Development of Meloxicam-Human Serum Albumin Nanoparticles for Nose-to-Brain Delivery via Application of a Quality by Design Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Initial Risk Assessment and Knowledge Space Development
2.3. Optimization of the Preparation of MEL-HSA Nanoparticles
2.4. Preparation of MEL-Albumin Nanoparticles
2.5. Z-Average and Zeta Potential Determination
2.6. Determination of Encapsulation Efficacy
2.7. Fourier-Transformed Infrared Spectroscopy (FT-IR)
2.8. Physical Stability
2.9. In Vitro Dissolution Profiles
2.10. In Vitro Permeability Measurements
2.11. In Vivo Animal Studies
2.12. LC–MS/MS Analysis of In Vivo Studies
2.13. Pharmacokinetic Studies
3. Results
3.1. Initial Risk Assessment and Knowledge Space Development
3.2. Optimization of MEL-HSA Formulations via a Box-Behnken Design
3.3. Preparation of MEL-HSA Nanoparticles
3.4. FT-IR Studies
3.5. Physical Stability
3.6. In Vitro Dissolution Profiles
3.7. In Vitro Permeability Measurements
3.8. In Vivo Animal Studies
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kinney, J.W.; Bemiller, S.M.; Murtishaw, A.S.; Leisgang, A.M.; Salazar, A.M.; Lamb, B.T. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement. 2018, 4, 575–590. [Google Scholar] [CrossRef] [PubMed]
- Calsolaro, V.; Edison, P. Neuroinflammation in Alzheimer’s disease: Current evidence and future directions. Alzheimers Dement. 2016, 12, 719–732. [Google Scholar] [CrossRef] [PubMed]
- Moore, A.H.; Bigbee, M.J.; Boynton, G.E.; Wakeham, C.M.; Rosenheim, H.M.; Staral, C.J.; Morrissey, J.L.; Hund, A.K. Non-steroidal anti-inflammatory drugs in Alzheimer’s disease and Parkinson’s disease: Reconsidering the role of neuroinflammation. Pharmaceuticals 2010, 3, 1812–1841. [Google Scholar] [CrossRef] [PubMed]
- Calvo-Rodríguez, M.; Núñez, L.; Villalobos, C. Non-steroidal anti-inflammatory drugs (NSAIDs) and neuroprotection in the elderly: A view from the mitochondria. Neural. Regen. Res. 2015, 10, 1371–1372. [Google Scholar] [CrossRef] [PubMed]
- Türker, S.; Onur, E.; Ózer, Y. Nasal route and drug delivery systems. Pharm. World Sci. 2004, 26, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Szabó-Révész, P. Modifying the physicochemical properties of NSAIDs for nasal and pulmonary administration. Drug Discov. Today Technol. 2018, 27, 87–93. [Google Scholar] [CrossRef] [Green Version]
- Gao, H. Progress and perspectives on targeting nanoparticles for brain drug delivery. Acta Pharm. Sin. B 2016, 6, 268–286. [Google Scholar] [CrossRef]
- Md, S.; Mustafa, G.; Baboota, S.; Ali, J. Nanoneurotherapeutics approach intended for direct nose to brain delivery. Drug Dev. Ind. Pharm. 2015, 41, 1922–1934. [Google Scholar] [CrossRef]
- Kapoor, M.; Cloyd, J.C.; Siegel, R.A. A review of intranasal formulations for the treatment of seizure emergencies. J. Control. Release 2016, 237, 147–159. [Google Scholar] [CrossRef]
- Lochhead, J.J.; Davis, T.P. Perivascular and Perineural Pathways Involved in Brain Delivery and Distribution of Drugs after Intranasal Administration. Pharmaceutics 2019, 11, 598. [Google Scholar] [CrossRef] [Green Version]
- Erdő, F.; Bors, L.A.; Farkas, D.; Bajza, A.; Gizurarson, S. Evaluation of intranasal delivery route of drug administration for brain targeting. Brain Res. Bull. 2018, 143, 155–170. [Google Scholar] [CrossRef] [PubMed]
- Sonvico, F.; Clementino, A.; Buttini, F.; Colombo, G.; Pescina, S.; Stanisçuaski Guterres, S.; Raffin Pohlmann, A.; Nicoli, S. Surface-modified nanocarriers for nose-to-brain delivery: From bioadhesion to targeting. Pharmaceutics 2018, 10, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pires, P.C.; Santos, A.O. Nanosystems in nose-to-brain drug delivery: A review of non-clinical brain targeting studies. J. Control. Release 2018, 270, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Burak, C.M.Y.; Cimen, O.B.; Eskandari, G.; Sahin, G.; Erdogon, C.; Atik, U. In vivo effects of meloxicam, celecoxib and ibuprofen on free radical mechanism in human erythrocytes. Drug Chem. Toxicol. 2003, 26, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Goverdhan, P.; Sravanthi, A.; Mamatha, T. Neuroprotective effects of meloxicam and selegiline in scopolamine-induced cognitive impairment and oxidative stress. Int. J. Alzheimers Dis. 2012. [Google Scholar] [CrossRef] [Green Version]
- Horvath, T.; Ambrus, R.; Volgyi, G.; Budai-Szűcs, M.; Márki, Á.; Sipos, P.; Bartos, C.; Seres, A.B.; Sztojkov-Ivanov, A.; Takács-Novák, K.; et al. Effect of solubility enhancement on nasal absorption of meloxicam. Eur. J. Pharm. Sci. 2016, 95, 96–102. [Google Scholar] [CrossRef] [Green Version]
- Tazhbayev, Y.; Mukashev, O.; Burkeev, M.; Kreuter, J. Hydroxyurea-Loaded Albumin Nanoparticles: Preparation, Characterization, and In Vitro Studies. Pharmaceutics 2019, 11, 410. [Google Scholar] [CrossRef] [Green Version]
- Kratz, F. Albumin as a drug carrier: Design of prodrugs, drug conjugates and nanoparticles. J. Control. Release 2008, 132, 171–183. [Google Scholar] [CrossRef]
- Elsadek, B.; Kratz, F. Impact of albumin on drug delivery—New applications on the horizon. J. Control. Release 2012, 157, 4–28. [Google Scholar] [CrossRef]
- Loureiro, A.; Azoia, N.G.; Gomes, A.C.; Cavaco-Paulo, A. Albumin-based nanodevices as drug carriers. Curr. Pharm. Des. 2016, 22, 1371–1390. [Google Scholar] [CrossRef]
- Falcone, J.A.; Salameh, T.S.; Yi, X.; Cordy, B.J.; Mortell, W.G.; Kabanov, A.V.; Banks, W.A. Intranasal administration as a route for drug delivery to the brain: Evidence for a unique pathway for albumin. J. Pharm. Exp. Ther. 2014, 351, 54–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartos, C.; Ambrus, R.; Kovács, A.; Gáspár, R.; Sztojkov-Ivanov, A.; Márki, Á.; Janáky, T.; Tömösi, F.; Kecskeméti, G.; Szabó-Révész, P. Investigation of absorption routes of meloxicam and its salt form from intranasal delivery systems. Molecules 2018, 23, 784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kürti, L.; Gáspár, R.; Márki, Á.; Kápolna, E.; Bocsik, A.; Veszelka, S.; Bartos, C.; Ambrus, R.; Vastag, M.; Deli, M.A.; et al. In vitro and in vivo characterization of meloxicam nanoparticles designed for nasal administration. Eur. J. Pharm. Sci. 2013, 50, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Wong, L.R.; Ho, P.C. Role of serum albumin as a nanoparticulate carrier for nose-to-brain delivery of R-flurbiprofen: Implications for the treatment of Alzheimer’s disease. J. Pharm. Pharmacol. 2018, 70, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Tiozzo Fasiolo, L.; Manniello, M.D.; Bortolotti, F.; Buttini, F.; Rossi, A.; Sonvico, F.; Colombo, P.; Valsami, G.; Colombo, G.; Russo, P. Anti-inflammatory flurbiprofen nasal powders for nose-to-brain delivery in Alzheimer’s disease. J. Drug Target. 2019, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Csóka, I.; Pallagi, E.; Paál, T.L. Extension of quality-by-design concept to the early development phase of pharmaceutical R&D processes. Drug Discov. Today 2018, 23, 1340–1343. [Google Scholar] [CrossRef]
- Yu, L.X. Pharmaceutical quality by design: Product and process development, understanding, and control. Pharm Res. 2008, 25, 781–791. [Google Scholar] [CrossRef]
- ICH. Quality Risk Management Q9. In ICH Harmon Tripart Guidel; ICH: Geneva, Switzerland, 2005; pp. 1–23. [Google Scholar]
- Pallagi, E.; Ambrus, R.; Szabó-Révész, P.; Csóka, I. Adaptation of the quality by design concept in early pharmaceutical development of an intranasal nanosized formulation. Int. J. Pharm. 2015, 491, 384–392. [Google Scholar] [CrossRef]
- Pallagi, E.; Karimi, K.; Ambrus, R.; Szabó-Révész, P.; Csóka, I. New aspects of developing a dry powder inhalation formulation applying the quality-by-design approach. Int. J. Pharm. 2016, 511, 151–160. [Google Scholar] [CrossRef]
- Karimi, K.; Pallagi, E.; Szabó-Révész, P.; Csóka, I.; Ambrus, R. Development of a microparticle-based dry powder inhalation formulation of ciprofloxacin hydrochloride applying the quality by design approach. Drug Des. Devel. Ther. 2016, 10, 3331–3343. [Google Scholar] [CrossRef] [Green Version]
- Gieszinger, P.; Csóka, I.; Pallagi, E.; Katona, G.; Jójárt-Laczkovich, O.; Szabó-Révész, P.; Ambrus, R. Preliminary study of nanonized lamotrigine containing products for nasal powder formulation. Drug Des. Devel. Ther. 2017, 11, 2453–2466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartos, C.; Pallagi, E.; Szabó-révész, P.; Ambrus, R.; Katona, G.; Kiss, T. Formulation of levodopa containing dry powder for nasal delivery applying the quality-by-design approach. Eur. J. Pharm. Sci. 2018, 123, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Pallagi, E.; Ismail, R.; Paál, T.L.; Csóka, I. Initial Risk Assessment as part of the Quality by Design in peptide drug containing formulation development. Eur. J. Pharm. Sci. 2018, 122, 160–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nunes, V.D.; Sawyer, L.; Neilson, J.; Sarri, G.; Cross, J.H. Diagnosis and management of the epilepsies in adults and children: Summary of updated NICE guidance. BMJ 2012, 344, e281. [Google Scholar] [CrossRef] [Green Version]
- Serralheiro, A.; Alves, G.; Fortuna, A.; Falcão, A. Direct nose-to-brain delivery of lamotrigine following intranasal administration to mice. Int. J. Pharm. 2015, 490, 39–46. [Google Scholar] [CrossRef]
- Kimura, K.; Yamasaki, K.; Nakamura, H.; Haratake, M.; Taguchi, K.; Otagiri, M. Preparation and in vitro analysis of human serum albumin nanoparticles loaded with anthracycline derivatives. Chem. Pharm. Bull. 2018, 66, 382–390. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Chen, F.; Liu, Y.; Yu, S.; Gai, X.; Ye, M.; Yang, X.; Pan, W. A novel albumin wrapped nanosuspension of meloxicam to improve inflammation-targeting effects. Int. J. Nanomed. 2018, 13, 4711–4725. [Google Scholar] [CrossRef] [Green Version]
- Avdeef, A. Permeability-PAMPA. In Absorption and Drug Development; ACS Publications: Washington, DC, USA, 2012; pp. 319–498. [Google Scholar]
- Kiss, T.; Alapi, T.; Varga, G.; Bartos, C.; Ambrus, R.; Szabó-Révész, P.; Katona, G. Interaction studies between levodopa and different excipients to develop coground binary mixtures for intranasal application. J. Pharm. Sci. 2019, 108, 2552–2560. [Google Scholar] [CrossRef]
- EMEA European Medicines Agency. ICH Topic Q 1 A (R2) Stability Testing of New Drug Substances and Products. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/ich-q-1-r2-stability-testing-new-drug-substances-products-step-5_en.pdf (accessed on 3 December 2019).
- Kozlovskaya, L.; Abou-Kaoud, M.; Stepensky, D. Quantitative analysis of drug delivery to the brain via nasal route. J. Control. Release 2014, 189, 133–140. [Google Scholar] [CrossRef]
- Johanson, G. 1.08 Modeling of Disposition. In Comprehensive Toxicology; Elsevier: Amsterdam, The Netherlands, 2010; p. 153. [Google Scholar]
- Gao, L.; Zhang, D.; Chen, M. Drug nanocrystals for the formulation of poorly soluble drugs and its application as a potential drug delivery system. J. Nanopart. Res. 2008, 10, 845–862. [Google Scholar] [CrossRef]
- Wang, C.; Williams, N.S. A mass balance approach for calculation of recovery and binding enables the use of ultrafiltration as a rapid method for measurement of plasma protein binding for even highly lipophilic compounds. J. Pharm. Biomed. Anal. 2013, 75, 112–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trynda-Lemiesz, L.; Wiglusz, K. Interactions of human serum albumin with meloxicam. J. Pharm. Biomed. Anal. 2010, 52, 300–304. [Google Scholar] [CrossRef] [PubMed]
- List, S.J.; Findlay, B.P.; Forstner, G.G.; Forstner, J.F. Enhancement of the viscosity of mucin by serum albumin. Biochem. J. 1978, 175, 565–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lomis, N.; Westfall, S.; Farahdel, L.; Malhotra, M.; Shum-Tim, D.; Prakash, S. Human serum albumin nanoparticles for use in cancer drug delivery: Process optimization and in vitro characterization. Nanomaterials 2016, 6, 116. [Google Scholar] [CrossRef] [Green Version]
QTPP Element | Target | Justification |
---|---|---|
Therapeutic effect, target patient population | Adult population Therapeutic target: reach the Central nervous system (CNS) (brain tissue) | Direct or axonal transport of the active pharmaceutical ingredient (API) from the nose to the brain [35]. No first-pass-effect. |
Route of administration | Nasal route | The nasal route offers direct access to the CNS [36] The nasally applied dose of the API can be lower than the orally administered one. |
Dosage form and design | Protein containing nanosized lyophilized powder | The nanosize range can improve the absorption time, the dissolution can be also improved via size reduction. Powder form is related to the quality and efficacy, as the solid form can improve product stability. |
Pharmacokinetics (dissolution profile and absorption time) | 10–15 min | The dissolution and absorption are limited by the periodic nasal liquid renewing and mucociliary clearence, which is usually 10–15 min. It is related to the efficacy of the formulation. |
Physical stability | Particle size and size distribution stability is required (100–200 nm) | The lyophilized powder form can help in the protection of the protein and preserve the required particle size. Particle size <100 nm raises nanotoxicity issues. Human serum albumin (HSA) nanoparticles with a size below 200 nm have an enhanced permeation and retention (EPR) effect [37]. It is linked to the quality, safety, and efficacy profile of the preparation. |
Time (min) | Eluent B (%) | Flow Rate (µL/min) |
---|---|---|
0 | 40 | 250 |
0.5 | 40 | 250 |
2 | 70 | 250 |
2.1 | 90 | 600 |
2.5 | 90 | 600 |
2.6 | 40 | 600 |
4.0 | 40 | 600 |
4.1 | 40 | 250 |
4.5 | 40 | 250 |
Standard Run | Independent Variables/Factors | Z-Average (nm) | EE (%) | ||
---|---|---|---|---|---|
MEL (mg/mL) | HSA (mg/mL) | Tween 80 (mg/mL) | |||
1 | 1.0 | 5.0 | 3.0 | 371.5 ± 3.8 | 68.4 ± 1.7 |
2 | 3.0 | 5.0 | 3.0 | 168.3 ± 4.1 | 72.4 ± 3.1 |
3 | 1.0 | 15.0 | 3.0 | 282.4 ± 6.2 | 53.5 ± 2.4 |
4 | 3.0 | 15.0 | 3.0 | 285.3 ± 7.5 | 68.1 ± 1.9 |
5 | 1.0 | 10.0 | 0 | 481.3 ± 8.1 | 71.6 ± 1.2 |
6 | 3.0 | 10.0 | 0 | 1198 ± 13.9 | 34.6 ± 3.5 |
7 | 1.0 | 10.0 | 6.0 | 220.6 ± 6.8 | 56.9 ± 0.9 |
8 | 3.0 | 10.0 | 6.0 | 246.8 ± 3.9 | 71.5 ± 1.4 |
9 | 2.0 | 5.0 | 0 | 423.4 ± 5.5 | 61.3 ± 2.3 |
10 | 2.0 | 15.0 | 0 | 663.8 ± 9.1 | 36.7 ± 3.2 |
11 | 2.0 | 5.0 | 6.0 | 102 ± 6 | 72.6 ± 1.8 |
12 | 2.0 | 15.0 | 6.0 | 308.2 ± 7.7 | 36 ± 3.7 |
13 | 2.0 | 10.0 | 3.0 | 175.6 ± 6.8 | 79.1 ± 2 |
14 | 2.0 | 10.0 | 3.0 | 176.1 ± 2.7 | 80 ± 1.8 |
15 | 2.0 | 10.0 | 3.0 | 175.9 ± 4.2 | 79.2 ± 2.1 |
Pharmacokinetic Parameter | Formulation | ||
---|---|---|---|
MEL | MEL-HSA | MEL-HSA-Tween | |
Administration | IV | IN | IN |
Ke (min−1) | 0.00213 | 0.00272 | 0.00231 |
t1/2 (h) | 6.8 ± 3.1 | 4.7 ± 1.5 | 5.5 ± 1.6 |
AUC 0–t (μmol/mL·min) | 626,296 ± 89,313 | 912,131 ± 212,767 | 946,683 ± 145,358 |
AUC 0–∞ (μmol/mL·min) | 24,279 ± 12,254 | 22,788 ± 6139 | 23,300 ± 2539 |
Cl (μg/kg)/(μmol/mL)/min | 0.0033 ± 0.0016 | 0.0029 ± 0.0001 | 0.0026 ± 0.0002 |
Mean residence time (h) | 10.5 ± 4.5 | 7.3 ± 2.1 | 8.0 ± 2.2 |
Drug targeting efficiency (%) | 100 | 223 | 182 |
Absolute bioavailability (plasma) (%) | 100 | 65.3 | 83.2 |
Absolute bioavailability (brain) (%) | 100 | 93.9 | 96.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katona, G.; Balogh, G.T.; Dargó, G.; Gáspár, R.; Márki, Á.; Ducza, E.; Sztojkov-Ivanov, A.; Tömösi, F.; Kecskeméti, G.; Janáky, T.; et al. Development of Meloxicam-Human Serum Albumin Nanoparticles for Nose-to-Brain Delivery via Application of a Quality by Design Approach. Pharmaceutics 2020, 12, 97. https://doi.org/10.3390/pharmaceutics12020097
Katona G, Balogh GT, Dargó G, Gáspár R, Márki Á, Ducza E, Sztojkov-Ivanov A, Tömösi F, Kecskeméti G, Janáky T, et al. Development of Meloxicam-Human Serum Albumin Nanoparticles for Nose-to-Brain Delivery via Application of a Quality by Design Approach. Pharmaceutics. 2020; 12(2):97. https://doi.org/10.3390/pharmaceutics12020097
Chicago/Turabian StyleKatona, Gábor, György Tibor Balogh, Gergő Dargó, Róbert Gáspár, Árpád Márki, Eszter Ducza, Anita Sztojkov-Ivanov, Ferenc Tömösi, Gábor Kecskeméti, Tamás Janáky, and et al. 2020. "Development of Meloxicam-Human Serum Albumin Nanoparticles for Nose-to-Brain Delivery via Application of a Quality by Design Approach" Pharmaceutics 12, no. 2: 97. https://doi.org/10.3390/pharmaceutics12020097
APA StyleKatona, G., Balogh, G. T., Dargó, G., Gáspár, R., Márki, Á., Ducza, E., Sztojkov-Ivanov, A., Tömösi, F., Kecskeméti, G., Janáky, T., Kiss, T., Ambrus, R., Pallagi, E., Szabó-Révész, P., & Csóka, I. (2020). Development of Meloxicam-Human Serum Albumin Nanoparticles for Nose-to-Brain Delivery via Application of a Quality by Design Approach. Pharmaceutics, 12(2), 97. https://doi.org/10.3390/pharmaceutics12020097