Design, Optimization, Manufacture and Characterization of Efavirenz-Loaded Flaxseed Oil Nanoemulsions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Quantitative Determination of Efavirenz
2.2. Solubility
2.3. Formulation Design and Optimization
2.3.1. Pseudo-Ternary Phase Diagrams and Emulsion Classification
2.3.2. D-Optimal Design and Statistical Optimization
2.4. Preparation of Nanoemulsions
2.5. Characterization of Nanoemulsion Formulations
2.5.1. Zeta Potential
2.5.2. Polydispersity Index (PDI) and Droplet Size (PS)
2.5.3. Transmission Electron Microscopy (TEM)
2.5.4. Raman Spectroscopy
2.5.5. Fourier-Transform Infrared Spectroscopy (FT-IR)
2.5.6. In Vitro Release
3. Results
3.1. Solubility
3.2. Pseudo-Ternary Phase Diagrams
3.3. Statistical Analysis and Optimization
3.3.1. Droplet Size
3.3.2. Polydispersity Index
3.3.3. Zeta Potential
3.4. Optimization of Surfactant Mixtures and Assessment of Optimized Nanoemulsions
3.5. Characterization and Assessment of Nanoemulsions
3.6. Transmission Electron Microscopy
3.7. Raman Spectroscopy
3.8. Fourier-Transform Infrared Spectroscopy (FT-IR)
3.9. In Vitro Efavirenz Release
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- UNAIDS. Global HIV & AIDS Statistics—2019 Fact Sheet. 2020. Available online: https://www.unaids.org/en/resources/fact-sheet (accessed on 8 March 2020).
- Vitoria, M.; Rangaraj, A.; Ford, N.; Doherty, M. Current and future priorities for the development of optimal HIV drugs. Curr. Opin. HIV AIDS 2019, 14, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Taneja, S.; Shilpi, S.; Khatri, K. Formulation and optimization of efavirenz nanosuspensions using the precipitation-ultrasonication technique for solubility enhancement. Artif. Cells Nanomed. Biotechnol. 2016, 44, 978–984. [Google Scholar] [CrossRef] [PubMed]
- Aungst, B.J. P-glycoprotein, secretory transport, and other barriers to the oral delivery of anti-HIV drugs. Adv. Drug Deliv. Rev. 1999, 39, 105–116. [Google Scholar] [CrossRef]
- Persson, L.C.; Porter, C.J.H.; Charman, W.N.; Bergström, C.A.S. Computational prediction of drug solubility in lipid based formulation excipients. Pharm. Res. 2013, 30, 3225–3237. [Google Scholar] [CrossRef] [PubMed]
- Rane, S.S.; Anderson, B.D. What determines drug solubility in lipid vehicles: Is it predictable? Adv. Drug Deliv. Rev. 2008, 60, 638–656. [Google Scholar] [CrossRef] [PubMed]
- Kalepu, S.; Manthina, M.; Padavala, V. Oral lipid-based drug delivery systems—An overview. Acta Pharm. Sin. B 2013, 3, 361–372. [Google Scholar] [CrossRef] [Green Version]
- Krstić, M.; Medarević, Đ.; Đuriš, J.; Ibrić, S. Self-nanoemulsifying drug delivery systems (SNEDDS) and self-microemulsifying drug delivery systems (SMEDDS) as lipid nanocarriers for improving dissolution rate and bioavailability of poorly soluble drugs. Lipid Nanocarriers Drug Target. 2018, 473–508. [Google Scholar] [CrossRef]
- Shahba, A.A.W.; Mohsin, K.; Alanazi, F.K. Novel self-nanoemulsifying drug delivery systems (SNEDDS) for oral delivery of cinnarizine: Design, optimization, and in-vitro assessment. AAPS Pharmscitech 2012, 13, 967–977. [Google Scholar] [CrossRef] [Green Version]
- Saranya, J.S.; Elango, K.; Kumari, S.D.C.; Maheswari, A.U. Nose to brain direct delivery of levodopa from chitosan nano-particles–A novel approach. IJPIs J. Pharm. Cosmetol. 2012, 2, 30–39. [Google Scholar]
- Solans, C.; Izquierdo, P.; Nolla, J.; Azemar, N.; Garcia-Celma, M.J. Nano-emulsions. Curr. Opin. Colloid Interface Sci. 2005, 10, 102–110. [Google Scholar] [CrossRef]
- Jaiswal, M.; Dudhe, R.; Sharma, P.K. Nanoemulsion: An advanced mode of drug delivery system. 3 Biotech 2015, 5, 123–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anton, N.; Vandamme, T.F. Nano-emulsions and micro-emulsions: Clarifications of the critical differences. Pharm. Res. 2011, 28, 978–985. [Google Scholar] [CrossRef] [PubMed]
- Manea, A.M.; Ungureanu, C.; Meghea, A. Effect of vegetable oils on obtaining lipid nanocarriers for sea buckthorn extract encapsulation. C. R. Chim. 2014, 17, 934–943. [Google Scholar] [CrossRef]
- Ander, B.P.; Dupasquier, C.M.C.; Prociuk, M.A.; Pierce, G.N. Polyunsaturated fatty acids and their effects on cardiovascular disease. Exp. Clin. Cardiol. 2003, 8, 164–172. [Google Scholar] [PubMed]
- Salem, M.A.; Ezzat, S.M. Nanoemulsions in Food Industry. In Some New Aspects of Colloidal Systems in Foods; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Garti, N.; Yaghmur, A.; Leser, M.E.; Clement, V.; Watzke, H.J. Improved oil solubilization in oil/water food grade microemulsions in the presence of polyols and ethanol. J. Agric. Food Chem. 2001, 49, 2552–2562. [Google Scholar] [CrossRef] [PubMed]
- Flanagan, J.; Singh, H. Microemulsions: A potential delivery system for bioactives in food. Crit. Rev. Food Sci. Nutr. 2006, 46, 221–237. [Google Scholar] [CrossRef]
- Komaiko, J.S.; Mcclements, D.J. Formation of Food-Grade Nanoemulsions Using Low-Energy Preparation Methods: A Review of Available Methods. Compr. Rev. Food Sci. Food Saf. 2016, 15, 331–352. [Google Scholar] [CrossRef]
- Elfiyani, R.; Amalia, S.Y.P.A. Effect of Using the Combination of Tween 80 and Ethanol on the Forming and Physical Stability of Microemulsion of Eucalyptus Oil as Antibacterial. J. Young Pharm. 2017, 9, 118–121. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.A.; Mudassir, J.; Mohtar, N.; Darwis, Y. Advanced drug delivery to the lymphatic system: Lipid-based nanoformulations. Int. J. Nanomed. 2013, 8, 2733–2744. [Google Scholar] [CrossRef] [Green Version]
- Humberstone, A.J.; Charman, W.N. Lipid-based vehicles for the oral delivery of poorly water soluble drugs. Adv. Drug Deliv. Rev. 1997, 25, 103–128. [Google Scholar] [CrossRef]
- Bahari, L.A.S.; Hamishehkar, H. The impact of variables on particle size of solid lipid nanoparticles and nanostructured lipid carriers; A comparative literature review. Adv. Pharm. Bull. 2016, 6, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Danaei, M.; Dehghankhold, M.; Ataei, S.; Davarani, F.H.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M.R. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 2018, 10, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamorde, M.; Byakika-Kibwika, P.; Tamale, W.S.; Kiweewa, F.; Ryan, M.; Amara, A.; Tjia, J.; Back, D.; Khoo, S.; Boffito, M.; et al. Effect of Food on the Steady-State Pharmacokinetics of Tenofovir and Emtricitabine plus Efavirenz in Ugandan Adults. AIDS Res. Treat. 2012, 2012, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, L.; Dygert, L.; Toborek, M. Antiretroviral Treatment with Efavirenz Disrupts the Blood-Brain Barrier Integrity and Increases Stroke Severity. Sci. Rep. 2016, 6, 397838. [Google Scholar] [CrossRef]
- Lu, G.W.; Gao, P. Emulsions and Microemulsions for Topical and Transdermal Drug Delivery. In Handbook of Non-Invasive Drug Delivery Systems; William Andrew Publishing: New York, NY, USA, 2010; pp. 59–94. [Google Scholar] [CrossRef]
- Gumustas, M.; Sengel-Turk, C.T.; Gumustas, A.; Ozkan, S.A.; Uslu, B. Effect of Polymer-Based Nanoparticles on the Assay of Antimicrobial Drug Delivery Systems. In Multifunctional Systems for Combined Delivery, Biosensing and Diagnostics; Elsevier: Amsterdam, The Netherlands, 2017; pp. 67–108. ISBN 9780323527255. [Google Scholar] [CrossRef]
- Kong, W.Y.; Salim, N.; Masoumi, H.R.F.; Basri, M.; da Costa, S.S.; Ahmad, N. Optimization of hydrocortisone-loaded nanoemulsion formulation using D-optimal mixture design. Asian J. Chem. 2018, 30, 853–858. [Google Scholar] [CrossRef]
- Samson, S.; Basri, M.; Masoumi, H.R.F.; Karjiban, R.A.; Malek, E.A. Design and development of a nanoemulsion system containing copper peptide by D-optimal mixture design and evaluation of its physicochemical properties. RSC Adv. 2016, 6, 17845–17856. [Google Scholar] [CrossRef]
- Chouhan, P.; Saini, T.R. D-optimal Design and Development of Microemulsion Based Transungual Drug Delivery Formulation of Ciclopirox Olamine for Treatment of Onychomycosis. Indian J. Pharm. Sci. 2016, 78, 498–511. [Google Scholar] [CrossRef] [Green Version]
- Syed, H.K.; Peh, K.K. Identification of phases of various oil, surfactant/co-surfactants and water system by ternary phase diagram. Acta Pol. Pharm. Drug Res. 2014, 71, 301–309. [Google Scholar]
- Cartón, A.; González, G.; De La Torre, A.I.; Cabezas, J.L. Separation of ethanol-water mixtures using 3A molecular sieve. J. Chem. Technol. Biotechnol. 1987, 39, 125–132. [Google Scholar] [CrossRef]
- Banat, F.; Al-lagtah, N.; Al-sheh, S. Separation of ethanol–water mixtures using molecular sieves and biobased adsorbents. Chem. Eng. Res. Des. 2004, 82, 855–864. [Google Scholar] [CrossRef]
- Winsor, P.A. Hydrotropy, solubilisation and related emulsification processes. Part I. Trans. Faraday Soc. 1947, 44, 376–398. [Google Scholar] [CrossRef]
- Zeng, Z.; Zhou, G.; Wang, X.; Huang, E.Z.; Zhan, X.; Liu, J.; Wang, S.; Wang, A.; Li, H.; Pei, X.; et al. Preparation, characterization and relative bioavailability of oral elemene o/w microemulsion. Int. J. Nanomed. 2010, 5, 567–572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flanagan, J.; Kortegaard, K.; Pinder, D.N.; Rades, T.; Singh, H. Solubilisation of soybean oil in microemulsions using various surfactants. In Proceedings of the Food Hydrocolloids; Elsevier: Amsterdam, The Netherlands, 2006; Volume 20, pp. 253–260. [Google Scholar] [CrossRef]
- Zuccotti, G.V.; Fabiano, V. Safety issues with ethanol as an excipient in drugs intended for pediatric use. Expert Opin. Drug Saf. 2011, 10, 499–502. [Google Scholar] [CrossRef] [PubMed]
- Valeur, K.S.; Hertel, S.A.; Lundstrøm, K.E.; Holst, H. The Cumulative Daily Tolerance Levels of Potentially Toxic Excipients Ethanol and Propylene Glycol Are Commonly Exceeded in Neonates and Infants. Basic Clin. Pharmacol. Toxicol. 2018, 122, 523–530. [Google Scholar] [CrossRef] [Green Version]
- Chudasama, A.S.; Patel, V.V.; Nivsarkar, M.; Vasu, K.K.; Shishoo, C.J. In vivo Evaluation of Self Emulsifying Drug Delivery System for Oral Delivery of Nevirapine. Indian J. Pharm. Sci. 2014, 76, 218–224. Available online: https://pubmed.ncbi.nlm.nih.gov/25035533 (accessed on 8 August 2020).
- Gurram, A.K.; Deshpande, P.B.; Kar, S.S.; Nayak, U.Y.; Udupa, N.; Reddy, M.S. Role of Components in the Formation of Self-microemulsifying Drug Delivery Systems. Indian J. Pharm. Sci. 2015, 77, 249–257. [Google Scholar] [CrossRef] [Green Version]
- Bayrak, A.; Kiralan, M.; Ipek, A.; Arslan, N.; Cosge, B.; Khawar, K.M. Fatty acid compositions of linseed (Linum Usitatissimum L.) genotypes of different origin cultivated in Turkey. Biotechnol. Biotechnol. Equip. 2010, 24, 1836–1842. [Google Scholar] [CrossRef] [Green Version]
- List, G.R. Oilseed Composition and Modification for Health and Nutrition. Funct. Diet. Lipids 2016, 23–46. [Google Scholar] [CrossRef]
- Garavaglia, J.; Markoski, M.M.; Oliveira, A.; Marcadenti, A. Grape Seed Oil Compounds: Biological and Chemical Actions for Health. Nutr. Metab. Insights 2016, 9, 59–64. [Google Scholar] [CrossRef] [Green Version]
- Szumała, P. Structure of Microemulsion Formulated with Monoacylglycerols in the Presence of Polyols and Ethanol. J. Surfactants Deterg. 2015, 18, 97–106. [Google Scholar] [CrossRef] [Green Version]
- Zen, N.I.M.; Abd Gani, S.S.; Shamsudin, R.; Masoumi, H.R.F. The use of D-optimal mixture design in optimizing development of okara tablet formulation as a dietary supplement. Sci. World J. 2015. [Google Scholar] [CrossRef]
- Gorman, J.W.; Hinman, J.E. Simplex Lattice Designs for Multicomponent Systems. Technometrics 1962, 4, 463–487. [Google Scholar] [CrossRef]
- Hayati, I.N.; Man, Y.B.C.; Aini, I.N.; Tan, C.P. Dynamic rheological study on O/W emulsions as affected by polysaccharide interactions using a mixture design approach. In Gums and Stabilisers for the Food Industry 15; RSC Publishing: Istanbul, Turkey, 2010; pp. 267–274. [Google Scholar] [CrossRef]
- U.S. Department of Commerce. NIST/SEMATECH e-Handbook of Statistical Methods; U.S. Department of Commerce: Washington, DC, USA, 2012. [CrossRef]
- Sulaiman, I.S.C.; Basri, M.; Masoumi, H.R.F.; Ashari, S.E.; Ismail, M. Design and development of a nanoemulsion system containing extract of Clinacanthus nutans (L.) leaves for transdermal delivery system by D-optimal mixture design and evaluation of its physicochemical properties. RSC Adv. 2016, 6, 67378–67388. [Google Scholar] [CrossRef]
- Koroleva, M.; Nagovitsina, T.; Yurtov, E. Nanoemulsions stabilized by non-ionic surfactants: Stability and degradation mechanisms. Phys. Chem. Chem. Phys. 2018, 20, 10369–10377. [Google Scholar] [CrossRef]
- Kelly, C.; Jefferies, C.; Cryan, S.-A. Targeted Liposomal Drug Delivery to Monocytes and Macrophages. J. Drug Deliv. 2011, 2011, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Berger, E.; Breznan, D.; Stals, S.; Jasinghe, V.J.; Gonçalves, D.; Girard, D.; Faucher, S.; Vincent, R.; Thierry, A.R.; Lavigne, C. Cytotoxicity assessment, inflammatory properties, and cellular uptake of Neutraplex lipid-based nanoparticles in THP-1 monocyte-derived macrophages. Nanobiomedicine 2017, 4, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Li, P.H.; Lu, W.C. Effects of storage conditions on the physical stability of D-limonene nanoemulsion. Food Hydrocoll. 2016, 53, 218–224. [Google Scholar] [CrossRef]
- Marban, C.; Forouzanfar, F.; Ait-Ammar, A.; Fahmi, F.; El Mekdad, H.; Daouad, F.; Rohr, O.; Schwartz, C. Targeting the brain reservoirs: Toward an HIV cure. Front. Immunol. 2016, 7, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Tojo, C.; de Dios, M.; Barroso, F. Surfactant effects on microemulsion-based nanoparticle synthesis. Materials 2010, 4, 55–72. [Google Scholar] [CrossRef] [Green Version]
- Pokharkar, V.; Patil-Gadhe, A.; Palla, P. Efavirenz loaded nanostructured lipid carrier engineered for brain targeting through intranasal route: In-vivo pharmacokinetic and toxicity study. Biomed. Pharmacother. 2017, 94, 150–164. [Google Scholar] [CrossRef]
- Marques, M.M.; Rezende, C.A.; Lima, G.C.; Marques, A.C.S.; Prado, L.D.; Leal, K.Z.; Rocha, H.V.A.; Ferreira, G.B.; Resende, J.A.L.C. New solid forms of efavirenz: Synthesis, vibrational spectroscopy and quantum chemical calculations. J. Mol. Struct. 2017, 1137, 476–484. [Google Scholar] [CrossRef]
- Mishra, S.; Tandon, P.; Ayala, A.P. Study on the structure and vibrational spectra of efavirenz conformers using DFT: Comparison to experimental data. Spectrochim. Acta Part. A Mol. Biomol. Spectrosc. 2012, 88, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Reddy, N.P.; Padmavathi, Y.; Mounika, P.; Anjali, A. FTIR spectroscopy for estimation of efavirenz in raw material and tablet dosage form. Int. Curr. Pharm. J. 2015, 4, 390–395. [Google Scholar] [CrossRef] [Green Version]
- Choudhury, S.R.; Mandal, A.; Chakravorty, D.; Gopal, M.; Goswami, A. Evaluation of physicochemical properties, and antimicrobial efficacy of monoclinic sulfur-nanocolloid. J. Nanopart. Res. 2013, 15. [Google Scholar] [CrossRef]
- Dai, W.-G. In vitro methods to assess drug precipitation. Int. J. Pharm. 2010, 393, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.; Shi, Y. Characterization of supersaturatable formulations for improved absorption of poorly soluble Drugs. AAPS J. 2012, 14, 703–713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gursoy, R.N.; Benita, S. Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed. Pharmacother. 2004, 58, 173–182. [Google Scholar] [CrossRef]
- Lawrence, M.J.; Rees, G.D. Microemulsion-based media as novel drug delivery systems. Adv. Drug Deliv. Rev. 2012, 64, 175–193. [Google Scholar] [CrossRef]
- Mazza, G. Health benefits of phytochemicals from selected Canadian crops. Trends Food Sci. Technol. 1999, 10, 193–198. [Google Scholar] [CrossRef]
Water Addition Points on Dilution Line | Oil mg | S1 mg | Water µL | Total mg | S 1 % | Oil % | Water % | Conductivity µScm−1 |
---|---|---|---|---|---|---|---|---|
P1 | 250 | 2250 | 0 | 2500 | 90.00 | 10.00 | 0.00 | 0.18 |
P2 | 250 | 2250 | 133 | 2633 | 85.45 | 9.49 | 5.05 | 0.2 |
P3 | 250 | 2250 | 280 | 2780 | 80.93 | 8.99 | 10.07 | 0.28 |
P4 | 250 | 2250 | 440 | 2940 | 76.53 | 8.50 | 14.96 | 0.45 |
P5 | 250 | 2250 | 625 | 3125 | 72.00 | 8.00 | 20.00 | 0.96 |
P6 | 250 | 2250 | 835 | 3335 | 67.46 | 7.49 | 25.03 | 1.67 |
P7 | 250 | 2250 | 1075 | 3575 | 62.93 | 6.99 | 30.06 | 7.76 |
P8 | 250 | 2250 | 1350 | 3850 | 58.44 | 6.49 | 35.06 | 11.43 |
P9 | 250 | 2250 | 1675 | 4175 | 53.89 | 5.98 | 40.11 | 25.3 |
P10 | 250 | 2250 | 2050 | 4550 | 49.45 | 5.49 | 45.05 | 119.6 |
P11 | 250 | 2250 | 2500 | 5000 | 45.00 | 5.00 | 50.00 | 142.2 |
P12 | 250 | 2250 | 3050 | 5550 | 40.54 | 4.504 | 54.95 | 147.6 |
P13 | 250 | 2250 | 3750 | 6250 | 36.00 | 4.00 | 60.00 | 173.6 |
P14 | 250 | 2250 | 4625 | 7125 | 31.57 | 3.50 | 64.91 | 173.9 |
P15 | 250 | 2250 | 5875 | 8375 | 26.86 | 2.98 | 70.14 | 202 |
P16 | 250 | 2250 | 7500 | 10,000 | 22.50 | 2.50 | 75.00 | 261 |
P17 | 250 | 2250 | 9950 | 12,450 | 18.07 | 2.00 | 79.91 | 278 |
P18 | 250 | 2250 | 14,275 | 16,775 | 13.41 | 1.49 | 85.09 | 356 |
P19 | 250 | 2250 | 22,500 | 25,000 | 9.00 | 1.00 | 90.00 | 389 |
P20 | 250 | 2250 | 46,600 | 49,100 | 4.58 | 0.50 | 94.90 | 433 |
Lower Limit % | Compound | Upper Limit % | ||
---|---|---|---|---|
5 | ≤ | Span® 20 (A) | ≤ | 90 |
5 | ≤ | Tween® 80 (B) | ≤ | 90 |
5 | ≤ | Ethanol (C) | ≤ | 20 |
Total: A + B + C | = | 100 |
Oil | Mean EFV Solubility (n = 3) ± SD mg/mL |
---|---|
Flaxseed | 89.41 ± 0.12 |
Soybean | 81.53 ± 0.18 |
Macadamia | 71.31 ± 0.12 |
Grapeseed | 69.83 ± 0.16 |
Olive | 69.55 ± 0.09 |
Sunflower | 55.99 ± 0.87 |
Input Variables % m/m | Responses | |||||
---|---|---|---|---|---|---|
Run | Span® 20 A | Tween® 80 B | Ethanol C | Droplet Size nm | PDI | Zeta Potential mV |
1 | 47.5 | 47.5 | 5 | 88.43 | 0.75 | −23.85 |
2 | 66.875 | 24.375 | 8.75 | 408.25 | 0.332 | −22.8 |
3 | 24.375 | 66.875 | 8.75 | 68.9 | 0.461 | −21.9 |
4 | 5 | 82.5 | 12.5 | 173.4 | 0.176 | −16.5 |
5 | 7.5 | 5 | 20 | 507.2 | 0.26 | −23.2 |
6 | 7.5 | 5 | 20 | 404.4 | 0.324 | −23 |
7 | 47.5 | 47.5 | 5 | 138.7 | 0.587 | −18.8 |
8 | 5 | 75.0 | 20 | 180.56 | 0.481 | −25.5 |
9 | 24.375 | 59.375 | 16.25 | 92.5 | 0.51 | −18.6 |
10 | 5 | 90 | 5 | 70.5 | 0.12 | −14.7 |
11 | 90.00 | 5 | 5 | 362.6 | 0.265 | −21.4 |
12 | 5 | 75 | 20 | 58.1 | 0.412 | −17.2 |
13 | 90 | 5 | 5 | 364.6 | 0.285 | −21.9 |
14 | 43.75 | 43.75 | 12.5 | 441.1 | 0.365 | −23.4 |
15 | 82.5 | 5 | 12.5 | 290.1 | 0.214 | −23.4 |
16 | 5 | 90 | 5 | 70.75 | 0.119 | −16.8 |
Response | Predicted Model | f-Value | Degrees of Freedom | p-Value | R2 | Adjusted R2 | Predicted R2 | Adequate Precision |
---|---|---|---|---|---|---|---|---|
Droplet size | Special quartic | 8.91 | 8 | 0.0046 | 0.910 | 0.908 | −1.618 | 7.205 |
Polydispersity | Special quartic | 86.11 | 8 | 0.0001 | 0.9899 | 0.9789 | 0.8335 | 29.195 |
Zeta potential | Linear | 5.09 | 2 | 0.0233 | 0.439 | 0.353 | 0.115 | 5.982 |
Formulation | Span® 20% m/m | Tween® 80% m/m | Ethanol% m/m | Droplet Size nm | PDI | Zeta Potential mV | Efavirenz Content mg/mL | Mass of 1 mL of Nanoemulsion g |
---|---|---|---|---|---|---|---|---|
F1 | 40 | 40 | 20 | 185.1 ± 0.7 | 0.444 ± 0.003 | −35.4 ± 0.9 | 377 ± 4.9 | 0.989 ± 0.006 |
F2 | 33.3 | 33.3 | 33.3 | 190.3 ± 2.0 | 0.387 ± 0.016 | −34.4 ± 0.7 | 437 ± 13.1 | 1.040 ± 0.009 |
F3 | 28.5 | 28.5 | 42.8 | 156.8 ± 23.4 | 0.342 ± 0.048 | −41.0 ± 0.9 | 571 ± 18.7 | 1.040 ± 0.012 |
F4 | 58.1 | 36.0 | 6.0 | 225.6 ± 16.8 | 0.487 ± 0.003 | −31.9 ± 3.12 | 329 ± 9.45 | 0.817 ± 0.007 |
F5 | 32.2 | 58.3 | 9.5 | 146.7 ± 25.3 | 0.402 ± 0.012 | −24.1 ± 2.33 | 334 ± 11.2 | 0.833 ± 0.009 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazonde, P.; Khamanga, S.M.M.; Walker, R.B. Design, Optimization, Manufacture and Characterization of Efavirenz-Loaded Flaxseed Oil Nanoemulsions. Pharmaceutics 2020, 12, 797. https://doi.org/10.3390/pharmaceutics12090797
Mazonde P, Khamanga SMM, Walker RB. Design, Optimization, Manufacture and Characterization of Efavirenz-Loaded Flaxseed Oil Nanoemulsions. Pharmaceutics. 2020; 12(9):797. https://doi.org/10.3390/pharmaceutics12090797
Chicago/Turabian StyleMazonde, Priveledge, Sandile M. M. Khamanga, and Roderick B. Walker. 2020. "Design, Optimization, Manufacture and Characterization of Efavirenz-Loaded Flaxseed Oil Nanoemulsions" Pharmaceutics 12, no. 9: 797. https://doi.org/10.3390/pharmaceutics12090797
APA StyleMazonde, P., Khamanga, S. M. M., & Walker, R. B. (2020). Design, Optimization, Manufacture and Characterization of Efavirenz-Loaded Flaxseed Oil Nanoemulsions. Pharmaceutics, 12(9), 797. https://doi.org/10.3390/pharmaceutics12090797