Recent Advances in Therapeutic Drug Monitoring of Voriconazole, Mycophenolic Acid, and Vancomycin: A Literature Review of Pediatric Studies
Abstract
:1. Introduction
2. Voriconazole (VCZ)
2.1. Useful PK/PD Parameters
2.2. Timing of Initial TDM and Target Concentration of VCZ
2.3. The Optimal Dosage Regimen
2.4. Factors Affecting Serum Concentration in TDM
2.5. The Dosing in Different Groups of Patients
2.6. Additional Information Useful for VCZ TDM
3. Mycophenolic Acid (MPA)
3.1. MPA Characteristics
3.2. Useful PK/PD Parameters
3.3. Timing of Initial TDM and Target Parameters of MPA
3.3.1. TDM Based on Pharmacokinetics
3.3.2. TDM Based on Mycophenolic Acid Glucuronide (MPAG) and fMPA Pharmacokinetics
3.3.3. TDM Based on Pharmacodynamics
3.3.4. TDM Based on Pharmacogenetics
3.3.5. Other Proposed Approaches of TDM
3.4. The Optimal Dosage Regimen
3.5. Factors Affecting Serum Concentrations in TDM
3.6. The Dosing in Different Groups of Patients
3.7. Additional Information Useful for MPA TDM
4. Vancomycin (VAN)
4.1. Useful PK/PD Parameters
4.2. Timing of Initial TDM and Target Concentration of VAN
4.3. The Optimal Dosage Regimen
4.4. Factors Affecting Serum Concentrations in TDM
4.5. The Dosing in Different Groups of Patients
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karlsson, M.O.; Lutsar, I.; Milligan, P.A. Population Pharmacokinetic Analysis of Voriconazole Plasma Concentration Data from Pediatric Studies. Antimicrob. Agents Chemother. 2009, 53, 935–944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Zhou, X.; Wu, T.; Jiang, H.; Yang, S.; Zhang, Y. Dose optimisation of voriconazole with therapeutic drug monitoring in children: A single-centre experience in China. Int. J. Antimicrob. Agents 2017, 49, 483–487. [Google Scholar] [CrossRef] [PubMed]
- Bartelink, I.H.; Wolfs, T.; Jonker, M.; De Waal, M.; Egberts, T.C.G.; Ververs, T.T.; Boelens, J.J.; Bierings, M. Highly Variable Plasma Concentrations of Voriconazole in Pediatric Hematopoietic Stem Cell Transplantation Patients. Antimicrob. Agents Chemother. 2012, 57, 235–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kadam, R.S.; Van Den Anker, J.N. Pediatric Clinical Pharmacology of Voriconazole: Role of Pharmacokinetic/Pharmacodynamic Modeling in Pharmacotherapy. Clin. Pharmacokinet. 2016, 55, 1031–1043. [Google Scholar] [CrossRef]
- Lempers, V.J.; Meuwese, E.; Mavinkurve-Groothuis, A.M.; Henriet, S.; Van Der Sluis, I.M.; Hanff, L.M.; Warris, A.; Koch, B.C.P.; Brüggemann, R.J. Impact of dose adaptations following voriconazole therapeutic drug monitoring in pediatric patients. Med Mycol. 2019, 57, 937–943. [Google Scholar] [CrossRef]
- Knight-Perry, J.; Jennissen, C.; Long, S.E.; Hage, S.; DeFor, T.E.; Chan, W.T.; Fisher, J.; Kirstein, M.N.; Smith, A.R. A phase I dose finding study of intravenous voriconazole in pediatric patients undergoing hematopoietic cell transplantation. Bone Marrow Transplant. 2019, 55, 955–964. [Google Scholar] [CrossRef]
- Yousefian, S.; Dastan, F.; Marjani, M.; Tabarsi, P.; Barati, S.; Shahsavari, N.; Kobarfard, F. Determination of Voriconazole Plasma Concentration by HPLC Technique and Evaluating Its Association with Clinical Outcome and Adverse Effects in Patients with Invasive Aspergillosis. Can. J. Infect. Dis. Med Microbiol. 2021, 2021, 5497427. [Google Scholar] [CrossRef]
- Kato, K.; Nagao, M.; Yamamoto, M.; Matsumura, Y.; Takakura, S.; Fukuda, K.; Ichiyama, S. Oral administration and younger age decrease plasma concentrations of voriconazole in pediatric patients. J. Infect. Chemother. 2016, 22, 27–31. [Google Scholar] [CrossRef]
- Andes, D.; Marchillo, K.; Stamstad, T.; Conklin, R. In Vivo Pharmacokinetics and Pharmacodynamics of a New Triazole, Voriconazole, in a Murine Candidiasis Model. Antimicrob. Agents Chemother. 2003, 47, 3165–3169. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Xie, J.; Wang, Y.; Zheng, X.; Lei, J.; Wang, X.; Dong, H.; Yang, Q.; Chen, L.; Xing, J.; et al. Pharmacokinetic and Pharmacodynamic Properties of Oral Voriconazole in Patients with Invasive Fungal Infections. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2015, 35, 797–804. [Google Scholar] [CrossRef]
- Soler-Palacín, P.; Frick, M.A.; Martín-Nalda, A.; Lanaspa, M.; Pou, L.; Roselló, E.; de Heredia, C.D.; Figueras, C. Voriconazole drug monitoring in the management of invasive fungal infection in immunocompromised children: A prospective study. J. Antimicrob. Chemother. 2011, 67, 700–706. [Google Scholar] [CrossRef] [Green Version]
- Faghihi, T.; Tiihonen, M. Voriconazole Therapeutic Drug Monitoring: How to Adjust the Dose in Pediatrics? Iran. J. Pediatr. 2021, 31, e111582. [Google Scholar] [CrossRef]
- John, J.; Loo, A.; Mazur, S.; Walsh, T.J. Therapeutic drug monitoring of systemic antifungal agents: A pragmatic approach for adult and pediatric patients. Expert Opin. Drug Metab. Toxicol. 2019, 15, 881–895. [Google Scholar] [CrossRef]
- Jeans, A.R.; Howard, S.J.; Al-Nakeeb, Z.; Goodwin, J.; Gregson, L.; Warn, P.A.; Hope, W.W. Combination of Voriconazole and Anidulafungin for Treatment of Triazole-Resistant Aspergillus fumigatus in anIn VitroModel of Invasive Pulmonary Aspergillosis. Antimicrob. Agents Chemother. 2012, 56, 5180–5185. [Google Scholar] [CrossRef] [Green Version]
- Troke, P.F.; Hockey, H.P.; Hope, W.W. Observational Study of the Clinical Efficacy of Voriconazole and Its Relationship to Plasma Concentrations in Patients. Antimicrob. Agents Chemother. 2011, 55, 4782–4788. [Google Scholar] [CrossRef] [Green Version]
- Ashbee, H.R.; Barnes, R.A.; Johnson, E.M.; Richardson, M.; Gorton, R.; Hope, W. Therapeutic drug monitoring (TDM) of antifungal agents: Guidelines from the British Society for Medical Mycology. J. Antimicrob. Chemother. 2013, 69, 1162–1176. [Google Scholar] [CrossRef] [Green Version]
- Moriyama, B.; Obeng, A.O.; Barbarino, J.; Penzak, S.R.; Henning, S.A.; Scott, S.; Agundez, J.; Wingard, J.R.; McLeod, H.L.; Klein, T.E.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guidelines for CYP2C19 and Voriconazole Therapy. Clin. Pharmacol. Ther. 2016, 102, 45–51. [Google Scholar] [CrossRef] [Green Version]
- Jin, H.; Wang, T.; Falcione, B.A.; Olsen, K.M.; Chen, K.; Tang, H.; Hui, J.; Zhai, S. Trough concentration of voriconazole and its relationship with efficacy and safety: A systematic review and meta-analysis. J. Antimicrob. Chemother. 2016, 71, 1772–1785. [Google Scholar] [CrossRef] [Green Version]
- Dolton, M.J.; Ray, J.E.; Chen, S.C.-A.; Ng, K.; Pont, L.; McLachlan, A.J. Multicenter Study of Voriconazole Pharmacokinetics and Therapeutic Drug Monitoring. Antimicrob. Agents Chemother. 2012, 56, 4793–4799. [Google Scholar] [CrossRef] [Green Version]
- Hu, L.; Dai, T.-T.; Zou, L.; Li, T.-M.; Ding, X.-S.; Yin, T. Therapeutic Drug Monitoring of Voriconazole in Children from a Tertiary Care Center in China. Antimicrob. Agents Chemother. 2018, 62, e00955-18. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, J.; Gordon, M.; Villarreal, E.; Peruccioni, M.; Marqués, M.R.; Poveda-Andrés, J.L.; Castellanos-Ortega, Á.; Ramirez, P. Impact of voriconazole plasma concentrations on treatment response in critically ill patients. J. Clin. Pharm. Ther. 2019, 44, 572–578. [Google Scholar] [CrossRef]
- Luong, M.-L.; Al-Dabbagh, M.; Groll, A.H.; Racil, Z.; Nannya, Y.; Mitsani, D.; Husain, S. Utility of voriconazole therapeutic drug monitoring: A meta-analysis. J. Antimicrob. Chemother. 2016, 71, 1786–1799. [Google Scholar] [CrossRef]
- Wang, T.; Zhu, H.; Sun, J.; Cheng, X.; Xie, J.; Dong, H.; Chen, L.; Wang, X.; Xing, J.; Dong, Y. Efficacy and safety of voriconazole and CYP2C19 polymorphism for optimised dosage regimens in patients with invasive fungal infections. Int. J. Antimicrob. Agents 2014, 44, 436–442. [Google Scholar] [CrossRef]
- Neely, M.; Rushing, T.; Kovacs, A.; Jelliffe, R.; Hoffman, J. Voriconazole Pharmacokinetics and Pharmacodynamics in Children. Clin. Infect. Dis. 2010, 50, 27–36. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.-H.; Lee, S.-Y.; Hwang, J.-Y.; Lee, S.H.; Yoo, K.H.; Sung, K.W.; Koo, H.H.; Kim, Y.-J. Importance of voriconazole therapeutic drug monitoring in pediatric cancer patients with invasive aspergillosis. Pediatr. Blood Cancer 2012, 60, 82–87. [Google Scholar] [CrossRef]
- Kang, H.M.; Lee, H.J.; Cho, E.Y.; Yu, K.-S.; Lee, H.; Lee, J.W.; Kang, H.J.; Park, K.D.; Shin, H.Y.; Choi, E.H. The Clinical Significance of Voriconazole Therapeutic Drug Monitoring in Children With Invasive Fungal Infections. Pediatr. Hematol. Oncol. 2015, 32, 557–567. [Google Scholar] [CrossRef]
- Hanai, Y.; Hamada, Y.; Kimura, T.; Matsumoto, K.; Takahashi, Y.; Fujii, S.; Nishizawa, K.; Takesue, Y. Optimal trough concentration of voriconazole with therapeutic drug monitoring in children: A systematic review and meta-analysis. J. Infect. Chemother. 2020, 27, 151–160. [Google Scholar] [CrossRef]
- Spriet, I.; Cosaert, K.; Renard, M.; Uyttebroeck, A.; Meyts, I.; Proesmans, M.; Meyfroidt, G.; De Hoon, J.; Verbesselt, R.; Willems, L. Voriconazole plasma levels in children are highly variable. Eur. J. Clin. Microbiol. Infect. Dis. 2010, 30, 283–287. [Google Scholar] [CrossRef]
- Boast, A.; Curtis, N.; Cranswick, N.; Gwee, A. Voriconazole dosing and therapeutic drug monitoring in children: Experience from a paediatric tertiary care centre. J. Antimicrob. Chemother. 2016, 71, 2031–2036. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Li, M.; Yan, J.; Gao, L.; Zhou, L.; Wang, Y.; Li, Q.; Wang, J.; Chen, T.; Wang, T.; et al. Voriconazole therapeutic drug monitoring in critically ill patients improves efficacy and safety of antifungal therapy. Basic Clin. Pharmacol. Toxicol. 2020, 127, 495–504. [Google Scholar] [CrossRef]
- Gerin, M.; Mahlaoui, N.; Elie, C.; Lanternier, F.; Bougnoux, M.-E.; Blanche, S.; Lortholary, O.; Jullien, V. Therapeutic Drug Monitoring of Voriconazole After Intravenous Administration in Infants and Children With Primary Immunodeficiency. Ther. Drug Monit. 2011, 33, 464–466. [Google Scholar] [CrossRef] [PubMed]
- Friberg, L.E.; Ravva, P.; Karlsson, M.O.; Liu, P. Integrated Population Pharmacokinetic Analysis of Voriconazole in Children, Adolescents, and Adults. Antimicrob. Agents Chemother. 2012, 56, 3032–3042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zane, N.R.; Thakker, D.R. A Physiologically Based Pharmacokinetic Model for Voriconazole Disposition Predicts Intestinal First-pass Metabolism in Children. Clin. Pharmacokinet. 2014, 53, 1171–1182. [Google Scholar] [CrossRef] [PubMed]
- Tucker, L.; Higgins, T.; Egelund, E.F.; Zou, B.; Vijayan, V.; Peloquin, C.A. Voriconazole Monitoring in Children with Invasive Fungal Infections. J. Pediatr. Pharmacol. Ther. 2015, 20, 17–23. [Google Scholar] [CrossRef]
- Mori, M.; Fukushima, K.; Miharu, M.; Goto, H.; Yoshida, M.; Shoji, S. A retrospective analysis of voriconazole pharmacokinetics in Japanese pediatric and adolescent patients. J. Infect. Chemother. 2013, 19, 174–179. [Google Scholar] [CrossRef]
- Zembles, T.N.; Thompson, N.E.; Havens, P.L.; Kaufman, B.A.; Huppler, A.R. An Optimized Voriconazole Dosing Strategy to Achieve Therapeutic Serum Concentrations in Children Younger than 2 Years Old. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2016, 36, 1102–1108. [Google Scholar] [CrossRef]
- Chen, J.; Chan, C.; Colantonio, D.; Seto, W. Therapeutic Drug Monitoring of Voriconazole in Children. Ther. Drug Monit. 2012, 34, 77–84. [Google Scholar] [CrossRef]
- Doby, E.H.; Benjamin, D.K.; Blaschke, A.J.; Ward, R.M.; Pavia, A.T.; Martin, P.L.; Driscoll, T.A.; Cohen-Wolkowiez, M.; Moran, C. Therapeutic Monitoring of Voriconazole in Children Less Than Three Years of Age: A Case Report and Summary of Voriconazole Concentrations for Ten Children. Pediatr. Infect. Dis. J. 2012, 31, 632–635. [Google Scholar] [CrossRef] [Green Version]
- Allegra, S.; Fatiguso, G.; De Francia, S.; Favata, F.; Pirro, E.; Carcieri, C.; De Nicolò, A.; Cusato, J.; Di Perri, G.; D’Avolio, A. Therapeutic drug monitoring of voriconazole for treatment and prophylaxis of invasive fungal infection in children: Voriconazole Therapeutic Drug Monitoring in Paediatrics. Br. J. Clin. Pharmacol. 2017, 84, 197–203. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.-C.; Zou, Y.; Tang, D.; Xiao, C.-L.; Xiao, Y.-W.; Wang, F.; Zhang, B.-K.; Xiang, D.-X.; Yu, F.; Yan, M. Possibly Appropriate Maintenance Dose of Voriconazole in Pediatric Patients: A Single Center Observational Study. Available online: https://assets.researchsquare.com/files/rs-222933/v2/ebdd07af-2ef9-46de-8730-235df3de207d.pdf?c=1631885086 (accessed on 10 January 2021).
- Duehlmeyer, S.; Klockau, C.; Yu, D.; Rouch, J. Characterization of Therapeutic Drug Monitoring Practices of Voriconazole and Posaconazole at a Pediatric Hospital. J. Pediatr. Pharmacol. Ther. 2021, 26, 26–32. [Google Scholar] [CrossRef]
- Valle-T-Figueras, J.; Miró, B.R.; Carabante, M.B.; Díaz-De-Heredia, C.; Bofarull, J.V.; Mendoza-Palomar, N.; Martín-Gómez, M.; Soler-Palacín, P. Voriconazole Use in Children: Therapeutic Drug Monitoring and Control of Inflammation as Key Points for Optimal Treatment. J. Fungi 2021, 7, 456. [Google Scholar] [CrossRef]
- Narita, A.; Muramatsu, H.; Sakaguchi, H.; Doisaki, S.; Tanaka, M.; Hama, A.; Shimada, A.; Takahashi, Y.; Yoshida, N.; Matsumoto, K.; et al. Correlation of CYP2C19 Phenotype With Voriconazole Plasma Concentration in Children. J. Pediatr. Hematol. 2013, 35, e219–e223. [Google Scholar] [CrossRef]
- Lee, J.; Ng, P.; Hamandi, B.; Husain, S.; Lefebvre, M.J.; Battistella, M. Effect of Therapeutic Drug Monitoring and Cytochrome P450 2C19 Genotyping on Clinical Outcomes of Voriconazole: A Systematic Review. Ann. Pharmacother. 2020, 55, 509–529. [Google Scholar] [CrossRef]
- Miller, M.A.; Lee, Y.M. Applying Pharmacogenomics to Antifungal Selection and Dosing: Are We There Yet? Curr. Fungal Infect. Rep. 2020, 14, 63–75. [Google Scholar] [CrossRef]
- Moriyama, B.; Kadri, S.S.; Henning, S.A.; Danner, R.L.; Walsh, T.J.; Penzak, S.R. Therapeutic Drug Monitoring and Genotypic Screening in the Clinical Use of Voriconazole. Curr. Fungal Infect. Rep. 2015, 9, 74–87. [Google Scholar] [CrossRef] [Green Version]
- Obeng, A.O.; Egelund, E.F.; Alsultan, A.; Peloquin, C.A.; Johnson, J.A. CYP2C19 Polymorphisms and Therapeutic Drug Monitoring of Voriconazole: Are We Ready for Clinical Implementation of Pharmacogenomics? Pharmacother. J. Hum. Pharmacol. Drug Ther. 2014, 34, 703–718. [Google Scholar] [CrossRef] [Green Version]
- Hicks, J.K.; Quilitz, R.E.; Komrokji, R.S.; Kubal, T.E.; Lancet, J.E.; Pasikhova, Y.; Qin, D.; So, W.; Caceres, G.; Kelly, K.; et al. Prospective CYP2C19-Guided Voriconazole Prophylaxis in Patients with Neutropenic Acute Myeloid Leukemia Reduces the Incidence of Subtherapeutic Antifungal Plasma Concentrations. Clin. Pharmacol. Ther. 2019, 107, 563–570. [Google Scholar] [CrossRef]
- Teusink, A.; Vinks, A.; Zhang, K.; Davies, S.; Fukuda, T.; Lane, A.; Nortman, S.; Kissell, D.; Dell, S.; Filipovich, A.; et al. Genotype-Directed Dosing Leads to Optimized Voriconazole Levels in Pediatric Patients Receiving Hematopoietic Stem Cell Transplantation. Biol. Blood Marrow Transplant. 2015, 22, 482–486. [Google Scholar] [CrossRef] [Green Version]
- Luo, X.; Li, T.; Hu, L.; Liu, S.; Zhao, H.; Zhang, J.; Feng, Y.; Huang, L. Differential effects of C-reactive protein levels on voriconazole metabolism at three age groups in allogeneic hematopoietic cell transplant recipients. J. Chemother. 2020, 33, 95–105. [Google Scholar] [CrossRef]
- Ter Avest, M.; Veringa, A.; van den Heuvel, E.R.; Kosterink, J.G.W.; Schölvinck, E.H.; Tissing, W.J.E.; Alffenaar, J.C. The effect of inflammation on voriconazole trough concentrations in children: Letter to the Editor. Br. J. Clin. Pharmacol. 2016, 83, 678–680. [Google Scholar] [CrossRef] [Green Version]
- Vanstraelen, K.; Wauters, J.; Vercammen, I.; de Loor, H.; Maertens, J.; Lagrou, K.; Annaert, P.; Spriet, I. Impact of Hypoalbuminemia on Voriconazole Pharmacokinetics in Critically Ill Adult Patients. Antimicrob. Agents Chemother. 2014, 58, 6782–6789. [Google Scholar] [CrossRef] [Green Version]
- Resztak, M.; Kosicka, K.; Zalewska, P.; Krawiec, J.; Główka, F.K. Determination of total and free voriconazole in human plasma: Application to pharmacokinetic study and therapeutic monitoring. J. Pharm. Biomed. Anal. 2019, 178, 112952. [Google Scholar] [CrossRef]
- Driscoll, T.A.; Frangoul, H.; Nemecek, E.R.; Murphey, D.K.; Yu, L.C.; Blumer, J.; Krance, R.A.; Baruch, A.; Liu, P. Comparison of Pharmacokinetics and Safety of Voriconazole Intravenous-to-Oral Switch in Immunocompromised Adolescents and Healthy Adults. Antimicrob. Agents Chemother. 2011, 55, 5780–5789. [Google Scholar] [CrossRef] [Green Version]
- Brüggemann, R.J.M.; van der Linden, J.W.M.; Verweij, P.E.; Burger, D.M.; Warris, A. Impact of Therapeutic Drug Monitoring of Voriconazole in a Pediatric Population. Pediatr. Infect. Dis. J. 2011, 30, 533–534. [Google Scholar] [CrossRef]
- Pieper, S.; Kolve, H.; Gumbinger, H.G.; Goletz, G.; Würthwein, G.; Groll, A.H. Monitoring of voriconazole plasma concentrations in immunocompromised paediatric patients. J. Antimicrob. Chemother. 2012, 67, 2717–2724. [Google Scholar] [CrossRef]
- Zhao, Y.; Hou, J.; Xiao, Y.; Wang, F.; Zhang, B.; Zhang, M.; Jiang, Y.; Li, J.; Gong, G.; Xiang, D.; et al. Predictors of Voriconazole Trough Concentrations in Patients with Child–Pugh Class C Cirrhosis: A Prospective Study. Antibiotics 2021, 10, 1130. [Google Scholar] [CrossRef]
- Wang, T.; Yan, M.; Tang, D.; Xue, L.; Zhang, T.; Dong, Y.; Zhu, L.; Wang, X.; Dong, Y. Therapeutic drug monitoring and safety of voriconazole therapy in patients with Child–Pugh class B and C cirrhosis: A multicenter study. Int. J. Infect. Dis. 2018, 72, 49–54. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.-B.; Huang, F.; Tong, L.; Xia, Y.-Z.; Wu, J.-J.; Li, J.; Hu, X.-G.; Liang, T.; Liu, X.-M.; Zhong, G.-P.; et al. Pharmacokinetics of intravenous voriconazole in patients with liver dysfunction: A prospective study in the intensive care unit. Int. J. Infect. Dis. 2020, 93, 345–352. [Google Scholar] [CrossRef]
- Li, X.; Li, W.; Li, M.; Zhang, Z.; Liu, S.; Chen, Z. Correlation between enzyme multiplied immunoassay technique and high-performance liquid chromatography in the quantification of voriconazole in a paediatric population. Scand. J. Clin. Lab. Investig. 2021, 81, 121–126. [Google Scholar] [CrossRef]
- Mei, H.; Hu, X.; Wang, J.; Wang, R.; Cai, Y. Determination of voriconazole in human plasma by liquid chromatography-tandem mass spectrometry and its application in therapeutic drug monitoring in Chinese patients. J. Int. Med Res. 2019, 48, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Baietto, L.; D’Avolio, A.; Marra, C.; Simiele, M.; Cusato, J.; Pace, S.; Ariaudo, A.; DE Rosa, F.G.; Di Perri, G. Development and validation of a new method to simultaneously quantify triazoles in plasma spotted on dry sample spot devices and analysed by HPLC-MS. J. Antimicrob. Chemother. 2012, 67, 2645–2649. [Google Scholar] [CrossRef] [PubMed]
- Badiee, P.; Hashemizadeh, Z.; Montaseri, H. Therapeutic Drug Monitoring of Voriconazole: Comparison of Bioassay with High-Performance Liquid Chromatography. Jundishapur J. Microbiol. 2017, 10, e45645. [Google Scholar] [CrossRef] [Green Version]
- Kiang, T.K.L.; Ensom, M.H.H. Therapeutic drug monitoring of mycophenolate in adult solid organ transplant patients: An update. Expert Opin. Drug Metab. Toxicol. 2016, 12, 545–553. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, P.C.L.; Thiesen, F.V.; Pereira, A.G.; Zimmer, A.R.; Fröehlich, P.E. A short overview on mycophenolic acid pharmacology and pharmacokinetics. Clin. Transplant. 2020, 34, e13997. [Google Scholar] [CrossRef]
- Barau, C.; Mellos, A.; Chhun, S.; Lacaille, F.; Furlan, V. Pharmacokinetics of Mycophenolic Acid and Dose Optimization in Children After Intestinal Transplantation. Ther. Drug Monit. 2017, 39, 37–42. [Google Scholar] [CrossRef]
- Martial, L.C.; Jacobs, B.A.W.; Cornelissen, E.A.M.; De Haan, A.F.J.; Koch, B.C.P.; Burger, D.M.; Aarnoutse, R.E.; Schreuder, M.F.; Brüggemann, R.J.M. Pharmacokinetics and target attainment of mycophenolate in pediatric renal transplant patients. Pediatr. Transplant. 2016, 20, 492–499. [Google Scholar] [CrossRef]
- Alvarez-Elías, A.C.; Yoo, E.C.; Todorova, E.K.; Singh, R.N.; Filler, G. A Retrospective Study on Mycophenolic Acid Drug Interactions: Effect of Prednisone, Sirolimus, and Tacrolimus With MPA. Ther. Drug Monit. 2017, 39, 220–228. [Google Scholar] [CrossRef]
- Tellier, S.; Dallocchio, A.; Guigonis, V.; Saint-Marcoux, F.; Llanas, B.; Ichay, L.; Bandin, F.; Godron, A.; Morin, D.; Brochard, K.; et al. Mycophenolic Acid Pharmacokinetics and Relapse in Children with Steroid–Dependent Idiopathic Nephrotic Syndrome. Clin. J. Am. Soc. Nephrol. 2016, 11, 1777–1782. [Google Scholar] [CrossRef] [Green Version]
- Gellermann, J.; Weber, L.; Pape, L.; Tönshoff, B.; Hoyer, P.; Querfeld, U. Mycophenolate Mofetil versus Cyclosporin A in Children with Frequently Relapsing Nephrotic Syndrome. J. Am. Soc. Nephrol. 2013, 24, 1689–1697. [Google Scholar] [CrossRef] [Green Version]
- Woillard, J.-B.; Bader-Meunier, B.; Salomon, R.; Ranchin, B.; Decramer, S.; Fischbach, M.; Berard, E.; Guigonis, V.; Harambat, J.; Dunand, O.; et al. Pharmacokinetics of mycophenolate mofetil in children with lupus and clinical findings in favour of therapeutic drug monitoring. Br. J. Clin. Pharmacol. 2014, 78, 867–876. [Google Scholar] [CrossRef]
- Barau, C.; Barrail-Tran, A.; Hemerziu, B.; Habes, D.; Taburet, A.-M.; Debray, D.; Furlan, V. Optimization of the dosing regimen of mycophenolate mofetil in pediatric liver transplant recipients. Liver Transplant. 2011, 17, 1152–1158. [Google Scholar] [CrossRef]
- Godron-Dubrasquet, A.; Woillard, J.-B.; Decramer, S.; Fila, M.; Guigonis, V.; Tellier, S.; Morin, D.; Sordet, M.; Saint-Marcoux, F.; Harambat, J. Mycophenolic acid area under the concentration-time curve is associated with therapeutic response in childhood-onset lupus nephritis. Pediatr. Nephrol. 2020, 36, 341–347. [Google Scholar] [CrossRef]
- Krall, P.; Yañez, D.; Rojo, A.; Delucchi, Á.; Córdova, M.; Morales, J.; Boza, P.; de la Rivera, A.; Espinoza, N.; Armijo, N.; et al. CYP3A5 and UGT1A9 Polymorphisms Influence Immunosuppressive Therapy in Pediatric Kidney Transplant Recipients. Front. Pharmacol. 2021, 12, 653525. [Google Scholar] [CrossRef]
- Berger, I.; Haubrich, K.; Ensom, M.H.H.; Carr, R. RELATE: Relationship of limited sampling strategy and adverse effects of mycophenolate mofetil in pediatric renal transplant patients. Pediatr. Transplant. 2019, 23, e13355. [Google Scholar] [CrossRef]
- Smits, T.A.; Cox, S.; Fukuda, T.; Sherbotie, J.R.; Ward, R.M.; Goebel, J.; Vinks, A.A. Effects of Unbound Mycophenolic Acid on Inosine Monophosphate Dehydrogenase Inhibition in Pediatric Kidney Transplant Patients. Ther. Drug Monit. 2014, 36, 716–723. [Google Scholar] [CrossRef]
- Billing, H.; Höcker, B.; Fichtner, A.; Van Damme-Lombaerts, R.; Friman, S.; Jaray, J.; Vondrak, K.; Sarvary, E.; Strologo, L.D.; Oellerich, M.; et al. Single-Nucleotide Polymorphism of CYP3A5 Impacts the Exposure to Tacrolimus in Pediatric Renal Transplant Recipients: A Pharmacogenetic Substudy of the TWIST Trial. Ther. Drug Monit. 2017, 39, 21–28. [Google Scholar] [CrossRef]
- Almardini, R.; Taybeh, E.O.; AlSous, M.M.; Hawwa, A.F.; McKeever, K.; Horne, R.; McElnay, J.C. A multiple methods approach to determine adherence with prescribed mycophenolate in children with kidney transplant. Br. J. Clin. Pharmacol. 2019, 85, 1434–1442. [Google Scholar] [CrossRef]
- Dong, M.; Fukuda, T.; Cox, S.; De Vries, M.T.; Hooper, D.K.; Goebel, J.; Vinks, A.A. Population pharmacokinetic−pharmacodynamic modelling of mycophenolic acid in paediatric renal transplant recipients in the early post-transplant period. Br. J. Clin. Pharmacol. 2014, 78, 1102–1112. [Google Scholar] [CrossRef]
- Fukuda, T.; Goebel, J.; Thøgersen, H.; Maseck, D.; Cox, S.; Logan, B.; Sherbotie, J.; Seikaly, M.; Vinks, A.A. Inosine Monophosphate Dehydrogenase (IMPDH) Activity as a Pharmacodynamic Biomarker of Mycophenolic Acid Effects in Pediatric Kidney Transplant Recipients. J. Clin. Pharmacol. 2011, 51, 309–320. [Google Scholar] [CrossRef] [Green Version]
- Fukuda, T.; Goebel, J.; Cox, S.; Maseck, D.; Zhang, K.; Sherbotie, J.R.; Ellis, E.N.; James, L.P.; Ward, R.M.; Vinks, A. UGT1A9, UGT2B7, and MRP2 Genotypes Can Predict Mycophenolic Acid Pharmacokinetic Variability in Pediatric Kidney Transplant Recipients. Ther. Drug Monit. 2012, 34, 671–679. [Google Scholar] [CrossRef] [Green Version]
- Siddiqi, N.; Lamour, J.M.; Hsu, D.T. The effect of MMF dose and trough levels on adverse effects in pediatric heart transplant recipients. Pediatr. Transplant. 2015, 19, 618–622. [Google Scholar] [CrossRef]
- Burckart, G.J.; Figg, W.D.; Brooks, M.M.; Green, D.J.; Troutman, S.M.; Ferrell, R.; Chinnock, R.; Canter, C.; Addonizio, L.; Bernstein, D.; et al. Multi-institutional Study of Outcomes After Pediatric Heart Transplantation: Candidate Gene Polymorphism Analysis of ABCC2. J. Pediatr. Pharmacol. Ther. 2014, 19, 16–24. [Google Scholar] [CrossRef] [Green Version]
- Militano, O.; Ozkaynak, M.F.; Mehta, B.; Van Deven, C.; Hamby, C.; Cairo, M.S. Mycophenolate mofetil administered every 8 hours in combination with tacrolimus is efficacious in the prophylaxis of acute graft versus host disease in childhood, adolescent, and young adult allogeneic stem cell transplantation recipients. Pediatr. Blood Cancer 2018, 65, e27091. [Google Scholar] [CrossRef]
- Zhang, D.; Renbarger, J.L.; Chow, D.S.-L. Pharmacokinetic Variability of Mycophenolic Acid in Pediatric and Adult Patients With Hematopoietic Stem Cell Transplantation. J. Clin. Pharmacol. 2016, 56, 1378–1386. [Google Scholar] [CrossRef] [Green Version]
- Inagaki, J.; Kodama, Y.; Fukano, R.; Noguchi, M.; Okamura, J. Mycophenolate mofetil for treatment of steroid-refractory acute graft-versus-host disease after pediatric hematopoietic stem cell transplantation. Pediatr. Transplant. 2015, 19, 652–658. [Google Scholar] [CrossRef]
- Windreich, R.M.; Goyal, R.K.; Joshi, R.; Kenkre, T.S.; Howrie, D.; Venkataramanan, R. A Pilot Study of Continuous Infusion of Mycophenolate Mofetil for Prophylaxis of Graft-versus-Host-Disease in Pediatric Patients. Biol. Blood Marrow Transplant. 2015, 22, 682–689. [Google Scholar] [CrossRef] [Green Version]
- Carlone, G.; Simeone, R.; Baraldo, M.; Maestro, A.; Zanon, D.; Barbi, E.; Maximova, N. Area-Under-the-Curve-Based Mycophenolate Mofetil Dosage May Contribute to Decrease the Incidence of Graft-versus-Host Disease after Allogeneic Hematopoietic Cell Transplantation in Pediatric Patients. J. Clin. Med. 2021, 10, 406. [Google Scholar] [CrossRef]
- Kim, H.; Long-Boyle, J.; Rydholm, N.; Orchard, P.J.; Tolar, J.; Smith, A.R.; Jacobson, P.; Brundage, R. Population pharmacokinetics of unbound mycophenolic acid in pediatric and young adult patients undergoing allogeneic hematopoietic cell transplantation. J. Clin. Pharmacol. 2012, 52, 1665–1675. [Google Scholar] [CrossRef]
- Harnicar, S.; Ponce, D.M.; Hilden, P.; Zheng, J.; Devlin, S.M.; Lubin, M.; Pozotrigo, M.; Mathew, S.; Adel, N.; Kernan, N.; et al. Intensified Mycophenolate Mofetil Dosing and Higher Mycophenolic Acid Trough Levels Reduce Severe Acute Graft-versus-Host Disease after Double-Unit Cord Blood Transplantation. Biol. Blood Marrow Transplant. 2015, 21, 920–925. [Google Scholar] [CrossRef] [Green Version]
- Hui-Yuen, J.S.; Tran, T.; Taylor, J.; Truong, K.; Li, X.; Bermudez, L.M.; Starr, A.J.; Eichenfield, A.H.; Imundo, L.F.; Askanase, A.D. Use of Glucuronidated Mycophenolic Acid Levels for Therapeutic Monitoring in Pediatric Lupus Nephritis Patients. J. Clin. Rheumatol. 2016, 22, 75–79. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, L.; Xu, H.; Dong, M.; Mizuno, T.; Vinks, A.A.; Brunner, H.I.; Li, Y.; Li, Z. PK/PD Study of Mycophenolate Mofetil in Children With Systemic Lupus Erythematosus to Inform Model-Based Precision Dosing. Front. Pharmacol. 2020, 11, 2201. [Google Scholar] [CrossRef] [PubMed]
- Sagcal-Gironella, A.C.P.; Fukuda, T.; Wiers, K.; Cox, S.; Nelson, S.; Dina, B.; Sherwin, C.M.T.; Klein-Gitelman, M.S.; Vinks, A.A.; Brunner, H.I. Pharmacokinetics and Pharmacodynamics of Mycophenolic Acid and Their Relation to Response to Therapy of Childhood-Onset Systemic Lupus Erythematosus. Semin. Arthritis Rheum. 2011, 40, 307–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, Q.; Wang, G.; Huang, Y.; Lu, J.; Zhang, J.; Zhu, L.; Zhu, Y.; Li, X.; Lan, J.; Li, Z.; et al. Mycophenolic Acid Exposure Optimization Based on Vitamin D Status in Children with Systemic Lupus Erythematosus: A Single-Center Retrospective Study. Rheumatol. Ther. 2021, 8, 1143–1157. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, T.; Brunner, H.I.; Sagcal-Gironella, A.C.P.; Vinks, A.A. Nonsteroidal Anti-Inflammatory Drugs May Reduce Enterohepatic Recirculation of Mycophenolic Acid in Patients With Childhood-Onset Systemic Lupus Erythematosus. Ther. Drug Monit. 2011, 33, 658–662. [Google Scholar] [CrossRef] [Green Version]
- Ye, Q.; Wang, G.; Lu, J.; Huang, Y.; Zhang, J.; Zhu, L.; Zhu, Y.; Lan, J.; Li, Z.; Liu, Y.; et al. Exposure levels of mycophenolic acid are associated with comorbidities in children with systemic lupus erythematosus. Lupus 2021, 30, 1808–1818. [Google Scholar] [CrossRef]
- Sobiak, J.; Resztak, M.; Ostalska-Nowicka, D.; Zachwieja, J.; Gąsiorowska, K.; Piechanowska, W.; Chrzanowska, M. Monitoring of mycophenolate mofetil metabolites in children with nephrotic syndrome and the proposed novel target values of pharmacokinetic parameters. Eur. J. Pharm. Sci. 2015, 77, 189–196. [Google Scholar] [CrossRef]
- Benz, M.R.; Ehren, R.; Kleinert, D.; Müller, C.; Gellermann, J.; Fehrenbach, H.; Schmidt, H.; Weber, L.T. Generation and Validation of a Limited Sampling Strategy to Monitor Mycophenolic Acid Exposure in Children With Nephrotic Syndrome. Ther. Drug Monit. 2019, 41, 696–702. [Google Scholar] [CrossRef]
- Kirpalani, A.; Rothfels, L.; Sharma, A.P.; Cuellar, C.R.; Filler, G. Nephrotic state substantially enhances apparent mycophenolic acid clearance. Clin. Nephrol. 2019, 91, 162–171. [Google Scholar] [CrossRef]
- Hibino, S.; Nagai, T.; Yamakawa, S.; Ito, H.; Tanaka, K.; Uemura, O. Pharmacokinetics of mycophenolic acid in children with clinically stable idiopathic nephrotic syndrome receiving cyclosporine. Clin. Exp. Nephrol. 2016, 21, 152–158. [Google Scholar] [CrossRef]
- Baudouin, V.; Alberti, C.; Lapeyraque, A.-L.; Bensman, A.; André, J.-L.; Broux, F.; Cailliez, M.; Decramer, S.; Niaudet, P.; Deschênes, G.; et al. Mycophenolate mofetil for steroid-dependent nephrotic syndrome: A phase II Bayesian trial. Pediatr. Nephrol. 2011, 27, 389–396. [Google Scholar] [CrossRef]
- Hackl, Á.; Cseprekál, O.; Gessner, M.; Liebau, M.C.; Habbig, S.; Ehren, R.; Müller, C.; Taylan, C.; Dötsch, J.; Weber, L.T. Mycophenolate Mofetil Therapy in Children With Idiopathic Nephrotic Syndrome: Does Therapeutic Drug Monitoring Make a Difference? Ther. Drug Monit. 2016, 38, 274–279. [Google Scholar] [CrossRef]
- Saint-Marcoux, F.; Guigonis, V.; Decramer, S.; Gandia, P.; Ranchin, B.; Parant, F.; Bessenay, L.; Libert, F.; Harambat, J.; Bouchet, S.; et al. Development of a Bayesian estimator for the therapeutic drug monitoring of mycophenolate mofetil in children with idiopathic nephrotic syndrome. Pharmacol. Res. 2011, 63, 423–431. [Google Scholar] [CrossRef]
- Gellermann, J.; Ehrich, J.H.H.; Querfeld, U. Sequential maintenance therapy with cyclosporin A and mycophenolate mofetil for sustained remission of childhood steroid-resistant nephrotic syndrome. Nephrol. Dial. Transplant. 2011, 27, 1970–1978. [Google Scholar] [CrossRef] [Green Version]
- Sobiak, J.; Resztak, M.; Pawiński, T.; Żero, P.; Ostalska-Nowicka, D.; Zachwieja, J.; Chrzanowska, M. Limited sampling strategy to predict mycophenolic acid area under the curve in pediatric patients with nephrotic syndrome: A retrospective cohort study. Eur. J. Clin. Pharmacol. 2019, 75, 1249–1259. [Google Scholar] [CrossRef] [Green Version]
- Tong, K.; Mao, J.; Fu, H.; Shen, H.; Liu, A.; Shu, Q.; Du, L. The Value of Monitoring the Serum Concentration of Mycophenolate Mofetil in Children with Steroid-Dependent/Frequent Relapsing Nephrotic Syndrome. Nephron 2016, 132, 327–334. [Google Scholar] [CrossRef]
- Sobiak, J.; Jóźwiak, A.; Wziętek, H.; Zachwieja, J.; Ostalska-Nowicka, D. The Application of Inosine 5′-Monophosphate Dehydrogenase Activity Determination in Peripheral Blood Mononuclear Cells for Monitoring Mycophenolate Mofetil Therapy in Children with Nephrotic Syndrome. Pharmaceuticals 2020, 13, 200. [Google Scholar] [CrossRef]
- Hackl, A.; Becker, J.U.; Körner, L.M.; Ehren, R.; Habbig, S.; Nüsken, E.; Nüsken, K.-D.; Ebner, K.; Liebau, M.C.; Müller, C.; et al. Mycophenolate mofetil following glucocorticoid treatment in Henoch-Schönlein purpura nephritis: The role of early initiation and therapeutic drug monitoring. Pediatr. Nephrol. 2017, 33, 619–629. [Google Scholar] [CrossRef]
- Nakaseko, H.; Iwata, N.; Yasuoka, R.; Kohagura, T.; Abe, N.; Kawabe, S.; Mori, M. Pharmacokinetics of mycophenolate mofetil in juvenile patients with autoimmune diseases. Mod. Rheumatol. 2019, 29, 1002–1006. [Google Scholar] [CrossRef]
- Staatz, C.E.; Tett, S.E. Clinical Pharmacokinetics and Pharmacodynamics of Mycophenolate in Solid Organ Transplant Recipients. Clin. Pharmacokinet. 2007, 46, 13–58. [Google Scholar] [CrossRef]
- Allison, A.C. Mechanisms of action of mycophenolate mofetil. Lupus 2005, 14, 2–8. [Google Scholar] [CrossRef]
- Todorova, E.K.; Huang, S.-H.S.; Kobrzynski, M.C.; Filler, G. What is the intrapatient variability of mycophenolic acid trough levels? Pediatr. Transplant. 2015, 19, 669–674. [Google Scholar] [CrossRef]
- Sobiak, J.; Resztak, M. A Systematic Review of Multiple Linear Regression-Based Limited Sampling Strategies for Mycophenolic Acid Area Under the Concentration–Time Curve Estimation. Eur. J. Drug Metab. Pharmacokinet. 2021, 46, 721–742. [Google Scholar] [CrossRef]
- Filler, G.; Todorova, E.K.; Bax, K.; Alvarez-Elías, A.C.; Huang, S.-H.S.; Kobrzynski, M.C. Minimum mycophenolic acid levels are associated with donor-specific antibody formation. Pediatr. Transplant. 2015, 20, 34–38. [Google Scholar] [CrossRef]
- Fujinaga, S.; Someya, T.; Watanabe, T.; Ito, A.; Ohtomo, Y.; Shimizu, T.; Kaneko, K. Cyclosporine versus mycophenolate mofetil for maintenance of remission of steroid-dependent nephrotic syndrome after a single infusion of rituximab. Eur. J. Nucl. Med. Mol. Imaging 2012, 172, 513–518. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, L.; Li, J.; Fu, Q.; Zhang, H.; Wu, C.; Li, J.; Zhong, G.; Zheng, Y.; Chen, X.; et al. Validated LC–MS/MS method for quantitation of total and free mycophenolic acid concentration and its application to a pharmacokinetic study in pediatric renal transplant recipients. Biomed. Chromatogr. 2020, 35, e4989. [Google Scholar] [CrossRef]
- Rother, A.; Glander, P.; Vitt, E.; Czock, D.; Von Ahsen, N.; Armstrong, V.W.; Oellerich, M.; Budde, K.; Feneberg, R.; Tönshoff, B.; et al. Inosine monophosphate dehydrogenase activity in paediatrics: Age-related regulation and response to mycophenolic acid. Eur. J. Clin. Pharmacol. 2012, 68, 913–922. [Google Scholar] [CrossRef]
- Filler, G.; Bendrick-Peart, J.; Christians, U. Pharmacokinetics of Mycophenolate Mofetil and Sirolimus in Children. Ther. Drug Monit. 2008, 30, 138–142. [Google Scholar] [CrossRef]
- Yoo, E.C.; Alvarez-Elías, A.C.; Todorova, E.K.; Filler, G. Developmental changes of MPA exposure in children. Pediatr. Nephrol. 2016, 31, 975–982. [Google Scholar] [CrossRef] [PubMed]
- Prémaud, A.; Rousseau, A.; Le Meur, Y.; Lachâtre, G.; Marquet, P. Comparison of Liquid Chromatography-Tandem Mass Spectrometry with a Commercial Enzyme-Multiplied Immunoassay for the Determination of Plasma MPA in Renal Transplant Recipients and Consequences for Therapeutic Drug Monitoring. Ther. Drug Monit. 2004, 26, 609–619. [Google Scholar] [CrossRef] [PubMed]
- Kunicki, P.K.; Pawinski, T.; Boczek, A.; Waś, J.; Bodnar-Broniarczyk, M. A Comparison of the Immunochemical Methods, PETINIA and EMIT, With That of HPLC-UV for the Routine Monitoring of Mycophenolic Acid in Heart Transplant Patients. Ther. Drug Monit. 2015, 37, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Alsmadi, M.M.; Alfarah, M.Q.; Albderat, J.; Alsalaita, G.; Almardini, R.; Hamadi, S.; Al-Ghazawi, A.; Abu-Duhair, O.; Idkaidek, N. The development of a population physiologically based pharmacokinetic model for mycophenolic mofetil and mycophenolic acid in humans using data from plasma, saliva, and kidney tissue. Biopharm. Drug Dispos. 2019, 40, 325–340. [Google Scholar] [CrossRef]
- Wiesen, M.H.J.; Farowski, F.; Feldkötter, M.; Hoppe, B.; Müller, C. Liquid chromatography–tandem mass spectrometry method for the quantification of mycophenolic acid and its phenolic glucuronide in saliva and plasma using a standardized saliva collection device. J. Chromatogr. A 2012, 1241, 52–59. [Google Scholar] [CrossRef]
- Gonzalez-Ramirez, R.; González-Bañuelos, J.; Villa, M.D.L.S.; Jiménez, B.; García-Roca, P.; Cruz-Antonio, L.; Castañeda-Hernández, G.; Medeiros, M. Bioavailability of a generic of the immunosuppressive agent mycophenolate mofetil in pediatric patients. Pediatr. Transplant. 2014, 18, 568–574. [Google Scholar] [CrossRef]
- Olson, J.; Hersh, A.L.; Sorensen, J.; Zobell, J.; Anderson, C.; Thorell, E.A. Intravenous Vancomycin Therapeutic Drug Monitoring in Children: Evaluation of a Pharmacy-Driven Protocol and Collaborative Practice Agreement. J. Pediatr. Infect. Dis. Soc. 2019, 9, 334–341. [Google Scholar] [CrossRef]
- Tkachuk, S.; Collins, K.; Ensom, M.H.H. The Relationship Between Vancomycin Trough Concentrations and AUC/MIC Ratios in Pediatric Patients: A Qualitative Systematic Review. Pediatr. Drugs 2018, 20, 153–164. [Google Scholar] [CrossRef]
- Rybak, M.J.; Lomaestro, B.M.; Rotscahfer, J.C.; Moellering, J.R.C.; Craig, W.A.; Billeter, M.; Dalovisio, J.R.; Levine, D.P. Vancomycin Therapeutic Guidelines: A Summary of Consensus Recommendations from the Infectious Diseases Society of America, the American Society of Health-System Pharmacists, and the Society of Infectious Diseases Pharmacists. Clin. Infect. Dis. 2009, 49, 325–327. [Google Scholar] [CrossRef] [Green Version]
- Fitzgerald, J.C.; Zane, N.R.; Himebauch, A.S.; Reedy, M.D.; Downes, K.J.; Topjian, A.A.; Furth, S.L.; Thomas, N.J.; Scheetz, M.H.; Zuppa, A.F. Vancomycin Prescribing and Therapeutic Drug Monitoring in Children With and Without Acute Kidney Injury After Cardiac Arrest. Pediatr. Drugs 2019, 21, 107–112. [Google Scholar] [CrossRef]
- Rybak, M.; Lomaestro, B.; Rotschafer, J.C.; Moellering, R.; Craig, W.; Billeter, M.; Dalovisio, J.R.; Levine, D.P. Therapeutic monitoring of vancomycin in adult patients: A consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Am. J. Heal. Pharm. 2009, 66, 82–98. [Google Scholar] [CrossRef]
- Liu, C.; Bayer, A.; Cosgrove, S.E.; Daum, R.S.; Fridkin, S.K.; Gorwitz, R.J.; Kaplan, S.L.; Karchmer, A.W.; Levine, D.P.; Murray, B.E.; et al. Clinical Practice Guidelines by the Infectious Diseases Society of America for the Treatment of Methicillin-Resistant Staphylococcus aureus Infections in Adults and Children. Clin. Infect. Dis. 2011, 52, e18–e55. [Google Scholar] [CrossRef] [Green Version]
- Frymoyer, A.; Guglielmo, B.J.; Hersh, A.L. Desired Vancomycin Trough Serum Concentration for Treating Invasive Methicillin-resistant Staphylococcal Infections. Pediatr. Infect. Dis. J. 2013, 32, 1077–1079. [Google Scholar] [CrossRef]
- Le, J.; Bradley, J.S.; Murray, W.; Romanowski, G.L.; Tran, T.T.; Nguyen, N.; Cho, S.; Natale, S.; Bui, I.; Tran, T.M.; et al. Improved Vancomycin Dosing in Children Using Area Under the Curve Exposure. Pediatr. Infect. Dis. J. 2013, 32, e155–e163. [Google Scholar] [CrossRef] [Green Version]
- Moriyama, H.; Tsutsuura, M.; Kojima, N.; Mizukami, Y.; Tashiro, S.; Osa, S.; Enoki, Y.; Taguchi, K.; Oda, K.; Fujii, S.; et al. The optimal trough-guided monitoring of vancomycin in children: Systematic review and meta-analyses. J. Infect. Chemother. 2021, 27, 781–785. [Google Scholar] [CrossRef]
- Fiorito, T.M.; Luther, M.K.; Dennehy, P.H.; LaPlante, K.L.; Matson, K.L. Nephrotoxicity With Vancomycin in the Pediatric Population: A Systematic Review and Meta-Analysis. Pediatr. Infect. Dis. J. 2018, 37, 654–661. [Google Scholar] [CrossRef]
- Hahn, A.; Frenck, R.W.; Allen-Staat, M.; Zou, Y.; Vinks, A.A. Evaluation of Target Attainment of Vancomycin Area Under the Curve in Children With Methicillin-Resistant Staphylococcus Aureus Bacteremia. Ther. Drug Monit. 2015, 37, 619–625. [Google Scholar] [CrossRef] [Green Version]
- Downes, K.J.; Hahn, A.; Wiles, J.; Courter, J.D.; Vinks, A.A. Dose optimisation of antibiotics in children: Application of pharmacokinetics/pharmacodynamics in paediatrics. Int. J. Antimicrob. Agents 2013, 43, 223–230. [Google Scholar] [CrossRef] [Green Version]
- Dosing and Monitoring of Vancomycin in Pediatric Patients. Available online: https://Www.Med.Umich.Edu/Asp/Pdf/Pk/Vancomycin_Peds.Pdf (accessed on 26 October 2021).
- Khare, M.; Azim, A.; Kneese, G.; Haag, M.; Weinstein, K.; Rhee, K.E.; Foster, B.A. Vancomycin Dosing in Children With Overweight or Obesity: A Systematic Review and Meta-analysis. Hosp. Pediatr. 2020, 10, 359–368. [Google Scholar] [CrossRef]
- Butterfield, J.M.; Patel, N.; Pai, M.P.; Rosano, T.G.; Drusano, G.L.; Lodise, T.P. Refining Vancomycin Protein Binding Estimates: Identification of Clinical Factors That Influence Protein Binding. Antimicrob. Agents Chemother. 2011, 55, 4277–4282. [Google Scholar] [CrossRef] [Green Version]
- Berthoin, K.; Ampe, E.; Tulkens, P.M.; Carryn, S. Correlation between free and total vancomycin serum concentrations in patients treated for Gram-positive infections. Int. J. Antimicrob. Agents 2009, 34, 555–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oyaert, M.; Spriet, I.; Allegaert, K.; Smits, A.; Vanstraelen, K.; Peersman, N.; Wauters, J.; Verhaegen, J.; Vermeersch, P.; Pauwels, S. Factors Impacting Unbound Vancomycin Concentrations in Different Patient Populations. Antimicrob. Agents Chemother. 2015, 59, 7073–7079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stove, V.; Coene, L.; Carlier, M.; De Waele, J.J.; Fiers, T.; Verstraete, A.G. Measuring Unbound Versus Total Vancomycin Concentrations in Serum and Plasma: Methodological Issues and Relevance. Ther. Drug Monit. 2015, 37, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Durward, A.; Mayer, A.; Skellett, S.; Taylor, D.; Hanna, S.; Tibby, S.M.; Murdoch, I.A. Hypoalbuminaemia in critically ill children: Incidence, prognosis, and influence on the anion gap. Arch. Dis. Child. 2003, 88, 419–422. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Norris, R.L.G.; Schneider, J.J.; Ravenscroft, P.J. The influence of vancomycin concentration and the pH of plasma on vancomycin protein binding. J. Pharmacol. Toxicol. Methods 1992, 28, 57–60. [Google Scholar] [CrossRef]
- Kees, M.G.; Wicha, S.G.; Seefeld, A.; Kees, F.; Kloft, C. Unbound fraction of vancomycin in intensive care unit patients. J. Clin. Pharmacol. 2013, 54, 318–323. [Google Scholar] [CrossRef]
- Lichliter, R.L.; Tremewan, L.E.; Shonka, N.M.; Mehnert, J.E.; Brennan, L.; Thrasher, J.M.; Hernandez, T.L. Therapeutic antibiotic serum concentrations by two blood collection methods within the pediatric patient: A comparative effectiveness trial. J. Spéc. Pediatr. Nurs. 2018, 23, e12212. [Google Scholar] [CrossRef]
- McKamy, S.; Hernandez, E.; Jahng, M.; Moriwaki, T.; Deveikis, A.; Le, J. Incidence and Risk Factors Influencing the Development of Vancomycin Nephrotoxicity in Children. J. Pediatr. 2011, 158, 422–426. [Google Scholar] [CrossRef]
- De Cock, P.A.J.G.; Desmet, S.; De Jaeger, A.; Biarent, D.; Dhont, E.; Herck, I.; Vens, D.; Colman, S.; Stove, V.; Commeyne, S.; et al. Impact of vancomycin protein binding on target attainment in critically ill children: Back to the drawing board? J. Antimicrob. Chemother. 2016, 72, 801–804. [Google Scholar] [CrossRef] [PubMed]
- Giachetto, G.A.; Telechea, H.M.; Speranza, N.; Oyarzun, M.; Nanni, L.; Menchaca, A. Vancomycin pharmacokinetic–pharmacodynamic parameters to optimize dosage administration in critically ill children. Pediatr. Crit. Care Med. 2011, 12, e250–e254. [Google Scholar] [CrossRef]
- Dolan, E.; Hellinga, R.; London, M.; Ryan, K.; Dehority, W. Effect of Vancomycin Loading Doses on the Attainment of Target Trough Concentrations in Hospitalized Children. J. Pediatr. Pharmacol. Ther. 2020, 25, 423–430. [Google Scholar] [CrossRef]
- Da Silva Alves, G.C.; Da Silva, S.D.; Frade, V.P.; Rodrigues, D.; Baldoni, A.D.O.; De Castro, W.V.; Sanches, C. Determining the optimal vancomycin daily dose for pediatrics: A meta-analysis. Eur. J. Clin. Pharmacol. 2017, 73, 1341–1353. [Google Scholar] [CrossRef]
- Vancomycin Dosing and Pharmacokinetics in Postoperative Pediatric Cardiothoracic Surgery Patients. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4778698 (accessed on 30 June 2021).
- Moffett, B.S.; Hilvers, P.S.; Dinh, K.; Arikan, A.A.; Checchia, P.; Bronicki, R. Vancomycin-Associated Acute Kidney Injury in Pediatric Cardiac Intensive Care Patients. Congenit. Hear. Dis. 2014, 10, E6–E10. [Google Scholar] [CrossRef]
- Cies, J.J.; Shankar, V. Nephrotoxicity in Patients with Vancomycin Trough Concentrations of 15-20 μg/ml in a Pediatric Intensive Care Unit. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2013, 33, 392–400. [Google Scholar] [CrossRef] [PubMed]
- Hays, W.B.; Tillman, E. Vancomycin-Associated Acute Kidney Injury in Critically Ill Adolescent and Young Adult Patients. J. Pharm. Pr. 2019, 33, 749–753. [Google Scholar] [CrossRef] [PubMed]
- Lanke, S.; Yu, T.; Rower, J.E.; Balch, A.H.; Korgenski, E.K.; Sherwin, C.M. AUC-Guided Vancomycin Dosing in Adolescent Patients With Suspected Sepsis. J. Clin. Pharmacol. 2016, 57, 77–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgan, R.W.; Fitzgerald, J.C.; Weiss, S.L.; Nadkarni, V.M.; Sutton, R.M.; Berg, R.A. Sepsis-associated in-hospital cardiac arrest: Epidemiology, pathophysiology, and potential therapies. J. Crit. Care 2017, 40, 128–135. [Google Scholar] [CrossRef]
- Zane, N.R.; Reedy, M.D.; Gastonguay, M.R.; Himebauch, A.S.; Ramsey, E.Z.; Topjian, A.A.; Zuppa, A.F. A Population Pharmacokinetic Analysis to Study the Effect of Therapeutic Hypothermia on Vancomycin Disposition in Children Resuscitated From Cardiac Arrest. Pediatr. Crit. Care Med. 2017, 18, e290–e297. [Google Scholar] [CrossRef]
- Benjanuwattra, J.; Chaiyawat, P.; Pruksakorn, D.; Koonrungsesomboon, N. Therapeutic potential and molecular mechanisms of mycophenolic acid as an anticancer agent. Eur. J. Pharmacol. 2020, 887, 173580. [Google Scholar] [CrossRef]
- Bergan, S.; Brunet, M.; Hesselink, D.A.; Johnson-Davis, K.L.; Kunicki, P.K.; Lemaitre, F.; Marquet, P.; Molinaro, M.; Noceti, O.; Pattanaik, S.; et al. Personalized Therapy for Mycophenolate: Consensus Report by the International Association of Therapeutic Drug Monitoring and Clinical Toxicology. Ther. Drug Monit. 2021, 43, 150–200. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Resztak, M.; Sobiak, J.; Czyrski, A. Recent Advances in Therapeutic Drug Monitoring of Voriconazole, Mycophenolic Acid, and Vancomycin: A Literature Review of Pediatric Studies. Pharmaceutics 2021, 13, 1991. https://doi.org/10.3390/pharmaceutics13121991
Resztak M, Sobiak J, Czyrski A. Recent Advances in Therapeutic Drug Monitoring of Voriconazole, Mycophenolic Acid, and Vancomycin: A Literature Review of Pediatric Studies. Pharmaceutics. 2021; 13(12):1991. https://doi.org/10.3390/pharmaceutics13121991
Chicago/Turabian StyleResztak, Matylda, Joanna Sobiak, and Andrzej Czyrski. 2021. "Recent Advances in Therapeutic Drug Monitoring of Voriconazole, Mycophenolic Acid, and Vancomycin: A Literature Review of Pediatric Studies" Pharmaceutics 13, no. 12: 1991. https://doi.org/10.3390/pharmaceutics13121991
APA StyleResztak, M., Sobiak, J., & Czyrski, A. (2021). Recent Advances in Therapeutic Drug Monitoring of Voriconazole, Mycophenolic Acid, and Vancomycin: A Literature Review of Pediatric Studies. Pharmaceutics, 13(12), 1991. https://doi.org/10.3390/pharmaceutics13121991