abstract
:1. Introduction
2. Pulmonary Fungal Infection
Pulmonary Aspergillosis
3. Novel Approaches for Lung Drug Delivery against Fungal Infection
3.1. Pulmonary Delivery of Antifungal Agents
3.1.1. Dry Powder Inhaler Formulations
Micronized Drugs for Lung Delivery against Fungal Infection
Nanocarriers for Lung Delivery against Fungal Infections
3.1.2. Nebulisation Approach to Deliver Drugs in Lungs
Nebulization of Intravenous Formulation
Nanocarriers for lung delivery against fungal infection for nebulized delivery:
3.1.3. Intravenous Drug Delivery against Fungal Infection
Intravenous Nanocarriers against Pulmonary Fungal Infection:
4. Expert Opinion
5. Safety Concerns of Dry Powder Inhaler Formulations against Pulmonary Aspergillosis
6. Clinical and Regulatory Aspects Related to Dry Powder Inhalers against Pulmonary Aspergillosis
7. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
DPPA | 1,2-Dipalmitoyl-sn-glycero-3-phophate (monosodium salt) |
DPPC | 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine |
DSPE-mPEG2000 | 1,2-Distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (ammonium slat) |
AIDS | Acquired immunodeficiency syndrome |
ABPA | Allergic bronchopulmonary aspergillosis |
IPA | Invasive pulmonary aspergillosis |
CPA | Chronic pulmonary aspergillosis |
AmB-NP | AmB-loaded PLGA-TPGS nanoparticles |
Nano-D-AmB | AmB-loaded with PLGA and DMSA polymeric nanoparticles |
AmB-DCH | AmB prepared with sodium deoxycholate |
AmB | amphotericin B |
PEG-g-PLA-AmB | AmB-loaded polymeric nanoparticles with PLA-grafted with PEG |
CO2 | Carbon dioxide |
CMC | Carboxymethylchitosan |
Ch-VNP | Chitosan-coated PLGA nanoparticles containing VRZ |
CCEs | Cholesteryl carbonate esters |
DCSA-AmB | Depolymerised chitosan and stearic acid |
DMSA | Dimercaptosuccinic acid |
DSPG | Distearoylphosphatidylglycerol |
DPI | Dry powder inhaler |
ED | Emitted dose |
EE | Entrapment efficiency |
FPF | Fine particle fraction |
GSD | Geometric standard deviation |
HIV | Human immunodeficiency virus |
HSPC | Hydrogenated soy phosphatidylcholine |
CHOL | Cholesterol |
ITZ | Itraconazole |
LDPI | Liposomal DPI |
VLPP | Microparticulate dry powder formulations containing voriconazole |
MIC | Minimum inhibit concentration |
MFC | Minimum fungicidal concentration |
PA | Pulmonary aspergillosis |
Nano-D-ITZ | PLGA-DMSA nanoparticles containing ITZ |
PLGA | Poly-lactide-co-glycolide |
AmB-PMA | Polymethacrylic acid nanoparticles containing amb |
PCZ | Posaconazole |
SCC | Sodium cholesteryl carbonate |
SDS | Sodium deoxycholate sulfate |
SD | Solid dispersions |
SPG-3 | Soy phosphatidyl glycerol |
SCF | Supercritical fluid |
TA | Tartaric acid |
SA | Succinic acid |
FA | Fumaric acid |
MA | Malic acid |
TFF | Thin film freezing |
TPP | Tripolyphosphate |
TB | Tuberculosis |
TNF-α | Tumour necrosis factor |
VRZ | Voriconazole |
VNP | Voriconazole-loaded PLGA nanoparticles |
References
- Carroll, K.C.; Adams, L.L. Lower Respiratory Tract Infections. Microbiol. Spectr. 2016, 4, DMIH2-0029–2016. [Google Scholar] [CrossRef]
- Kinkade, S.; Long, N.A. Acute Bronchitis. Am. Fam. Physician 2016, 94, 560–565. [Google Scholar]
- Florin, T.A.; Plint, A.C.; Zorc, J.J. Viral bronchiolitis. Lancet 2017, 389, 211–224. [Google Scholar] [CrossRef]
- Ryu, J.H.; Azadeh, N.; Samhouri, B.; Yi, E. Recent advances in the understanding of bronchiolitis in adults. F1000Research 2020, 9, 568. [Google Scholar] [CrossRef]
- Winningham, P.J.; Martínez-Jiménez, S.; Rosado-de-Christenson, M.L.; Betancourt, S.L.; Restrepo, C.S.; Eraso, A. Bronchiolitis: A practical approach for the general radiologist. Radiographics 2017, 37, 777–794. [Google Scholar] [CrossRef] [Green Version]
- Crane, M.J.; Lee, K.M.; FitzGerald, E.S.; Jamieson, A.M. Surviving deadly lung infections: Innate host tolerance mechanisms in the pulmonary system. Front. Immunol. 2018, 9, 1421. [Google Scholar] [CrossRef]
- Dandachi, D.; Rodriguez-Barradas, M.C. Viral pneumonia: Etiologies and treatment. J. Investig. Med. 2018, 66, 957–965. [Google Scholar] [CrossRef]
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef]
- Ye, Q.; Wang, B.; Mao, J. The pathogenesis and treatment of the Cytokine Storm in COVID-19. J. Infect. 2020, 80, 607–613. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Liu, Q.; Guo, D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J. Med. Virol. 2020, 92, 418–423. [Google Scholar] [CrossRef]
- Cilloniz, C.; Martin-Loeches, I.; Garcia-Vidal, C.; Jose, A.S.; Torres, A. Microbial etiology of pneumonia: Epidemiology, diagnosis and resistance patterns. Int. J. Mol. Sci. 2016, 17, 2120. [Google Scholar] [CrossRef] [Green Version]
- Prina, E.; Ranzani, O.T.; Torres, A. Community-acquired pneumonia. Lancet 2015, 386, 1097–1108. [Google Scholar] [CrossRef]
- Li, Z.; Lu, G.; Meng, G. Pathogenic Fungal Infection in the Lung. Front. Immunol. 2019, 10, 1524. [Google Scholar] [CrossRef] [Green Version]
- Bongomin, F.; Gago, S.; Oladele, R.O.; Denning, D.W. Global and multi-national prevalence of fungal diseases—Estimate precision. J. Fungi 2017, 3, 57. [Google Scholar] [CrossRef]
- Di Mango, A.L.; Zanetti, G.; Penha, D.; Menna Barreto, M.; Marchiori, E. Endemic pulmonary fungal diseases in immunocompetent patients: An emphasis on thoracic imaging. Expert Rev. Respir. Med. 2019, 13, 263–277. [Google Scholar] [CrossRef]
- Denning, D.W.; Chakrabarti, A. Pulmonary and sinus fungal diseases in non-immunocompromised patients. Lancet Infect. Dis. 2017, 17, e357–e366. [Google Scholar] [CrossRef]
- Salzer, H.J.F.; Burchard, G.; Cornely, O.A.; Lange, C.; Rolling, T.; Schmiedel, S.; Libman, M.; Capone, D.; Le, T.; Dalcolmo, M.P.; et al. Diagnosis and management of systemic endemic mycoses causing pulmonary disease. Respiration 2018, 96, 283–301. [Google Scholar] [CrossRef]
- Alastruey-Izquierdo, A.; Cadranel, J.; Flick, H.; Godet, C.; Hennequin, C.; Hoenigl, M.; Kosmidis, C.; Lange, C.; Munteanu, O.; Page, I.; et al. Treatment of Chronic Pulmonary Aspergillosis: Current Standards and Future Perspectives. Respiration 2018, 96, 159–170. [Google Scholar] [CrossRef]
- Smith, J.A.; Kauffman, C.A. Pulmonary fungal infections. Respirology 2012, 17, 913–926. [Google Scholar] [CrossRef] [Green Version]
- Bongomin, F.; Asio, L.G.; Baluku, J.B.; Kwizera, R.; Denning, D.W. Chronic Pulmonary Aspergillosis: Notes for a Clinician in a Resource-Limited Setting Where There Is No Mycologist. J. Fungi 2020, 6, 75. [Google Scholar] [CrossRef]
- Gago, S.; Denning, D.W.; Bowyer, P. Pathophysiological Aspects of Aspergillus Colonization in Disease. Med. Mycol. 2019, 57, S219–S227. [Google Scholar] [CrossRef]
- Latgé, J.P.; Chamilos, G. Aspergillus fumigatus and aspergillosis in 2019. Clin. Microbiol. Rev. 2020, 33, e00140-18. [Google Scholar]
- Billaud, E.M.; Guillemain, R.; Berge, M.; Amrein, C.; Lefeuvre, S.; Louët, A.L.L.; Boussaud, V.; Chevalier, P. Pharmacological considerations for azole antifungal drug management in cystic fibrosis lung transplant patients. Med. Mycol. 2010, 48, S52–S59. [Google Scholar] [CrossRef] [Green Version]
- Maghrabi, F.; Denning, D.W. The Management of Chronic Pulmonary Aspergillosis: The UK National Aspergillosis Centre Approach. Curr. Fungal Infect. Rep. 2017, 11, 242–251. [Google Scholar] [CrossRef] [Green Version]
- Azanza Perea, J.R.; Sádaba Diáz de Rada, B.; García Quetglas, E.; Muñóz Juarez, M.J. Oral versus intravenous therapy in the treatment of systemic mycosis. Clin. Microbiol. Infect. 2004, 10, 96–106. [Google Scholar] [CrossRef] [Green Version]
- Lewis, R.E. Current concepts in antifungal pharmacology. In Proceedings of the Mayo Clinic Proceedings; Elsevier Inc.: Amsterdam, The Netherlands, 2011; Volume 86, pp. 805–817. [Google Scholar]
- Choudhury, H.; Pandey, M.; Yin, T.H.; Kaur, T.; Jia, G.W.; Tan, S.Q.L.; Weijie, H.; Yang, E.K.S.; Keat, C.G.; Bhattamishra, S.K.; et al. Rising horizon in circumventing multidrug resistance in chemotherapy with nanotechnology. Mater. Sci. Eng. C 2019, 101, 596–613. [Google Scholar] [CrossRef]
- Gorain, B.; Choudhury, H.; Pandey, M.; Kesharwani, P. Paclitaxel loaded vitamin E-TPGS nanoparticles for cancer therapy. Mater. Sci. Eng. C 2018, 91, 868–880. [Google Scholar] [CrossRef]
- Din, F.U.; Aman, W.; Ullah, I.; Qureshi, O.S.; Mustapha, O.; Shafique, S.; Zeb, A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int. J. Nanomed. 2017, 12, 7291–7309. [Google Scholar] [CrossRef] [Green Version]
- Soliman, G.M. Nanoparticles as safe and effective delivery systems of antifungal agents: Achievements and challenges. Int. J. Pharm. 2017, 523, 15–32. [Google Scholar] [CrossRef]
- Kaur, R.; Kaur, R.; Singh, C.; Kaur, S.; Goyal, A.K.; Singh, K.K.; Singh Bhoop, B. Inhalational drug delivery in pulmonary aspergillosis. Crit. Rev. Ther. Drug Carr. Syst. 2019, 36, 183–217. [Google Scholar] [CrossRef]
- Prime, D.; Atkins, P.J.; Slater, A.; Sumby, B. Review of dry powder inhalers. Adv. Drug Deliv. Rev. 1997, 26, 51–58. [Google Scholar] [CrossRef]
- Malamatari, M.; Charisi, A.; Malamataris, S.; Kachrimanis, K.; Nikolakakis, I. Spray Drying for the Preparation of Nanoparticle-Based Drug Formulations as Dry Powders for Inhalation. Processes 2020, 8, 788. [Google Scholar] [CrossRef]
- Chuealee, R.; Wiedmann, T.S.; Srichana, T. Physicochemical properties and antifungal activity of amphotericin b incorporated in cholesteryl carbonate esters. J. Pharm. Sci. 2011, 100, 1727–1735. [Google Scholar] [CrossRef]
- Duret, C.; Wauthoz, N.; Sebti, T.; Vanderbist, F.; Amighi, K. Solid dispersions of itraconazole for inhalation with enhanced dissolution, solubility and dispersion properties. Int. J. Pharm. 2012, 428, 103–113. [Google Scholar] [CrossRef]
- Duret, C.; Wauthoz, N.; Sebti, T.; Vanderbist, F.; Amighi, K. New respirable and fast dissolving itraconazole dry powder composition for the treatment of invasive pulmonary aspergillosis. Pharm. Res. 2012, 29, 2845–2859. [Google Scholar] [CrossRef]
- Duret, C.; Merlos, R.; Wauthoz, N.; Sebti, T.; Vanderbist, F.; Amighi, K. Pharmacokinetic evaluation in mice of amorphous itraconazole-based dry powder formulations for inhalation with high bioavailability and extended lung retention. Eur. J. Pharm. Biopharm. 2014, 86, 46–54. [Google Scholar] [CrossRef]
- Beinborn, N.A.; Du, J.; Wiederhold, N.P.; Smyth, H.D.C.; Williams, R.O. Dry powder insufflation of crystalline and amorphous voriconazole formulations produced by thin film freezing to mice. Eur. J. Pharm. Biopharm. 2012, 81, 600–608. [Google Scholar] [CrossRef]
- Hamishehkar, H.; Pourtahmaseb, M.; Babazadeh, A.; Alipour, S. Physicochemical and aerosolization assessment of inhalable spray dried fluconazole powder. Pharm. Sci. 2018, 24, 219–226. [Google Scholar] [CrossRef]
- Arora, S.; Haghi, M.; Loo, C.Y.; Traini, D.; Young, P.M.; Jain, S. Development of an inhaled controlled release voriconazole dry powder formulation for the treatment of respiratory fungal infection. Mol. Pharm. 2015, 12, 2001–2009. [Google Scholar] [CrossRef]
- Arora, S.; Mahajan, R.R.; Kushwah, V.; Baradia, D.; Misra, A.; Jain, S. Development of voriconazole loaded large porous particles for inhalation delivery: Effect of surface forces on aerosolisation performance, assessment of in vitro safety potential and uptake by macrophages. RSC Adv. 2015, 5, 38030–38043. [Google Scholar] [CrossRef]
- Arora, S.; Haghi, M.; Young, P.M.; Kappl, M.; Traini, D.; Jain, S. Highly respirable dry powder inhalable formulation of voriconazole with enhanced pulmonary bioavailability. Expert Opin. Drug Deliv. 2016, 13, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Karashima, M.; Sano, N.; Yamamoto, S.; Arai, Y.; Yamamoto, K.; Amano, N.; Ikeda, Y. Enhanced pulmonary absorption of poorly soluble itraconazole by micronized cocrystal dry powder formulations. Eur. J. Pharm. Biopharm. 2017, 115, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Pornputtapitak, W.; El-Gendy, N.; Berkland, C. NanoCluster Itraconazole Formulations Provide a Potential Engineered Drug Particle Approach to Generate Effective Dry Powder Aerosols. J. Aerosol Med. Pulm. Drug Deliv. 2015, 28, 341–352. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.K.; Thareja, S. In vitro and in vivo characterization of pharmaceutical nanocarriers used for drug delivery. Artif. Cells Nanomed. Biotechnol. 2019, 47, 524–539. [Google Scholar] [CrossRef] [Green Version]
- Özkan, S.A.; Dedeoğlu, A.; Karadaş Bakirhan, N.; Özkan, Y. Nanocarriers used most in drug delivery and drug release: Nanohydrogel, chitosan, graphene, and solid lipid. Turk. J. Pharm. Sci. 2019, 16, 481–492. [Google Scholar] [CrossRef]
- Waghule, T.; Sankar, S.; Rapalli, V.K.; Gorantla, S.; Dubey, S.K.; Chellappan, D.K.; Dua, K.; Singhvi, G. Emerging Role of Nanocarriers based Topical delivery of Anti-Fungal Agents in Combating Growing Fungal Infections. Dermatol. Ther. 2020, e13905. [Google Scholar] [CrossRef]
- Marx-Stoelting, P.; Knebel, C.; Braeuning, A. The Connection of Azole Fungicides with Xeno-Sensing Nuclear Receptors, Drug Metabolism and Hepatotoxicity. Cells 2020, 9, 1192. [Google Scholar] [CrossRef]
- Adler-Moore, J.; Proffitt, R.T. AmBisome: Liposomal formulation, structure, mechanism of action and pre-clinical experience—PubMed. J. Antimicrob. Chemother. 2002, 49, 21–30. [Google Scholar] [CrossRef]
- Shah, S.P.; Misra, A. Development of Liposomal Amphotericin B Dry Powder Inhaler Formulation. Drug Deliv. 2004, 11, 247–253. [Google Scholar] [CrossRef] [Green Version]
- Shah, S.P.; Misra, A. Liposomal amphotericin B dry powder inhaler: Effect of fines on in vitro performance. Pharmazie 2004, 59, 812–813. [Google Scholar]
- Hertel, M.; Schwarz, E.; Kobler, M.; Hauptstein, S.; Steckel, H.; Scherließ, R. Powder flow analysis: A simple method to indicate the ideal amount of lactose fines in dry powder inhaler formulations. Int. J. Pharm. 2018, 535, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Aghdam, M.H.; Ghanbarzadeh, S.; Javadzadeh, Y.; Hamishehkar, H. Aggregated nanotransfersomal dry powder inhalation of itraconazole for pulmonary drug delivery. Adv. Pharm. Bull. 2016, 6, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Duwa, R.; Emami, F.; Lee, S.; Jeong, J.H.; Yook, S. Polymeric and lipid-based drug delivery systems for treatment of glioblastoma multiforme. J. Ind. Eng. Chem. 2019, 79, 261–273. [Google Scholar] [CrossRef]
- Sung, Y.K.; Kim, S.W. Recent advances in polymeric drug delivery systems. Biomater. Res. 2020, 24, 1–12. [Google Scholar] [CrossRef]
- Son, G.H.; Lee, B.J.; Cho, C.W. Mechanisms of drug release from advanced drug formulations such as polymeric-based drug-delivery systems and lipid nanoparticles. J. Pharm. Investig. 2017, 47, 287–296. [Google Scholar] [CrossRef]
- Li, J.; Yu, F.; Chen, Y.; Oupický, D. Polymeric drugs: Advances in the development of pharmacologically active polymers. J. Control. Release 2015, 219, 369–382. [Google Scholar] [CrossRef] [Green Version]
- Priya, V.S.V.; Roy, H.K.; Jyothi, N.; Prasanthi, N.L. Polymers in Drug Delivery Technology, Types of Polymers and Applications. Sch. Acad. J. Pharm. 2016, 5, 305–308. [Google Scholar] [CrossRef]
- Venditti, I. Morphologies and functionalities of polymeric nanocarriers as chemical tools for drug delivery: A review. J. King Saud. Univ. Sci. 2019, 31, 398–411. [Google Scholar] [CrossRef]
- Ribeiro, A.M.; Veiga, F.; Figueiras, A. Biodegradable polymeric nanostructures: Design and advances in oral drug delivery for neurodegenerative disorders. In Nanostructures for Oral Medicine; Elsevier Inc.: Amsterdam, The Netherlands, 2017; pp. 61–86. ISBN 9780323477215. [Google Scholar]
- Jafarinejad, S.; Gilani, K.; Moazeni, E.; Ghazi-Khansari, M.; Najafabadi, A.R.; Mohajel, N. Development of chitosan-based nanoparticles for pulmonary delivery of itraconazole as dry powder formulation. Powder Technol. 2012, 222, 65–70. [Google Scholar] [CrossRef]
- Chew, N.Y.K.; Chan, H.K. Use of solid corrugated particles to enhance powder aerosol performance. Pharm. Res. 2001, 18, 1570–1577. [Google Scholar] [CrossRef]
- Sinha, B.; Mukherjee, B.; Pattnaik, G. Poly-lactide-co-glycolide nanoparticles containing voriconazole for pulmonary delivery: In vitro and in vivo study. Nanomed. Nanotechnol. Biol. Med. 2013, 9, 94–104. [Google Scholar] [CrossRef] [PubMed]
- Das, P.J.; Paul, P.; Mukherjee, B.; Mazumder, B.; Mondal, L.; Baishya, R.; Debnath, M.C.; Dey, K.S. Pulmonary Delivery of Voriconazole Loaded Nanoparticles Providing a Prolonged Drug Level in Lungs: A Promise for Treating Fungal Infection. Mol. Pharm. 2015, 12, 2651–2664. [Google Scholar] [CrossRef] [PubMed]
- Paul, P.; Sengupta, S.; Mukherjee, B.; Shaw, T.K.; Gaonkar, R.H.; Debnath, M.C. Chitosan-coated nanoparticles enhanced lung pharmacokinetic profile of voriconazole upon pulmonary delivery in mice. Nanomedicine 2018, 13, 501–520. [Google Scholar] [CrossRef]
- Labiris, N.R.; Dolovich, M.B. Pulmonary drug delivery. Part II: The role of inhalant delivery devices and drug formulations in therapeutic effectiveness of aerosolized medications. Br. J. Clin. Pharmacol. 2003, 56, 600–612. [Google Scholar] [CrossRef] [Green Version]
- Ari, A. Jet, Ultrasonic, and Mesh Nebulizers: An Evaluation of Nebulizers for Better Clinical Outcomes. Eurasian J. Pulmonol. 2014, 16, 1–7. [Google Scholar] [CrossRef]
- Tolman, J.A.; Wiederhold, N.P.; McConville, J.T.; Najvar, L.K.; Bocanegra, R.; Peters, J.I.; Coalson, J.J.; Graybill, J.R.; Patterson, T.F.; Williams, R.O. Inhaled voriconazole for prevention of invasive pulmonary aspergillosis. Antimicrob. Agents Chemother. 2009, 53, 2613–2615. [Google Scholar] [CrossRef] [Green Version]
- Thanukrishnan, H.; Corcoran, T.E.; Iasella, C.J.; Moore, C.A.; Nero, J.A.; Morrell, M.R.; McDyer, J.F.; Hussain, S.; Nguyen, M.H.; Venkataramanan, R.; et al. Aerosolization of Second-generation Triazoles: In Vitro Evaluation and Application in Therapy of Invasive Airway Aspergillosis. Transplantation 2019, 103, 2608–2613. [Google Scholar] [CrossRef]
- Gómez-Ganda, L.; Terradas-Campanario, S.; Campany-Herrero, D. Physicochemical characterization of micafungin and anidulafungin for its nebulized administration. Farm. Hosp. 2019, 73, 163–165. [Google Scholar]
- Vyas, S.P.; Quraishi, S.; Gupta, S.; Jaganathan, K.S. Aerosolized liposome-based delivery of amphotericin B to alveolar macrophages. Int. J. Pharm. 2005, 296, 12–25. [Google Scholar] [CrossRef]
- Stone, N.R.H.; Bicanic, T.; Salim, R.; Hope, W. Liposomal Amphotericin B (AmBisome®): A Review of the Pharmacokinetics, Pharmacodynamics, Clinical Experience and Future Directions. Drugs 2016, 76, 485–500. [Google Scholar] [CrossRef] [Green Version]
- Alexander, B.D.; Winkler, T.P.; Shi, S.; Dodds Ashley, E.S.; Hickey, A.J. In vitro characterization of nebulizer delivery of liposomal amphotericin B aerosols. Pharm. Dev. Technol. 2011, 16, 577–582. [Google Scholar] [CrossRef] [PubMed]
- Ruijgrok, E.J.; Vulto, A.G.; Van Etten, E.W. Aerosol delivery of amphotericin B desoxycholate (Fungizone) and liposomal amphotericin B (AmBisome): Aerosol characteristics and in-vivo amphotericin B deposition in rats. J. Pharm. Pharmacol. 2000, 52, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Husain, S.; Capitano, B.; Corcoran, T.; Studer, S.M.; Crespo, M.; Johnson, B.; Pilewski, J.M.; Shutt, K.; Pakstis, D.L.; Zhang, S.; et al. Intrapulmonary disposition of amphotericin B after aerosolized delivery of amphotericin B lipid complex (Abelcet; ABLC) in lung transplant recipients. Transplantation 2010, 90, 1215–1219. [Google Scholar] [CrossRef] [PubMed]
- Fauvel, M.; Farrugia, C.; Tsapis, N.; Gueutin, C.; Cabaret, O.; Bories, C.; Bretagne, S.; Barratt, G. Aerosolized liposomal amphotericin B: Prediction of lung deposition, in vitro uptake and cytotoxicity. Int. J. Pharm. 2012, 436, 106–110. [Google Scholar] [CrossRef]
- Pardeike, J.; Weber, S.; Haber, T.; Wagner, J.; Zarfl, H.P.; Plank, H.; Zimmer, A. Development of an Itraconazole-loaded nanostructured lipid carrier (NLC) formulation for pulmonary application. Int. J. Pharm. 2011, 419, 329–338. [Google Scholar] [CrossRef]
- Pardeike, J.; Weber, S.; Matsko, N.; Zimmer, A. Formation of a physical stable delivery system by simply autoclaving nanostructured lipid carriers (NLC). Int. J. Pharm. 2012, 439, 22–27. [Google Scholar] [CrossRef]
- Pardeike, J.; Weber, S.; Zarfl, H.P.; Pagitz, M.; Zimmer, A. Itraconazole-loaded nanostructured lipid carriers (NLC) for pulmonary treatment of aspergillosis in falcons. Eur. J. Pharm. Biopharm. 2016, 108, 269–276. [Google Scholar] [CrossRef]
- Gorain, B.; Choudhury, H.; Nair, A.B.; Dubey, S.K.; Kesharwani, P. Theranostic application of nanoemulsions in chemotherapy. Drug Discov. Today 2020, 25, 1174–1188. [Google Scholar] [CrossRef]
- Choudhury, H.; Gorain, B.; Chatterjee, B.; Mandal, U.K.; Sengupta, P.; Tekade, R.K. Pharmacokinetic and pharmacodynamic features of nanoemulsion following oral, intravenous, topical and nasal route. Curr. Pharm. Des. 2017, 23, 2504–2531. [Google Scholar] [CrossRef]
- Nasr, M.; Nawaz, S.; Elhissi, A. Amphotericin B lipid nanoemulsion aerosols for targeting peripheral respiratory airways via nebulization. Int. J. Pharm. 2012, 436, 611–616. [Google Scholar] [CrossRef]
- Gangadhar, K.N.; Adhikari, K.; Srichana, T. Synthesis and evaluation of sodium deoxycholate sulfate as a lipid drug carrier to enhance the solubility, stability and safety of an amphotericin B inhalation formulation. Int. J. Pharm. 2014, 471, 430–438. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, H.; Maheshwari, R.; Pandey, M.; Tekade, M.; Gorain, B.; Tekade, R.K. Advanced nanoscale carrier-based approaches to overcome biopharmaceutical issues associated with anticancer drug ‘Etoposide’. Mater. Sci. Eng. C 2020, 106, 110275. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.C.I.M.; Butt, A.M.; Amjad, M.W.; Kesharwani, P. Polymeric Micelles for Drug Targeting and Delivery. In Nanotechnology-Based Approaches for Targeting and Delivery of Drugs and Genes; Elsevier Inc.: Amsterdam, The Netherlands, 2017; pp. 167–202. ISBN 9780128097182. [Google Scholar]
- Wakaskar, R.R. Polymeric Micelles and their Properties. J. Nanomed. Nanotechnol. 2017, 08, 433. [Google Scholar] [CrossRef] [Green Version]
- Deshmukh, A.S.; Chauhan, P.N.; Noolvi, M.N.; Chaturvedi, K.; Ganguly, K.; Shukla, S.S.; Nadagouda, M.N.; Aminabhavi, T.M. Polymeric micelles: Basic research to clinical practice. Int. J. Pharm. 2017, 532, 249–268. [Google Scholar] [CrossRef]
- Nelemans, L.C.; Gurevich, L. Drug delivery with polymeric nanocarriers-cellular uptake mechanisms. Materials 2020, 13, 366. [Google Scholar] [CrossRef] [Green Version]
- Wakaskar, R.R. General overview of lipid-polymer hybrid nanoparticles, dendrimers, micelles, liposomes, spongosomes and cubosomes. J. Drug Target. 2018, 26, 311–318. [Google Scholar] [CrossRef]
- Gilani, K.; Moazeni, E.; Ramezanli, T.; Amini, M.; Fazeli, M.R.; Jamalifar, H. Development of respirable nanomicelle carriers for delivery of amphotericin B by jet nebulization. J. Pharm. Sci. 2011, 100, 252–259. [Google Scholar] [CrossRef]
- Moazeni, E.; Gilani, K.; Najafabadi, A.R.; Reza Rouini, M.; Mohajel, N.; Amini, M.; Barghi, M.A. Preparation and evaluation of inhalable itraconazole chitosan based polymeric micelles. DARU J. Pharm. Sci. 2012, 20, 85. [Google Scholar] [CrossRef] [Green Version]
- Shirkhani, K.; Teo, I.; Armstrong-James, D.; Shaunak, S. Nebulised amphotericin B-polymethacrylic acid nanoparticle prophylaxis prevents invasive aspergillosis. Nanomed. Nanotechnol. Biol. Med. 2015, 11, 1217–1226. [Google Scholar] [CrossRef] [Green Version]
- Schmitt, H.J.; Bernard, E.M.; Hauser, M.; Armstrong, D. Aerosol amphotericin B is effective for prophylaxis and therapy in a rat model of pulmonary aspergillosis. Antimicrob. Agents Chemother. 1988, 32, 1676–1679. [Google Scholar] [CrossRef] [Green Version]
- Aoun, V.; Duval, C.; Pagniez, F.; Rabanel, J.-M.; Pape, P.L.; Roullin, V.G.; Leclair, G.; Hildgen, P. Enhanced Pulmonary Administration of Amphotericin B Loaded in PEG-g-PLA Nanoparticles: In Vitro Proof-of-Concept and Susceptibility against Candida spp. and Aspergillus spp. J. Nanopharm. Drug Deliv. 2015, 2, 294–304. [Google Scholar] [CrossRef]
- Speck, P.; Smithyman, A. Safety and efficacy of phage therapy via the intravenous route. FEMS Microbiol. Lett. 2015, 363, 242. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Huang, G. Preparation of itraconazole-loaded liposomes coated by carboxymethyl chitosan and its pharmacokinetics and tissue distribution. Drug Deliv. 2011, 18, 631–638. [Google Scholar] [PubMed]
- Lim, C.B.; Abuzar, S.M.; Karn, P.R.; Cho, W.; Park, H.J.; Cho, C.W.; Hwang, S.J. Preparation, characterization, and in vivo pharmacokinetic study of the supercritical fluid-processed liposomal amphotericin B. Pharmaceutics 2019, 11, 589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, S.H.; Lim, D.H.; Jung, S.H.; Lee, J.E.; Jeong, K.S.; Seong, H.; Shin, B.C. Amphotericin B-entrapping lipid nanoparticles and their in vitro and in vivo characteristics. Eur. J. Pharm. Sci. 2009, 37, 313–320. [Google Scholar] [CrossRef]
- Kim, J.K.; Park, J.S.; Kim, C.K. Development of a binary lipid nanoparticles formulation of itraconazole for parenteral administration and controlled release. Int. J. Pharm. 2010, 383, 209–215. [Google Scholar] [CrossRef]
- Zeb, A.; Qureshi, O.S.; Kim, H.S.; Kim, M.S.; Kang, J.H.; Park, J.S.; Kim, J.K. High payload itraconazole-incorporated lipid nanoparticles with modulated release property for oral and parenteral administration. J. Pharm. Pharmacol. 2017, 69, 955–966. [Google Scholar] [CrossRef]
- López-Sánchez, A.; Pérez-Cantero, A.; Torrado-Salmerón, C.; Martin-Vicente, A.; García-Herrero, V.; González-Nicolás, M.Á.; Lázaro, A.; Tejedor, A.; Torrado-Santiago, S.; García-Rodríguez, J.J.; et al. Efficacy, biodistribution, and nephrotoxicity of experimental amphotericin B-deoxycholate formulations for pulmonary aspergillosis. Antimicrob. Agents Chemother. 2018, 62. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.; Zhu, H.; Sun, L.; Hou, W.; Cai, S.; Zhang, R.; Liu, F. Enhanced antifungal effects of amphotericin B-TPGS-b-(PCL-ran-PGA) nanoparticles in vitro and in vivo. Int. J. Nanomed. 2014, 9, 5403–5413. [Google Scholar]
- Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M.R. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 2018, 10, 57. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.; Jiao, R.; Xie, C.; Xu, L.; Huo, Z.; Dai, J.; Qian, Y.; Xu, W.; Hou, W.; Wang, J.; et al. Improved antifungal activity of amphotericin B-loaded TPGS-b-(PCL-ran-PGA) nanoparticles. Int. J. Clin. Exp. Med. 2015, 8, 5150–5162. [Google Scholar] [PubMed]
- Amaral, A.C.; Bocca, A.L.; Ribeiro, A.M.; Nunes, J.; Peixoto, D.L.G.; Simioni, A.R.; Primo, F.L.; Lacava, Z.G.M.; Bentes, R.; Titze-de-Almeida, R.; et al. Amphotericin B in poly(lactic-co-glycolic acid) (PLGA) and dimercaptosuccinic acid (DMSA) nanoparticles against paracoccidioidomycosis. J. Antimicrob. Chemother. 2009, 63, 526–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Souza, A.C.O.; Nascimento, A.L.; de Vasconcelos, N.M.; Jerônimo, M.S.; Siqueira, I.M.; R-Santos, L.; Cintra, D.O.S.; Fuscaldi, L.L.; Pires Júnior, O.R.; Titze-de-Almeida, R.; et al. Activity and in vivo tracking of Amphotericin B loaded PLGA nanoparticles. Eur. J. Med. Chem. 2015, 95, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Cunha-Azevedo, E.P.; Py-Daniel, K.R.; Siqueira-Moura, M.P.; Bocca, A.L.; Felipe, M.S.S.; Tedesco, A.C.; Pires Junior, O.R.; Lucci, C.M.; Azevedo, R.B. In vivo evaluation of the efficacy, toxicity and biodistribution of PLGA-DMSA nanoparticles loaded with itraconazole for treatment of paracoccidioidomycosis. J. Drug Deliv. Sci. Technol. 2018, 45, 135–141. [Google Scholar] [CrossRef]
- FDA. SYMBICORT® Prescribing Information; FDA; 2006. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2006/021929lbl.pdf (accessed on 1 September 2020).
- Liu, X.B.; Ye, J.X.; Quan, L.H.; Liu, C.Y.; Deng, X.L.; Yang, M.; Liao, Y.H. Pulmonary delivery of scutellarin solution and mucoadhesive particles in rats. Eur. J. Pharm. Biopharm. 2008, 70, 845–852. [Google Scholar] [CrossRef] [PubMed]
- ICH Harmonised Tripartite Guideline. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/international-conference-harmonisation-technical-requirements-registration-pharmaceuticals-human-use_en-33.pdf (accessed on 16 September 2020).
- Adhikari, K. Development of Amphotericin B Incorporated in Lipid Derivatives as a Reconstituted Powder for Nebulization; Prince of Songkla University: Songkhla, Thailand, 2014. [Google Scholar]
- Pipeline—PULMATRiX. Available online: https://www.pulmatrix.com/pipeline.html (accessed on 16 September 2020).
- Study in Adult Asthmatic Patients With Allergic Bronchopulmonary Aspergillosis—ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT03960606 (accessed on 16 September 2020).
- Safety, Tolerability and Pharmacokinetics of PUR1900 (Itraconazole Powder) in Healthy Volunteers and Adults With Asthma—ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT03479411) (accessed on 22 September 2020).
Objective | Polymer Used | Drug | Manufacturing Method | Cell Line/Animal Model | Outcome of the Research | Source |
---|---|---|---|---|---|---|
To assess the potential of AmB incorporated in SCC, cholesteryl palmityl carbonate and dicholesteryl carbonate for use in dry powder aerosol. | SCC, cholesteryl palmityl carbonate, dicholesteryl carbonate | AmB | Solvent evaporation | C. neoformans (ATCC 90113) and C. albicans (ATCC 90028) | AmB-SCC
| [34] |
To evaluate one DPI formulation strategy consisting of the formation of a poorly water-soluble drug based SDs produced by spray-drying process to achieve a high lung deposition, an improved solubility and dissolution profile and an acceptable safety profile in regards with excipients used. | TPGS 1000, mannitol | ITZ | Spray drying | NA |
| [35] |
To evaluate the dissolution and aerosolization of ITZ-based SDs with mannitol and the hydrogenated soy-lecithin. | Hydrogenated soy-lecithin, mannitol | ITZ | Spray drying | NA |
| [36] |
To evaluate the influence of phospholipids on the pharmacokinetic profile in vivo after pulmonary deposition of ITZ DPI SD. | Mannitol, Phospholipon 90 H® | ITZ | Spray drying | Male outbred ICR mice |
| [37] |
To evaluate the physicochemical and aerodynamic properties of the VRZ formulations produced by TFF in vitro to determine how these properties affect the pharmacokinetic profile and systemic bioavailability after dry powder insufflation in mice. | 1,4-dioxane, PVP K25 | VRZ | TFF | Male outbred ICR mice | TFF-VRZ
| [38] |
To prepare inhaled VRZ dry powder formulation with sustain release property. | PLA | VRZ | Spray drying method | Calu-3 cells |
| [40] |
To prepare pulmonary delivery of large porous VRZ microparticle dry powder formulation. | PLA, PLGA 752H, PLGA 502, ammonium bicarbonate | VRZ | Double emulsion method | Lung adenocarcinoma (A549) cells, murine macrophage cell line (RAW 264.7) |
| [41] |
To prepare and characterize inhalable VRZ dry powder formulation. | Leucine | VRZ | Spray drying method | Calu-3 cell line (HTB-55), BALB/c mice |
| [42] |
To prepare micronized cocrystal dry powder formulations of ITZ to improve pulmonary absorption. | Succinic acid, malic acid, fumaric acid, tartaric acid, D-mannitol | ITZ | Jet milling | Sprague-Dawley rats |
| [43] |
To develop ITZ NanoCluster formulation via wet milling method. | Ethanol | ITZ | Anti-solvent precipitation, wet milling | NA |
| [44] |
Objective | Type of Nanocarrier | Polymer Used | Drug | Method of Preparation | Cell Line/Animal Model | Outcome | Source |
---|---|---|---|---|---|---|---|
To prepare and optimize liposomal AmB DPI formulation for treatment of invasive lung fungal infection. | Liposome | HSPC, CHOL, α-tocopherol, SPG-3, SA | AmB | Reverse phase evaporation technique, spray freeze drying | NA |
| [50] |
To study the effects of addition of fines and the addition sequence of fine carrier on in vitro pulmonary deposition of AmB LDPI formulations using TSI at different flow rates. | Liposome | HSPC, CHOL, α-tocopherol, SPG-3, SA | AmB | Reverse phase evaporation technique, spray freeze drying | NA |
| [51] |
To introduce transfersomes as a carrier for pulmonary delivery in the form of DPI formulation. | Transfersome | Mannitol, lecithin, Span® 60 | ITZ | Thin film hydration, spray drying | NA |
| [53] |
To prepared dry powder formulation of ITZ loaded chitosan nanoparticles for pulmonary administration. | Polymeric nanoparticles | Chitosan, TPP, leucine, mannitol, lactose | ITZ | Spray drying method | NA |
| [61] |
To developed VRZ-loaded PLGA nanoparticles for pulmonary delivery. | Polymeric nanoparticle | PLGA | VRZ | Multiple-emulsification method | Swiss albino mice |
| [63] |
To investigate the release profile of VNP in the lungs. | Polymeric nanoparticles | PLGA | VRZ | Multiple emulsion solvent evaporation method | Swiss albino mice and Sprague-Dawley rats |
| [64] |
To formulate sustained release Ch-VNP for increasing drug residence time in the lungs. | Polymeric nanoparticles | PLGA, chitosan | VRZ | Multiple emulsion solvent evaporation technique | Swiss albino mice |
| [65] |
Objective | Drug | Cell Line/Animal Model | Outcome | Source |
---|---|---|---|---|
To evaluate the effectiveness of aerosolizing the IV formulation of VCZ as prophylaxis against IPA. | VRZ | Outbred ICR mice |
| [68] |
To evaluate the IV solution characteristics and particle size distribution of nebulized VCZ and PCZ. | PCZ, VRZ | NA | Aerosolized VRZ
| [69] |
To determine by experimentation whether micafungin and anidulafungin possess physicochemical properties suitable for nebulization. | Micafungin, anidulafungin | NA |
| [70] |
Objective | Type of Nanocarrier | Polymer Used | Drug | Method of Preparation | Cell Line/Animal Model | Outcome | Source |
---|---|---|---|---|---|---|---|
To prepare, characterize and evaluate performance of AmB-loaded aerosolized liposomes for their selective presentation to lungs’ alveolar macrophages. | Liposome | PC, CHOL, SA, mannan, pullulan | AmB | Thin film hydration | Albino rats of wistar origin, human RBC |
| [71] |
To compare the impact of four different commercially available nebulizers on the physicochemical properties of aerosolized liposomal AmB. | Liposome | HSPC, CHOL, DSPG | AmB | - | NA |
| [73] |
To determine which doses of AmB can reach the different lung compartments when using aerosols of liposomal AmB and the possible toxic effects on the cells. | Liposome | HSPC, CHOL, DSPG, α-tocopherol | AmB | Thin film hydration | A549 |
| [76] |
To develop and characterize ITZ-loaded NLC formulation for nebulization. | NLC | Precirol ATO 5, oleic acid, Eumulgin SML 20, glycerol 85% | ITZ | Hot high pressure homogenization | NA |
| [77] |
To evaluate the effect of autoclaving on the particle size of ITZ-loaded NLC. | NLC | Precirol ATO 5, oleic acid, Eumulgin SML 20, glycerol 85% | ITZ | Hot high pressure homogenization | NA |
| [78] |
To develop and characterize an isotonic, sterile ITZ-loaded NLC formulation for pulmonary application to treat aspergillosis in falcons. | NLC | Precirol ATO 5, super refined oleic acid, Eumulgin SML 20, glycerol 85% | ITZ | Hot high pressure homogenization | A549, falcon |
| [79] |
To investigate the potential of antifungal nanoemulsions for pulmonary inhalation by nebulization. | Nanoemulsion | Intralipid® 20% and Clinoleic® 20% | AmB | Vortex mixing, sonication | NA | AmB Intralipid®
| [82] |
To improve the solubility and stability of AmB as a nanoparticulate colloid after reconstitution from a lyophilized dry powder with SDS. | Lipid micelle | SDS | AmB | Solvent evaporation | RBC, A549, Calu-3, Ams NR8383, ATCC 9763, C. albicans and C. neoformans |
| [83] |
| |||||||
To formulate AmB loaded depolymerised chitosan and stearic acid polymeric micelles for prevention of invasive pulmonary fungal infection. | Polymeric micelle | Chitosan, stearic acid | AmB | Solvent evaporation method | Candida albicans, Aspergillus niger, Aspergillus fumigatus, Aspergillus flavus, Cryptococcus neoformans |
| [90] |
To enhance the solubility and pulmonary delivery of ITZ by formulating ITZ loaded depolymerised chitosan and stearic acid polymeric micelles. | Polymeric micelle | Chitosan, stearic acid | ITZ | Film hydration method | Candida albicans, Aspergillus niger, Aspergillus fumigatus |
| [91] |
To develop inhaled polymethacrylic acid nanoparticles containing AmB for prevention of pulmonary invasive aspergillosis. | Polymeric nanoparticles | Polymethacrylic acid | AmB | Freeze-drying method | A. fumigatus, lung epithelium A549 cells, monocyte-derived-macrophages, BALB/c mouse, C57BL/6 mouse |
| [92] |
To develop AmB-loaded Poly (lactic acid) grafted with poly (ethylene glycol) nanoparticles for improving the adhesion and penetration of AmB into the fungi cells. | Polymeric nanoparticle | PLA, PEG | AmB | Emulsion–solvent evaporation method | Human bronchial Calu-3, alveolar (A549) cell lines, Candida albicans, Candida parapsilosis, Candida krusei, Aspergillus fumigatus, Aspergillus nidulans |
| [94] |
Objective | Type of Nanocarrier | Polymer Used | Drug | Method of Preparation | Cell Line/Animal Model | Outcome | Source |
---|---|---|---|---|---|---|---|
To prepare ITZ-loaded liposomes coated by CMC and study the physicochemical properties, in vitro antifungal activities, safety evaluation, pharmacokinetics and tissue distribution of the liposomes. | Liposome | Soya lecithin, CHOL, CMC | ITZ | Thin film dispersion | C. albicans, Kunming mice |
| [96] |
To develop an alternative liposomal formulation for AmB while using the simplest SCF-CO2 method and examine the effects of various factors. | Liposome | HSPC, DSPG, CHOL, DMA, ascorbic acid, lactose | AmB | Supercritical fluid of carbon dioxide method | Sprague-Dawley rats, rat RBC |
| [97] |
To prepare the LNs which can entrap poorly water-soluble drug, AmB with high drug EE in them. | SLN | DPPC, CHOL, DPPA, DSPE-mPEG2000 | AmB | Spontaneous emulsification and solvent evaporation | 293 cells, Sprague-Dawley rats, Sprague-Dawley rat RBC, C. albicans and A. fumigatus, male ICR mice |
| [98] |
| |||||||
To develop an IV formulation of ITZ using lipid nanoparticles based on binary mixture of liquid and solid lipids. | NLC | tristearin, TO, Tween 80, eggPC, DSPE-mPEG2000 | ITZ | Melt homogenization | Male Sprague-Dawley rats |
| [99] |
To develop high payload ITZ-incorporated lipid nanoparticles with modulated release property using a binary mixture core of solid and liquid lipid for oral and parenteral administration. | NLC | tristearin, TO, Tween 80, eggPC, DSPE-mPEG2000 | ITZ | Hot high-pressure homogenization method | Male Sprague-Dawley rats |
| [100] |
To develop a lung-specific delivery system of AmB with a high pulmonary distribution and a low nephrotoxicity. | Lipid micelle | DCH | AmB | Vortex mixing | Oncins France 1 male mice |
| [101] |
To develop AmB loaded D-α-tocopheryl polyethylene glycol 1000 succinate-b-poly (ε-caprolactone-ran- glycolide) nanoparticles and evaluate its in vitro and in vivo antifungal activity. | Polymeric nanoparticles | PLGA, TPGS 1000 | AmB | Modified nanoprecipitation method | C. albicans, BALB/c mice |
| [102] |
| |||||||
To evaluate the fungistatic and fungicidal effects of AmB loaded D-α-tocopheryl polyethylene glycol 1000 succinate-b-poly (ε-caprolactone-ran- glycolide) nanoparticles for treatment of pulmonary fungal infection. | Polymeric nanoparticles | PLGA, TPGS 1000 | AmB | Double emulsion method | C. glabrata, BALB/c mice |
| [104] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, S.N.; Tan, Z.G.; Pandey, M.; Srichana, T.; Pichika, M.R.; Gorain, B.; Choudhury, H. A Critical Review on Emerging Trends in Dry Powder Inhaler Formulation for the Treatment of Pulmonary Aspergillosis. Pharmaceutics 2020, 12, 1161. https://doi.org/10.3390/pharmaceutics12121161
Cheng SN, Tan ZG, Pandey M, Srichana T, Pichika MR, Gorain B, Choudhury H. A Critical Review on Emerging Trends in Dry Powder Inhaler Formulation for the Treatment of Pulmonary Aspergillosis. Pharmaceutics. 2020; 12(12):1161. https://doi.org/10.3390/pharmaceutics12121161
Chicago/Turabian StyleCheng, Shen Nam, Zhi Guang Tan, Manisha Pandey, Teerapol Srichana, Mallikarjuna Rao Pichika, Bapi Gorain, and Hira Choudhury. 2020. "A Critical Review on Emerging Trends in Dry Powder Inhaler Formulation for the Treatment of Pulmonary Aspergillosis" Pharmaceutics 12, no. 12: 1161. https://doi.org/10.3390/pharmaceutics12121161
APA StyleCheng, S. N., Tan, Z. G., Pandey, M., Srichana, T., Pichika, M. R., Gorain, B., & Choudhury, H. (2020). A Critical Review on Emerging Trends in Dry Powder Inhaler Formulation for the Treatment of Pulmonary Aspergillosis. Pharmaceutics, 12(12), 1161. https://doi.org/10.3390/pharmaceutics12121161