Combination of Hyaluronan and Lyophilized Progenitor Cell Derivatives: Stabilization of Functional Hydrogel Products for Therapeutic Management of Tendinous Tissue Disorders
Abstract
:1. Introduction
2. Materials and Methods
2.1. FE002-Ten Primary Progenitor Tenocyte Cell Sourcing and In Vitro Cell Culture Initiation
2.2. FE002-Ten Primary Progenitor Tenocyte Cell Banking and Bulk API Starting Material Manufacture
2.3. FE002-Ten Bulk Cellular Material Lot Proteomic Characterization by Multiplex Analyses
2.4. FE002-Ten Primary Progenitor Tenocyte Derivative Lyophilized API Manufacturing Process
2.5. Lyophilized FE002-Ten Primary Progenitor Tenocyte Derivative API Characterization
2.6. Lyophilized FE002-Ten Primary Progenitor Tenocyte Derivative API and HA-Based Hydrogel Preparation
2.7. Combination Product Accelerated Degradation Assays and Rheological Characterization after Hydrogen Peroxide Challenge
2.8. Trolox Equivalent Antioxidant Capacity of Lyophilized APIs
2.9. Lyophilized API Physical Characterization by Size Distribution Analysis with Hydrogen Peroxide Challenge
2.10. Combination Product Syringeability Assessment In Vitro and in Ex Vivo Settings
2.11. Statistical Analyses
3. Results
3.1. FE002-Ten Primary Progenitor Tenocyte Bulk Manufacture, Cellular Derivative API Preparation, and API Characterization
3.2. Lyophilized API-HA Combination Product Characterization in Accelerated Degradation Assays after Hydrogen Peroxide Challenge
3.3. Characterization of Lyophilized API Intrinsic Total Antioxidant Properties
3.4. Physical Characterization of Particle Size Distribution of Reconstituted APIs Challenged with Hydrogen Peroxide
3.5. Characterization of Combination Product Syringeability In Vitro and Ex Vivo
4. Discussion
4.1. Lyophilized Progenitor Tenocyte Derivative APIs Present Extensive Physicochemical Stability and Contain Low Quantities of Multiple Proteins
4.2. Lyophilized Progenitor Tenocyte Derivative APIs Robustly Enhance HA Rheological Behavior and Stability in Hydrogen Peroxide Challenge Assays
4.3. Designing of HA-Progenitor Cell Derivative Combination Products Yielding Intrinsic Antioxidant Properties Leads to the Enhancement of Functional and Stability Parameters
4.4. Progenitor Tenocyte Derivative APIs and HA Combination Products Present Several Technical Advantages
4.5. Progenitor Tenocyte Derivative APIs and HA Combination Products Possess Several Potential Therapeutic Applications
4.6. Regulatory Considerations Orient the Development of Progenitor Tenocyte Derivative APIs and HA Combination Products toward a Class III Medical Device
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
API | active pharmaceutical ingredient |
BCA | bicinchoninic acid assay |
cATMP | combined advanced therapy medicinal product |
CHUV | centre hospitalier universitaire vaudois |
CMV | cytomegalovirus |
Da | Daltons |
DMEM | Dulbecco’s modified Eagle medium |
DMSO | dimethyl sulfoxide |
EBV | Epstein-Barr virus |
EDTA | ethylenediaminetetraacetic acid |
FBS | fetal bovine serum |
GAG | glycosaminoglycan |
GMP | good manufacturing practices |
GO | gene ontology |
HA | hyaluronic acid |
HBV | hepatitis B virus |
HCV | hepatitis C virus |
HIV | human immunodeficiency virus |
H2O2 | hydrogen peroxide |
HSV | herpes simplex virus |
HTLV | human T-cell lymphotropic virus |
LVE | linear viscoelastic region |
MCB | master cell bank |
MD | medical device |
MW | molecular weight |
Pa | Pascals |
Pa·s | Pascal seconds |
PBS | phosphate-buffered saline |
PCB | parental cell bank |
PDT | population doubling time |
PDV | population doubling value |
Ph. Eur. | European pharmacopoeia |
PRP | platelet-rich plasma |
QC | quality control |
ROS | reactive oxygen species |
TEAC | Trolox equivalent antioxidant capacity |
TrSt | standardized transplant product |
USA | United States of America |
UV | ultraviolet |
WCB | working cell bank |
Appendix A
References
- Grognuz, A.; Scaletta, C.; Farron, A.; Pioletti, D.P.; Raffoul, W.; Applegate, L.A. Stability enhancement using hyaluronic acid gels for delivery of human fetal progenitor tenocytes. Cell Med. 2016, 8, 87–97. [Google Scholar] [CrossRef] [Green Version]
- Aya, K.L.; Stern, R. Hyaluronan in wound healing: Rediscovering a major player. Wound Repair Regen. 2014, 22, 579–593. [Google Scholar] [CrossRef]
- Agerup, B.; Berg, P.; Akermark, C. Non-animal stabilized hyaluronic acid: A new formulation for the treatment of osteoarthritis. BioDrugs 2005, 19, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Burdick, J.A.; Prestwich, G.D. Hyaluronic acid hydrogels for biomedical applications. Adv. Mater. 2011, 23, 41–56. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 2015, 6, 105–121. [Google Scholar] [CrossRef] [Green Version]
- Brown, M.B.; Jones, S.A. Hyaluronic acid: A unique topical vehicle for the localized delivery of drugs to the skin. J. Eur. Acad. Dermatol. Venereol. 2005, 19, 308–318. [Google Scholar] [CrossRef]
- Dalmedico, M.M.; Meier, M.; Felix, J.V.C.; Pott, F.S.; Petz, F.D.F.C.; Santos, M.C. Hyaluronic acid covers in burn treatment: A systematic review. Rev. Esc. Enferm. USP 2016, 50, 522–528. [Google Scholar] [CrossRef]
- Dicker, K.T.; Gurski, L.A.; Pradhan-Bhatt, S.; Witt, R.L.; Farach-Carson, M.C.; Jia, X. Hyaluronan: A simple polysaccharide with diverse biological functions. Acta Biomater. 2014, 10, 1558–1570. [Google Scholar] [CrossRef] [Green Version]
- Harris, P.A.; di Francesco, F.; Barisoni, D.; Leigh, I.M.; Navsaria, H.A. Use of hyaluronic acid and cultured autologous keratinocytes and fibroblasts in extensive burns. Lancet 1999, 353, 35–36. [Google Scholar] [CrossRef]
- Yu, W.; Xu, P.; Huang, G.; Liu, L. Clinical therapy of hyaluronic acid combined with platelet-rich plasma for the treatment of knee osteoarthritis. Exp. Ther. Med. 2018, 16, 2119–2125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaux, J.F.; Samson, A.; Crielaard, J.M. Hyaluronic acid and tendon lesions. Muscles Ligaments Tendons J. 2016, 5, 264–269. [Google Scholar] [CrossRef] [Green Version]
- Abate, M.; Schiavone, C.; Salini, V. The use of hyaluronic acid after tendon surgery and in tendinopathies. BioMed. Res. Int. 2014, 2014, 783632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Ruiz, E.; Jiménez, G.; Álvarez de Cienfuegos, L.; Antic, C.; Sabata, R.; Marchal, J.A.; Galvez-Martin, P. Advances of hyaluronic acid in stem cell therapy and tissue engineering, including current clinical trials. Eur. Cell Mater. 2019, 37, 186–213. [Google Scholar] [CrossRef] [PubMed]
- Altman, R.; Lim, S.; Steen, R.G.; Dasa, V. Hyaluronic acid injections are associated with delay of total knee replacement surgery in patients with knee osteoarthritis: Evidence from a large U.S. health claims database. PLoS ONE 2015, 10, e0145776. [Google Scholar] [CrossRef] [Green Version]
- Bogdan Allemann, I.; Baumann, L. Hyaluronic acid gel (Juvéderm) preparations in the treatment of facial wrinkles and folds. Clin. Interv. Aging 2008, 3, 629–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braithwaite, G.J.; Daley, M.J.; Toledo-Velasquez, D. Rheological and molecular weight comparisons of approved hyaluronic acid products—Preliminary standards for establishing class III medical device equivalence. J. Biomater. Sci. Polym. Ed. 2016, 27, 235–246. [Google Scholar] [CrossRef] [Green Version]
- Estades-Rubio, F.J.; Reyes-Martín, A.; Morales-Marcos, V.; García-Piriz, M.; García-Vera, J.J.; Perán, M.; Marchal, J.A.; Montañez-Heredia, E. Knee viscosupplementation: Cost-effectiveness analysis between stabilized hyaluronic acid in a single injection versus five injections of standard hyaluronic acid. Int. J. Mol. Sci. 2017, 18, 658. [Google Scholar] [CrossRef] [Green Version]
- Prestwich, G.D. Hyaluronic acid-based clinical biomaterials derived for cell and molecule delivery in regenerative medicine. J. Control. Release 2011, 155, 193–199. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Duan, X.; Fan, Z.; Chen, L.; Xing, F.; Xu, Z.; Chen, Q.; Xiang, Z. Mesenchymal stem cells in combination with hyaluronic acid for articular cartilage defects. Sci. Rep. 2018, 8, 9900. [Google Scholar] [CrossRef]
- Schmidt, J.J.; Rowley, J.; Kong, H.J. Hydrogels used for cell-based drug delivery. J. Biomed. Mater. Res. A 2008, 87, 1113–1122. [Google Scholar] [CrossRef]
- Tan, J.; Chen, H.; Zhao, L.; Huang, W. Platelet-rich plasma versus hyaluronic acid in the treatment of knee osteoarthritis: A meta-analysis of 26 randomized controlled trials. Arthroscopy 2021, 37, 309–325. [Google Scholar] [CrossRef]
- Wang, A.T.; Zhang, Q.F.; Wang, N.X.; Yu, C.Y.; Liu, R.M.; Luo, Y.; Zhao, Y.J.; Xiao, J.H. Cocktail of hyaluronic acid and human amniotic mesenchymal cells effectively repairs cartilage injuries in sodium iodoacetate-induced osteoarthritis rats. Front. Bioeng. Biotechnol. 2020, 8, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conrozier, T.; Mathieu, P.; Rinaudo, M. Mannitol preserves the viscoelastic properties of hyaluronic acid in an in vitro model of oxidative stress. Rheumatol. Ther. 2014, 1, 45–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, B.S.; Choi, J.S.; Kim, J.D.; Yeo, T.Y.; Cho, Y.W. Improvement of stem cell viability in hyaluronic acid hydrogels using dextran microspheres. J. Biomater. Sci. Polym. Ed. 2010, 21, 1701–1711. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Kirker, K.R.; Prestwich, G.D. Cross-linked hyaluronic acid hydrogel films: New biomaterials for drug delivery. J. Control. Release 2000, 69, 169–184. [Google Scholar] [CrossRef]
- Schanté, C.; Zubera, G.; Herlinb, C.; Vandammea, T.F. Chemical modifications of hyaluronic acid for the synthesis of derivatives for a broad range of biomedical applications. Carbohydr. Polym. 2011, 85, 469–489. [Google Scholar] [CrossRef]
- Schanté, C.; Zubera, G.; Herlinb, C.; Vandammea, T.F. Synthesis of N-alanyl-hyaluronamide with high degree of substitution for enhanced resistance to hyaluronidase-mediated digestion. Carbohydr. Polym. 2011, 86, 747–752. [Google Scholar] [CrossRef]
- Segura, T.; Anderson, B.C.; Chung, P.H.; Webber, R.E.; Shull, K.R.; Shea, L.D. Crosslinked hyaluronic acid hydrogels: A strategy to functionalize and pattern. Biomaterials 2005, 26, 359–371. [Google Scholar] [CrossRef]
- Stern, R.; Kogan, G.; Jedrzejas, M.J.; Soltés, L. The many ways to cleave hyaluronan. Biotechnol. Adv. 2007, 25, 537–557. [Google Scholar] [CrossRef]
- Vasi, A.M.; Popa, M.I.; Butnaru, M.; Dodi, G.; Verestiuc, L. Chemical functionalization of hyaluronic acid for drug delivery applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 38, 177–185. [Google Scholar] [CrossRef]
- Lee, H.Y.; Hwang, C.H.; Kim, H.E.; Jeong, S.H. Enhancement of bio-stability and mechanical properties of hyaluronic acid hydrogels by tannic acid treatment. Carbohydr. Polym. 2018, 186, 290–298. [Google Scholar] [CrossRef] [PubMed]
- Pereira de Sousa, I.; Suchaoin, W.; Zupančič, O.; Leichner, C.; Bernkop-Schnürch, A. Totally S-protected hyaluronic acid: Evaluation of stability and mucoadhesive properties as liquid dosage form. Carbohydr. Polym. 2016, 152, 632–638. [Google Scholar] [CrossRef]
- Manju, S.; Sreenivasan, K. Conjugation of curcumin onto hyaluronic acid enhances its aqueous solubility and stability. J. Colloid Interface Sci. 2011, 359, 318–325. [Google Scholar] [CrossRef]
- Yoon, H.Y.; Koo, H.; Choi, K.Y.; Chan Kwon, I.; Choi, K.; Park, J.H.; Kim, K. Photo-crosslinked hyaluronic acid nanoparticles with improved stability for in vivo tumor-targeted drug delivery. Biomaterials 2013, 34, 5273–5280. [Google Scholar] [CrossRef]
- Ulusal, B.G. Platelet-rich plasma and hyaluronic acid—An efficient biostimulation method for face rejuvenation. J. Cosmet. Dermatol. 2017, 16, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Liang, C.; Wang, R.; Yao, X.; Guo, P.; Yuan, W.; Liu, Y.; Song, Y.; Li, Z.; Xie, X. The fabrication of a highly efficient self-healing hydrogel from natural biopolymers loaded with exosomes for the synergistic promotion of severe wound healing. Biomater. Sci. 2019, 8, 313–324. [Google Scholar] [CrossRef]
- Xie, Y.; Upton, Z.; Richards, S.; Rizzi, S.C.; Leavesley, D.I. Hyaluronic acid: Evaluation as a potential delivery vehicle for vitronectin: Growth factor complexes in wound healing applications. J. Control. Release 2011, 153, 225–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aviv, M.; Halperin-Sternfeld, M.; Grigoriants, I.; Buzhansky, L.; Mironi-Harpaz, I.; Seliktar, D.; Einav, S.; Nevo, Z.; Adler-Abramovich, L. Improving the mechanical rigidity of hyaluronic acid by integration of a supramolecular peptide matrix. ACS Appl. Mat. Interface 2018, 10, 41883–41891. [Google Scholar] [CrossRef]
- Parajó, Y.; D’Angelo, I.; Welle, A.; Garcia-Fuentes, M.; Alonso, M.J. Hyaluronic acid/Chitosan nanoparticles as delivery vehicles for VEGF and PDGF-BB. Drug Deliv. 2010, 17, 596–604. [Google Scholar] [CrossRef]
- Mönkäre, J.; Reza Nejadnik, M.; Baccouche, K.; Romeijn, S.; Jiskoot, W.; Bouwstra, J.A. IgG-loaded hyaluronan-based dissolving microneedles for intradermal protein delivery. J. Control. Release 2015, 218, 53–62. [Google Scholar] [CrossRef]
- Darwiche, S.; Scaletta, C.; Raffoul, W.; Pioletti, D.P.; Applegate, L.A. Epiphyseal chondroprogenitors provide a stable cell source for cartilage cell therapy. Cell Med. 2012, 4, 23–32. [Google Scholar] [CrossRef] [Green Version]
- Grognuz, A.; Scaletta, C.; Farron, A.; Raffoul, W.; Applegate, L.A. Human fetal progenitor tenocytes for regenerative medicine. Cell Transpl. 2016, 25, 463–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Dourobi, K.; Laurent, A.; Deghayli, L.; Flahaut, M.; Abdel-Sayed, P.; Scaletta, C.; Michetti, M.; Waselle, L.; Simon, J.P.; Ezzi, O.E.; et al. Retrospective evaluation of progenitor biological bandage use: A complementary and safe therapeutic management option for prevention of hypertrophic scarring in pediatric burn care. Pharmaceuticals 2021, 14, 201. [Google Scholar] [CrossRef]
- Laurent, A.; Hirt-Burri, N.; Scaletta, C.; Michetti, M.; de Buys Roessingh, A.S.; Raffoul, W.; Applegate, L.A. Holistic approach of Swiss fetal progenitor cell banking: Optimizing safe and sustainable substrates for regenerative medicine and biotechnology. Front. Bioeng. Biotechnol. 2020, 8, 557758. [Google Scholar] [CrossRef]
- Hohlfeld, J.; de Buys Roessingh, A.S.; Hirt-Burri, N.; Chaubert, P.; Gerber, S.; Scaletta, C.; Hohlfeld, P.; Applegate, L.A. Tissue engineered fetal skin constructs for paediatric burns. Lancet 2005, 366, 840–842. [Google Scholar] [CrossRef]
- Laurent, A.; Abdel-Sayed, P.; Ducrot, A.; Hirt-Burri, N.; Scaletta, C.; Jaccoud, S.; Nuss, K.; de Buys Roessingh, A.; Raffoul, W.; Pioletti, D.; et al. Development of standardized fetal progenitor cell therapy for cartilage regenerative medicine: Industrial transposition and preliminary safety in xenogeneic transplantation. Biomolecules 2021, 11, 250. [Google Scholar] [CrossRef] [PubMed]
- Laurent, A.; Abdel-Sayed, P.; Grognuz, A.; Scaletta, C.; Hirt-Burri, N.; Michetti, M.; de Buys Roessingh, A.S.; Raffoul, W.; Kronen, P.; Nuss, K.; et al. Industrial development of standardized fetal progenitor cell therapy for tendon regenerative medicine: Preliminary safety in xenogeneic transplantation. Biomedicines 2021, 9, 380. [Google Scholar] [CrossRef] [PubMed]
- Laurent, A.; Scaletta, C.; Abdel-Sayed, P.; Michetti, M.; Flahaut, M.; Simon, J.-P.; de Buys Roessingh, A.d.B.; Raffoul, W.; Hirt-Burri, N.; Applegate, L.A. Optimized manufacture of lyophilized dermal fibroblasts for next-generation off-the-shelf progenitor biological bandages in topical post-burn regenerative medicine. Biomedicines 2021, 9, 1072. [Google Scholar] [CrossRef]
- Heathman, T.R.; Nienow, A.W.; McCall, M.J.; Coopman, K.; Kara, B.; Hewitt, C.J. The translation of cell-based therapies: Clinical landscape and manufacturing challenges. Regen. Med. 2015, 10, 49–64. [Google Scholar] [CrossRef] [Green Version]
- Akita, S.; Akino, K.; Tanaka, K.; Anraku, K.; Hirano, A. A basic fibroblast growth factor improves lower extremity wound healing with a porcine-derived skin substitute. J. Trauma 2008, 64, 809–815. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Y.; Zhang, T.; Shi, M.; Song, X.; Yang, S.; Liu, H.; Zhang, M.; Cui, Q.; Li, Z. Hepatocyte growth factor-induced tendon stem cell conditioned medium promotes healing of injured Achilles tendon. Front. Cell Dev. Biol. 2021, 9, 654084. [Google Scholar] [CrossRef]
- Hagerott, B.N.; Blumstein, A.J.; McGarry, L.E.; Cohen, H.M.; Tenorio, C.A.; Powell, B.D.; Nagy, T.; Blaber, M. A bell-shaped dose–response of topical FGF-1 in accelerating dermal wound healing in aged female BALB/cByJ mice. J. Proteins Proteom. 2020, 11, 183–191. [Google Scholar] [CrossRef]
- Galiano, R.D.; Tepper, O.M.; Pelo, C.R.; Bhatt, K.A.; Callaghan, M.; Bastidas, N.; Bunting, S.; Steinmetz, H.G.; Gurtner, G.C. Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells. Am. J. Pathol. 2004, 164, 1935–1947. [Google Scholar] [CrossRef] [Green Version]
- Juncan, A.M.; Moiśa, D.G.; Santini, A.; Morgovan, C.; Rus, L.-L.; Vonica-Tincu, A.L.; Loghin, F. Advantages of hyaluronic acid and its combination with other bioactive ingredients in cosmeceuticals. Molecules 2021, 26, 4429. [Google Scholar] [CrossRef]
- Karel, S.; Sogorkova, J.; Hermannova, M.; Nesporova, K.; Marholdova, L.; Chmelickova, K.; Bednarova, L.; Flegel, M.; Drasar, P.; Velebny, V. Stabilization of hyaluronan-based materials by peptide conjugation and its use as a cell-seeded scaffold in tissue engineering. Carbohydr. Polym. 2018, 201, 300–307. [Google Scholar] [CrossRef]
- Pavan, M.; Galesso, D.; Menon, G.; Renier, D.; Guarise, C. Hyaluronan derivatives: Alkyl chain length boosts viscoelastic behavior to depolymerization. Carbohydr. Polym. 2013, 97, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Maudens, P.; Meyer, S.; Seemayer, C.A.; Jordan, O.; Allémann, E. Self-assembled thermoresponsive nanostructures of hyaluronic acid conjugates for osteoarthritis therapy. Nanoscale 2018, 10, 1845–1854. [Google Scholar] [CrossRef] [Green Version]
- Xue, Y.; Chen, H.; Xu, C.; Yu, D.; Xua, H.; Hu, Y. Synthesis of hyaluronic acid hydrogels by crosslinking the mixture of high-molecular-weight hyaluronic acid and low-molecular-weight hyaluronic acid with 1,4-butanediol diglycidyl ether. RSC Adv. 2020, 10, 7206–7213. [Google Scholar] [CrossRef]
- Molliard, S.G.; Bétemps, J.B.; Hadjab, B.; Topchian, D.; Micheels, P.; Salomon, D. Key rheological properties of hyaluronic acid fillers: From tissue integration to product degradation. Plast. Aesthet. Res. 2018, 5, 17. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Ji, B.; Ling, P.; Zhang, T. Trehalose and hyaluronic acid coordinately stabilized freeze-dried pancreatic kininogenase. Eur. J. Pharm. Biopharm. 2007, 65, 18–25. [Google Scholar] [CrossRef]
- Hafsa, J.; Chaouch, M.A.; Charfeddine, B.; Rihouey, C.; Limem, K.; Le Cerf, D.; Rouatbi, S.; Majdoub, H. Effect of ultrasonic degradation of hyaluronic acid extracted from rooster comb on antioxidant and antiglycation activities. Pharm. Biol. 2017, 55, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Kablik, J.; Monheit, G.D.; Yu, L.; Chang, G.; Gershkovich, J. Comparative physical properties of hyaluronic acid dermal fillers. Dermatol. Surg. 2009, 35, 302–312. [Google Scholar] [CrossRef] [PubMed]
- Sundaram, H.; Rohrich, R.J.; Liew, S.; Sattler, G.; Talarico, S.; Trévidic, P.; Molliard, S.G. Cohesivity of hyaluronic acid fillers: Development and clinical implications of a novel assay, pilot validation with a five-point grading scale, and evaluation of six U.S. Food and Drug Administration-approved fillers. Plast. Reconstruc. Surg. 2015, 136, 678–686. [Google Scholar] [CrossRef] [PubMed]
- Jeannerat, A.; Peneveyre, C.; Armand, F.; Chiappe, D.; Hamelin, R.; Scaletta, C.; Hirt-Burri, N.; de Buys Roessingh, A.; Raffoul, W.; Applegate, L.A.; et al. Hypoxic incubation conditions for optimized manufacture of tenocyte-based active pharmaceutical ingredients of homologous standardized transplant products in tendon regenerative medicine. Cells 2021, 10, 2872. [Google Scholar] [CrossRef]
- Van der Vlist, A.C.; Winters, M.; Weir, A.; Ardern, C.L.; Welton, N.J.; Caldwell, D.M.; Verhaar, J.A.; de Vos, R.J. Which treatment is most effective for patients with Achilles tendinopathy? A living systematic review with network meta-analysis of 29 randomised controlled trials. Br. J. Sports Med. 2021, 55, 249–256. [Google Scholar] [CrossRef]
- Ho, J.O.; Sawadkar, P.; Mudera, V. A review on the use of cell therapy in the treatment of tendon disease and injuries. J. Tissue Eng. 2014, 5, 2041731414549678. [Google Scholar] [CrossRef]
- Costa-Almeida, R.; Calejo, I.; Gomes, M.E. Mesenchymal stem cells empowering tendon regenerative therapies. Int. J. Mol. Sci. 2019, 20, 3002. [Google Scholar] [CrossRef] [Green Version]
- Gao, F.; Yang, C.X.; Mo, W.; Liu, Y.W.; He, Y.Q. Hyaluronan oligosaccharides are potential stimulators to angiogenesis via RHAMM mediated signal pathway in wound healing. Clin. Invest. Med. 2008, 31, E106–E116. [Google Scholar] [CrossRef] [Green Version]
- Fallacara, A.; Baldini, E.; Manfredini, S.; Vertuani, S. Hyaluronic acid in the third millennium. Polymers 2018, 10, 701. [Google Scholar] [CrossRef] [Green Version]
- Huerta-Ángeles, G.; Nešporová, K.; Ambrožová, G.; Kubala, L.; Velebný, V. An effective translation: The development of hyaluronan-based medical products from the physicochemical, and preclinical aspects. Front. Bioeng. Biotechnol. 2018, 6, 62. [Google Scholar] [CrossRef] [Green Version]
- Kunz, L.I.; van Rensen, E.L.; Sterk, P.J. Inhaled hyaluronic acid against exercise-induced bronchoconstriction in asthma. Pulm. Pharmacol. Ther. 2006, 19, 286–291. [Google Scholar] [CrossRef] [PubMed]
- Fallacara, A.; Busato, L.; Pozzoli, M.; Ghadiri, M.; Ong, H.X.; Young, P.M.; Manfredini, S.; Traini, D. Co-spray-dried urea cross-linked hyaluronic acid and sodium ascorbyl phosphate as novel inhalable dry powder formulation. J. Pharm. Sci. 2019, 108, 2964–2971. [Google Scholar] [CrossRef]
- Cilurzo, F.; Selmin, F.; Minghetti, P.; Adami, M.; Bertoni, E.; Lauria, S.; Montanari, L. Injectability evaluation: An open issue. AAPS PharmSciTech. 2011, 12, 604–609. [Google Scholar] [CrossRef] [PubMed]
- Clayton, R.A.; Court-Brown, C.M. The epidemiology of musculoskeletal tendinous and ligamentous injuries. Injury 2008, 39, 1338–1344. [Google Scholar] [CrossRef]
- Andriolo, L.; Altamura, S.A.; Reale, D.; Candrian, C.; Zaffagnini, S.; Filardo, G. Nonsurgical treatments of patellar tendinopathy: Multiple injections of platelet-rich plasma are a suitable option: A systematic review and meta-analysis. Am. J. Sports Med. 2019, 47, 1001–1018. [Google Scholar] [CrossRef] [PubMed]
- Chong, A.K.; Ang, A.D.; Goh, J.C.; Hui, J.H.; Lim, A.Y.; Lee, E.H.; Lim, B.H. Bone marrow-derived mesenchymal stem cells influence early tendon-healing in a rabbit Achilles tendon model. J. Bone Jt. Surg. Am. 2007, 89, 74–81. [Google Scholar] [CrossRef]
- Kryger, G.S.; Chong, A.K.; Costa, M.; Pham, H.; Bates, S.J.; Chang, J. A comparison of tenocytes and mesenchymal stem cells for use in flexor tendon tissue engineering. J. Hand Surg. Am. 2007, 32, 597–605. [Google Scholar] [CrossRef]
- Watts, A.E.; Yeager, A.E.; Kopyov, O.V.; Nixon, A.J. Fetal derived embryonic-like stem cells improve healing in a large animal flexor tendonitis model. Stem Cell Res. 2011, 2, 4. [Google Scholar] [CrossRef] [Green Version]
- Ellera Gomes, J.L.; da Silva, R.C.; Silla, L.M.; Abreu, M.R.; Pellanda, R. Conventional rotator cuff repair complemented by the aid of mononuclear autologous stem cells. Knee Surg. Sports Traumatol. Arthrosc. 2012, 20, 373–377. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Wang, Y.; Liu, E.; Sun, Y.; Luo, Z.; Xu, Z.; Liu, W.; Zhong, L.; Lv, Y.; Wang, A.; et al. Human iPSC-derived neural crest stem cells promote tendon repair in a rat patellar tendon window defect model. Tissue Eng. Part A 2013, 19, 2439–2451. [Google Scholar] [CrossRef] [Green Version]
- Lu, V.; Tennyson, M.; Zhang, J.; Khan, W. Mesenchymal stem cell-derived extracellular vesicles in tendon and ligament repair-A systematic review of in vivo studies. Cells 2021, 10, 2553. [Google Scholar] [CrossRef] [PubMed]
- Sato, D.; Takahara, M.; Narita, A.; Yamakawa, J.; Hashimoto, J.; Ishikawa, H.; Ogino, T. Effect of platelet-rich plasma with fibrin matrix on healing of intrasynovial flexor tendons. J. Hand Surg. Am. 2012, 37, 1356–1363. [Google Scholar] [CrossRef]
- Amadio, P.C. Gliding resistance and modifications of gliding surface of tendon: Clinical perspectives. Hand Clin. 2013, 29, 159–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rayahin, J.E.; Buhrman, J.S.; Zhang, Y.; Koh, T.J.; Gemeinhart, R.A. High and low molecular weight hyaluronic acid differentially influence macrophage activation. ACS Biomater. Sci. Eng. 2015, 1, 481–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, Y.; Yang, J.; Liang, J.; Xu, X.; Cui, W.; Deng, L.; Zhang, H. Bioinspired hyaluronic acid/phosphorylcholine polymer with enhanced lubrication and anti-inflammation. Biomacromolecules 2019, 20, 4135–4142. [Google Scholar] [CrossRef] [PubMed]
- Ayyaswamy, B.; Vaghela, M.; Alderton, E.; Majeed, H.; Limaye, R. Early outcome of a single peri-tendinous hyaluronic acid injection for mid-portion non-insertional Achilles tendinopathy—A pilot study. Foot. 2021, 49, 101738. [Google Scholar] [CrossRef]
- Racchi, M.; Govoni, S.; Lucchelli, A.; Capone, L.; Giovagnoni, E. Insights into the definition of terms in European medical device regulation. Expert Rev. Med. Devices 2016, 13, 907–917. [Google Scholar] [CrossRef]
- Garnica-Galvez, S.; Korntner, S.H.; Skoufos, I.; Tzora, A.; Diakakis, N.; Prassinos, N.; Zeugolis, D.I. Hyaluronic acid as macromolecular crowder in equine adipose-derived stem cell cultures. Cells 2021, 10, 859. [Google Scholar] [CrossRef]
- World Medical Association. Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Protein Abbreviated Name (Protein Full Name) | Theoretical Protein Molecular Weight 2 (Da) | Normalized Relative Protein Quantity in the Cell Lysate (pg/mg) | Calculated Protein Quantity in an API Unitary Dose (pg/vial) |
---|---|---|---|
MMP-2 (72 kDa type IV collagenase) | 72,000 | 8504 | 2412 |
TIMP-2 (Metalloproteinase inhibitor 2) | 21,000 | 8087 | 2294 |
sEGFR (Soluble epidermal growth factor receptor) | 110,000 | 6807 | 1931 |
TIMP-1 (Metalloproteinase inhibitor 1) | 28,000 | 4155 | 1179 |
sgp130 (Soluble gp130) | 100,000 | 3751 | 1064 |
FGF-2 (Fibroblast growth factor 2) | 18,000 | 2856 | 810 |
HGF (Hepatocyte growth factor) | 83,100 | 1859 | 527 |
sTNFRI (Soluble tumour necrosis factor receptor type I) | 18,300 | 743 | 211 |
MMP-13 (Collagenase 3) | 54,000 | 737 | 209 |
IL-1Ra (Interleukin-1 receptor antagonist protein) | 17,300 | 383 | 109 |
FST (Follistatin) | 38,000 | 308 | 87 |
MMP-7 (Matrilysin) | 28,000 | 190 | 54 |
FGF-1 (Fibroblast growth factor 1) | 15,500 | 155 | 44 |
IL-23 (Interleukin-23) | 55,000 | 115 | 33 |
ENG (Endoglin) | 64,000 | 102 | 29 |
MDC/CCL22 (C-C motif chemokine 22) | 7800 | 75 | 21 |
Flt-3L (Fms-related tyrosine kinase 3 ligand) | 20,000 | 73 | 21 |
VEGF-A (Vascular endothelial growth factor A) | 27,000 | 66 | 19 |
MCP-1 (C-C motif chemokine 2) | 8700 | 54 | 15 |
sIL-6R (Soluble IL-6 receptor) | 42,250 | 48 | 14 |
Parameters | Targets | Acceptance Criteria (Cumulative) | Results/Grading of the Lyophilizates | ||
---|---|---|---|---|---|
Placebo Formula | Cell Lysate API | Whole Cell API | |||
Presence of cake | Presence of a solid cake | Presence of a solid cake No residual liquid phase | +++ | +++ | +++ |
Batch uniformity | Uniform lyophilizate batch | Vial-to-vial uniform aspect Dry product unitary mass uniformity 1 | +++ | +++ | +++ |
Cake color | White cake color | White cake coloration Monochrome cake Consistent hue, tint, tone, and shade of the cake | +++ | ++ | +++ |
Cake structure | Uniform structure | Presence of a single cylindrical solid mass | +++ | ++ | ++ |
Cake density | Dense cake | Presence of small cake pores Absence of gross porosity on the sides and bottom of the cake | +++ | +++ | +++ |
Cake finish | Shiny or sheen finish 2 | Shiny or sheen finish observed on the top, sides, and bottom of the cake | +++ | ++ | ++ |
Cake friability | Non-friable cake 3 | No detachment or detachment of small fragments from the quoins of the cake Free fragments <5% of total cake volume | +++ | +++ | +++ |
Cake topography | Consistent cake topography | Consistent presence of top flakes, bumps, cracks, concavity, or peaks | +++ | +++ | +++ |
Cake shrinkage | Minimal cake shrinkage | No horizonal shrinkage Vertical shrinkage <10% from original fill height | +++ | +++ | +++ |
Cake collapse/ meltback | No cake collapse or meltback | Absence of cake collapse Absence of observable liquid portion of the cake | +++ | +++ | +++ |
Residual material presence | Minimal residual material presence | Minimal residual material presence on the upper rim of the cake, on vial surface at the original fill height | +++ | +++ | +++ |
Particle presence | Absence of observable contaminating particles | Absence of observable contaminating particles 4 | +++ | +++ | +++ |
Residual moisture level | Residual moisture level <5.0% 5 water | Residual moisture level < 5.0% water | 4.0% ± 0.2% | 4.2% ± 0.4% | 4.4% ± 0.3% |
Cake reconstitution time | Full cake reconstitution time <90 s 6 | Absence of observable solid and undissolved mass after 90 s | <30 s | <30 s | <30 s |
Cell structural integrity maintenance in the cake | Presence of structurally integral cells | Structural integrity confirmed microscopically and by size distribution analysis 7 | NA | NA | +++ |
pH value after cake reconstitution | pH value of 7.5 ± 1.0 after reconstitution | Measured pH value comprised in the target interval | 7.3 ± 0.2 | 7.2 ± 0.2 | 7.3 ± 0.1 |
Osmolality value after cake reconstitution | Osmolality value of 300 ± 30 mOsmol/kg | Measured osmolality value comprised in the target interval | 296 mOsmol/kg ± 6 mOsmol/kg | 287 mOsmol/kg ± 12 mOsmol/kg | 290 mOsmol/kg ± 8 mOsmol/kg |
Cellular devitalization upon cake reconstitution | Absence of viable cells | Absence of viability confirmed by staining of cells with Trypan blue | NA | NA | +++ |
Storage Period | Storage Temperature | Descriptive Parameters 1 | Endpoint Moisture Level | Endpoint Reconstitution Time | Endpoint pH Value |
---|---|---|---|---|---|
3 months | −20 °C | +++ | 3.9% ± 0.5% | 45 s | 7.1 ± 0.2 |
4 °C | +++ | 4.6% ± 0.4% | 35 s | 7.1 ± 0.3 | |
22 °C | +++ | 4.5% ± 0.3% | 35 s | 7.2 ± 0.3 | |
37 °C | +++ | 4.3% ± 0.5% | 50 s | 7.1 ± 0.4 | |
6 months | −20 °C | +++ | 4.2% ± 0.3% | 45 s | 7.0 ± 0.2 |
4 °C | ++ | 4.4% ± 0.3% | 45 s | 7.1 ± 0.1 | |
22 °C | +++ | 4.3% ± 0.5% | 40 s | 7.3 ± 0.2 | |
37 °C | +++ | 4.5% ± 0.4% | 50 s | 7.2 ± 0.3 | |
9 months | −20 °C | +++ | 4.0% ± 0.1% | 45 s | 7.1 ± 0.3 |
4 °C | +++ | 4.5% ± 0.5% | 40 s | 7.1 ± 0.3 | |
22 °C | ++ | 4.4% ± 0.4% | 35 s | 7.2 ± 0.1 | |
37 °C | +++ | 4.5% ± 0.3% | 45 s | 7.2 ± 0.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laurent, A.; Porcello, A.; Fernandez, P.G.; Jeannerat, A.; Peneveyre, C.; Abdel-Sayed, P.; Scaletta, C.; Hirt-Burri, N.; Michetti, M.; de Buys Roessingh, A.; et al. Combination of Hyaluronan and Lyophilized Progenitor Cell Derivatives: Stabilization of Functional Hydrogel Products for Therapeutic Management of Tendinous Tissue Disorders. Pharmaceutics 2021, 13, 2196. https://doi.org/10.3390/pharmaceutics13122196
Laurent A, Porcello A, Fernandez PG, Jeannerat A, Peneveyre C, Abdel-Sayed P, Scaletta C, Hirt-Burri N, Michetti M, de Buys Roessingh A, et al. Combination of Hyaluronan and Lyophilized Progenitor Cell Derivatives: Stabilization of Functional Hydrogel Products for Therapeutic Management of Tendinous Tissue Disorders. Pharmaceutics. 2021; 13(12):2196. https://doi.org/10.3390/pharmaceutics13122196
Chicago/Turabian StyleLaurent, Alexis, Alexandre Porcello, Paula Gonzalez Fernandez, Annick Jeannerat, Cédric Peneveyre, Philippe Abdel-Sayed, Corinne Scaletta, Nathalie Hirt-Burri, Murielle Michetti, Anthony de Buys Roessingh, and et al. 2021. "Combination of Hyaluronan and Lyophilized Progenitor Cell Derivatives: Stabilization of Functional Hydrogel Products for Therapeutic Management of Tendinous Tissue Disorders" Pharmaceutics 13, no. 12: 2196. https://doi.org/10.3390/pharmaceutics13122196
APA StyleLaurent, A., Porcello, A., Fernandez, P. G., Jeannerat, A., Peneveyre, C., Abdel-Sayed, P., Scaletta, C., Hirt-Burri, N., Michetti, M., de Buys Roessingh, A., Raffoul, W., Allémann, E., Jordan, O., & Applegate, L. A. (2021). Combination of Hyaluronan and Lyophilized Progenitor Cell Derivatives: Stabilization of Functional Hydrogel Products for Therapeutic Management of Tendinous Tissue Disorders. Pharmaceutics, 13(12), 2196. https://doi.org/10.3390/pharmaceutics13122196